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An Extension of the Characteristic Sequences
Method to the Case of Repeated Roots

KUMAR 8. RAY anD BASIL A. KOUVARITAKIS

Abstract —An extension of the characteristic sequences method to the
case of repeated roots has been investigated. The aim of the present note is
to complete the study and the related design of systems whose mathemati-
cal modeling in state-space form or transfer-function form is not available.
A comparative study between the characteristic sequences method and the
characteristic locus method shows that the two methods are closely related
to each other and the former one is a time-domain counterpart of the latter
one.

1. INTRODUCTION

The analysis and design of multivariable systems in terms of the
time-domain input/output method is called the characteristic sequences
method (CSM) [3]. This method works quite well in time domain. It has
been found that the characteristic sequences method is closely related to
the characteristic locus method (CLM) [3] and in fact the former one is a
time-domain counterpart concept of the latter one.

The aim of the present note is to extend the existing concept of the
characteristic sequences method to the case of repeated roots. A detailed
theoretical derivation has been given to complete the study and the
related design of systems in terms of time-domain input/output method,
i.e., the characteristic sequences method.

II. DERIVATION OF ALGORITHMS FOR THE CASE
OF REPEATED ROOTS

The concept of distinct roots’ CWS/CVS, as given in the Appendix
may be extended to the treatment of repeated roots in the following way.

The Case of Repeated Roots Associated with Simple Jordan Canonical Form

To begin, the first two roots of G(1) are repeated with a view to writing
the eigenvectors at the second sampling instant as

w2 =[O, O]+, WBQ) (1)
where a;(2) = two-dimensional arbitrary constant vectors, 8;(2) = (m —2)
dimensional fixed constant vectors, and W , (1) =[W;(1)- - - W, (D]
The reason for the above projection of W;(2) becomes clear from the
equations which are going to be used for the calculation of Bj(i).
Considering the equation for CWS/CVS at the second sampling instant
from the equation (A4) of the Appendix we get

LW Q)+ W, (M[AAT O] O] [W (D] £(2) =0
(22)
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where
AONE
.(1)=
V(1)
and
8178 O
AAT)=| TS~
\gl = 8&m
So,

B (2)=-[aA (] [V W] W,(1). (2.3)

Evidently, the equation (2.3) comes as a substitute for B;(2) of the
equation (2.1) and we get

W, (2) = [m 1), w5 ()] o, (2) - W, (D[ AAF(1)] !

VO T@QW, Q). (24

We have seen that the number of repeated eigenroots of G(1) indicates
the number of eigenvectors of G(1) which can be taken out to be
multiplied with the arbitrary constant a,(i), and the remaining eigenvec-
tors of W(1) will be multiplied with the fixed element of the vector 8;(7).
Thus, the vector W,(i) is computed every time as linear combinations of
eigenvectors at initial time. So far no explicit algorithm for the computa-
tion of the dual CVS matrix S, has been proposed. This, however, is not
necessary when one realizes that S, is the dual matrix sequences of Sy,
which means S,®S,, = Sg or S, =[S, ]7. Thus, S, may be obtained by
the inversion of S,, and this may be simply executed using the formula
given in [3].

But if all the roots of G(1) are repeated, then 7;* (1) will no longer be
valid, and in that case the equation (A4) of the Appendix will be changed
as follows:

W (1) =0
T,(3)W; (1) + T, (2)W;(2) =0

T(K)W, M)+ T(K- D)W 2)+ - + T2 (K-1)=0

(2.5)

It is quite obvious that the set of equations (2.5) is exactly the same as
the equation (A4) of the Appendix with one appropriate sampling shift.

The Case of Repeated Roots Associated with Nonsimple Canonical Form

Now let us consider that G(1)-has nonsimple Jordan canonical form.
Then we decompose it with the help of Jordan block, and its expression
will be as follows:

G() =W {1}V () @6)
where

J(1) = diag { 7,(1))

and Ji(1) represents a Jordan canonical block. More precisely, G(1) =
W[ A1)+ €]V(1) where

A1) = diag (A, (1)},

and where ¢ is the zero matrix with 1’s appearing on the super diagonal
above those diagonal elements that correspond to the nonsimple repeated

j=1,-,m

j=1l-m
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roots. Hence, the spectral decomposition of S; will be as follows:

o S S,
S, S, S. S,
Sc=Sy®| SelS S S, S ®S, (2.8)
So S, S, S, o So

provided we can define S, from S}, [3].

Now if we can establish a closed-loop relationship, with respect to the
open-loop relation as given in (2.8), in the same way as other input/out-
put methods, then for stability purposes we can treat our every Jordan
block as a set of SISO operators and we may carry out the rest of the
design study in the usual manner [3]. Let us consider the closed-loop
relation in the following way:

Sr=. (SEeSG)Dl &S
=S,®[S;@5,05 " ®[s,05,]8S,
=Sy ®S,, 8Sy

2.9
where SAR, is closed-loop CWS matrix. Now we concentrate on SAR, and
try to achieve an expression similar to that obtained for the case of
distinct roots.

For the sake of convenience of calculation let us consider a WMS
whose first instant matrix has its first two roots repeated and associated
with a nonsimple Jordan block. Clearly so, by (2.8) we have

s, S,
Se=Sp®|S@| % S ®S, (2.10)
S,
and from (2.9) we obtain
Sp=(5;05;)" ®S;
S,
= e ®S
(s.05,)e(s.es,)| 7
5,2(5,,®5.) S,
S, 5,2(5),@85.)
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The arguments and the subscripts are same as in the equation (A4) of the
Appendix. If we choose the second sampling instant and try to calculate
the eigenvalue at that instant we get the following result:

g @)=V (@AW, 1)- V)W, _.(1)-

For the calculation of the CVS we can obtain the value of W;(2) by
writing

(2.13)

w;(2) = [m 1), ()] o (2)+ W, (1)8,(2)
where we assume that G(1) has its first two eigenvalues repeated. Sub-

stituting the above in the second condition of (2.12) multiplying both
sides by V] ,(1)" we get

8, =-1an 1 L O @1w )
-[aAr @] [ w2 ] (215)

so that W;(2) now becomes

(2.14)

W, (2) = [ W), W, ()] o (2) - Wi, (D[ AAT ()] !
VLI T@QW,0)- W, ()[AA7 )]
LA EROIE

Therefore, we can follow the above procedures for the calculations of the
rest of CWS/CVS. From the above derivations and discussions, we have
made so far, it is quite implicit that CWS and CVS can be treated in an
analogous manner to characteristic gain and characteristics direction,
respectively [5].

(2.16)

III. CONCLUSION

The idea of repeated roots has been developed in a systematic manner.

5,8(5.@5,)®(5.85,,)

Looking at the expression of (2.10) and (2.11) we can say that the case
of nonsimple repeated roots gives rise to the same simple open-loop and
closed-loop relations between the CWS and CVS as in the case of distinct
roots. Moreover, we can also extend the above ideas to (2.8) and (2.9)
which are a more generalized form of (2.10) and (2.11).

Now for the calculation of eigenvalues and eigenvectors at every instant
we change the equation (A4) of the Appendix in the following way:

T,)W,(1) = - W, (1)

LW, )+ T 2) = - W1 (1)

LKW+ T(k D)W )+ - + TOW(K) = - W_ (1)
(212)

where

T (i) = =g ()= G(i).

50(5.25,) (211)

\\
5,,@(5.8,,)e(5.95,)
5,8(S.9S,,)

Interesting results have been derived and unique relationships have been
established. It has been found that even in the case of nonsimple repeated
roots the CSM bears the same simple open-loop and closed-loop relations
between CWS and CVS as in the case of distinct roots. The calculation of
CWS and CVS are also similar to those of distinct roots’ CWS and CVS
except for a few differences. It is believed that with the help of some
additional research effort the time-domain approach for multivariable
plant will become a powerful tool along with other established methods
such as the characteristic locus method.

APPENDIX

When a system with m-inputs and m-outputs is given in terms of
input/output time-domain data, then as per [3] we can define m char-
acteristic weighting sequences (CWS) and to each characteristic weighting
sequence S, there corresponds a characteristic vector sequence (CVS),
ie., Sy, defined by the equation
i=1,--.,m.

[S,®5:— Sc18Sw, =S, (A1)
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We can define dual of Sy, which can be represented by Sj,. Now if we do
the spectral decomposmon of the weighting matrix sequences (WMS) we
get

Sc=Sw®S) 85y (A2)
where S, is the dual characteristic vector sequences matrix. The relation-
ship between open-loop and closed-loop characteristic sequences can be
derived by inserting the decomposition of S, =SW®SAQ®SV into the
closed-loop input/output relations for the discrete system as given in [3].
By suitable preconvolution we get

[S£@Sy ©Ss 85, ]| ©Ss = 51 ®5;,85y

where  Sp =S, 85, &S,

and 5, =[S;05]"es,,. (A3)
Thus, S,,
sequences.

Now for the calculation of the CWS and CVS we consider (Al) at each
sampling instant and thus obtain

may be identified as closed-loop characteristic weighting

LW () +T (k=)W Q)+ - + LW () =0 (Ad)
where
N _ [&(i)I-G(i) fori>1
Tj(l)_{O fori<1 (A3)

and 7 denotes the particular sampling instant, while the subscript j=
1,2, - -, m identifies the particular CWS and CVS under consideration.
Clearly from the above g;(1) and W,(1) emerge as the eigenvalue/eigen-
vector pairs of G(1). Premultiplication of (A4) for k=2 by the dual
eigenvector V(1) eliminates the unknown vector W;(2) and yields the
value of Ss,— at k=2as

g (=¥ 1)c@w;(1).

Knowledge of g;(2) however does now permit the calculation of W;(2) as

(A6)

w,2) =T (DGQW;()+ ()W (1) (A7)

where «;(2) is an arbitrary constant and 7;* (1) is the commuting go-
penrose inverse of T;(1) as mentioned in {3].
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Invariance of the Strict Hurwitz Property for
Polynomials with Perturbed Coefficients

B. ROSS BARMISH

Abstract —Given a strictly Hurwitz polynomial f(A)=X"+a,_ A"~ 1+
a, N2+ .- +aA+ay, it is of interest to know how much the
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coefficients a; can be perturbed while simultaneously preserving the strict
Hurwitz property. For systems with » < 4, maximal intervals of the a, are
given in a recent paper by Guiver and Bose [1]. In this note, a theorem of
Kharitonov is exploited to obtain a general result for polynomials of any
degree.

1. INTRODUCTION

In a large variety of applications, design parameters are chosen so that
a certain polynomial will have all its roots in the strict left half-plane.
Since the design is typically based upon a mathematical model, the
possibility arises that the true values of the coefficients for the polynomial
in question may differ from the assumed values which are used in carrying
out the design; e.g., if state equations are developed for a system whose
elements are known within a +10 percent tolerance, then the resulting
characteristic polynomial can have coefficients which vary around some
set of nominal values. Consequently, it is of interest to derive maximal
intervals, centered about the nominal values of the coefficients, having the
following property: the polynomial remains strictly Hurwitz! for all
variations of the coefficients within these intervals. In [1], Guiver and
Bose derive maximal intervals for fourth degree polynomials. The objec-
tive of this note is to provide a general result for a polynomial of arbitrary
degree. Our proof is executed quite simply via application of a theorem of
Kharitonov [2) which is not well-known? in western literature. It is felt
that the application of Kharitonov’s theorem to this particular problem
will suggest numerous applications in the robustness area.

II. NOTATION, FORMULATION, AND ASSUMPTIONS
The polynomial

F)EN +a, (Xl +a, N2+ +adtag ¢))
is assumed to be strictly Hurwitz. To allow for different weightings on
perturbations in the a; above, we take as given (as in [1]) a set of
nonnegative weights w;,@,; i=0,1,2,---,n—1. Consequently, we can
define allowable variations in the coefficients quite simply. Given any
€> 0, the polynomial

gAY =N 4y, Nl by Nk by 4y, )

is said to be e-admissible if its coefficients y; satisfy

a;, —we<y <a, +ue i=0,1,2,---,n 1.

The set of all e-admissible polynomials is denoted by .. We seek the
largest value of e, call it €., such that all polynomials in £, are strictly
Hurwitz.

Note that when € = 0, &, consists of the single polynomial f(A). Also,
observe that having €, enables us to generate maximal intervals (a; —
;€ maxs @; + &;€,,,) for Hurwitz invariance. The quantity €,,,, can be
viewed as a measure of robustness.

To complete this section, we define a notation for the Hurwitz testing
matrix; i.e., let / be the largest integer less than or equal to » /2, and, for
a given polynomial g(A) as in (2), define the following n X n matrix:

F(Yor N s Yu-1)
’_‘Yn—l Yn-3 Ya-5 Yn-1-21 0 0 0-‘
1 Yn-2 Yu-4 Yn—21 0 0 0
A 0 Yn-1 Tn-3 Yas1-21 Ya-1-22 O 0
= 0 1 Yn-2 Yas+2-20  Ya—u O Y
0 (U Ya+3-20 Yat1-2 O 0
0 0 1 Yos+d-2 Ynsr2-2u O 0
(3)

We also recall that the Routh-Hurwitz criterion [3]: g(A) is strictly

A1l roots have strictly negative real parts.
2In the opinion of this author.
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