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On the Numerical Complexity of Short-Circuit Faults
in Logic Networks

BHABANI P. SINHA AND BHARGAB B. BHATTACHARYA

Abstract — The problem of estimating the number of all possible mul-
tiple short circuit faults in a network with a given number of lines is settled
in this correspondence. A new combinatorial number, namely an associ-
ated Bell number B'(r), which enumerates the number of possible par-
titions of a set {1,2, * * * , r} with certain constraints, is introduced. This
concept immediately resolves the counting problem of short-circuit or
bridging faults in an electrical network. A related combinatorial problem
is also discussed which shows that under some realistic model of circuit
failure, the number of possible ways the network can malfunction is closely
connected to the Fibonacci sequence.

Index Terms — Bell numbers, bridging faults, Fibonacci numbers, logic
networks, short-circuit faults, Stirling numbers.

I. INTRODUCTION

Apart from the standard stuck-at variety of faults, the occurrence
of short-circuit or bridging faults is one of the most common phe-
nomena in digital circuits, particularly in the MOS LSI environ-
ment, and therefore their detection plays a significant role in digital
logic testing.. However, in contrast to the well-formalized meth-
odology of devising a complete test set for detecting stuck-at faults
c&sﬁng nowadays, the bridge fault-detection procedure is still in its
y, is almost incomplete even from a theoretical viewpoint,
nqu only for either a restricted type of bridging faults or
special'class of networks. For instance, methods described by

oth 1], Friedman 121, and Flomenhoft [3] for testing short-circuit
fanlts are based on the detection of an individual bridging fault. Mei
[4], on the other hand, considered the detection of a class of short-
circuit faults particularly at the input level of the network and some
feedback bridging faults. More recently, methods for detecting such
faults in two-level logic and unate networks have been reported in
[5]1. The complexity embedded in the problem of test generation can
be attributed to mainly two factors, namely: 1) the astronomical
multiplicity of possible bridging faults in a logic circuit, and
2) deep-rooted influence of a short-circuit fault on the functional
‘behavior of the network which is further aggravated by its manifold
dependence on the network topology.

The motivation behind this correspondence is to devise an alge-
braically closed formula that can be used to estimate the number of
all possible multiple short-circuit faults in an arbitrary network
having k lines. The estimation is of prime importance in appre-
ciating the numerical complexity of possible faulty situations under
bridging faults in digital networks for which any precise method of
diagnosis is still awaited.
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II. THE NUMERICAL COMPLEXITY OF BRIDGING FAULTS

Clearly, the numbers of possible single and multiple stuck-at
faults occurring in a logic circuit having k lines are 2k and (3* — 1),
respectively. In contrast, the number of bridging faults involving
only two lines at every fault instance (i.e., single bridging faults) is
alone (§), and it has been pointed out by Mei [4] and Hayes [12] that
if all multiple bridging faults are counted, the number is related to
a combinatorial function analogous to the Stirling number of the
second kind, which grows much faster than ¥*. In the following
sections an algebraically closed formula that can be used to estimate
the number of all possible multiple short-circuit faults in a circuit
with a given number of lines is derived. Moreover, counting of such
numbers under a realistic assumption is also considered.

A. Combinatorial Formulation of the Problem -

It may be noted that for a bridging fault between two lines # and
m in a network, if 2 happens to be a fan-out stem or a fan-out branch
line, then all lines emanating from the parent stem line would also
be logically involved in the fault. In the context of the counting

"problem, therefore, every fan-out stem with its associated branch

lines can be thought of as a single line. Considering this fact, we
assume that the given network consists of k lines, say A, h, * - -, h.
The possible configurations of short-circuit faults can now be
phrased as follows.

Case 1 —Multiple Bridging Faults of Multiplicity s, s = 2:
This is used to denote the situation where s lines are all shorted
together and is represented by an unordered set

Ms: (hip hizs tot ahi;) .

In particular for s = 2, i.e., when only two lines in the network
are shorted together, a single bridging fault is said to occur. Note
that the case s = 1 does not make any sense since for a short circuit
fault to occur in a physical network, at least two lines need to
be involved.

Case 2 — Multiple Group Bridging Faults (M,) of Multiplicity q:
It is used to denote the case where g disjoint groups of multiple
bridging faults M,,, M,,, : - -, M,, of multiplicities s,s,," ", 5,,
respectively, are simultaneously present and is represented by an
unordered set

M:I: (Msn Mszy te ’qu)

where
V (S,‘, Sj),i * j;Msi N Msj = ¢ (null) .

Since we need at least two lines to make a short-circuit fault
meaningful, in a network with & lines one must have: 1 < g <
|k/2] where | x] is the greatest integer less than or equal to x. In
particular, a multiple bridging fault is a multiple group bridging
fault of multiplicity ¢ = 1.

The requirement M,, N M,; = @ follows from the fact that bridg-
ing faults induce an equivalence relation on the set of lines involved

in the faulty instance. For example, if we consider a multiple group

bridging fault: (i, hy), (ha, hs, hs) of multiplicity 2, then from
the transitivity of the short-circuit fault behavior, the line
would be logically shorted to .both of A, and he and in effect
an equivalent multiple bridging fault (h;, ks, hs, he) of multiplicity 4
is generated.

Definition 1: We define N,(k), N,(k), and N,¢(k) to denote the
number of all possible single, multiple, and multiple group bridging
faults, respectively, in a network with k lines.

The following relation is self-evident: N, (k) = N.(k) = Ny(k).
For example, fork = 4, N,(4) = 6,N,,(4) = 11, and N,,,(4) = 14.

Clearly, N (k) = (%) and N,.(k) = 2* — k — 1. The difficult
problem, however, is to enumerate N,,,(k) which can now be com-
binatorially framed in the following fashion.



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 2, FEBRUARY 1985

Consider a particular multiple group bridging fault M, of multi-
plicity g. We can now think of the multiplicity ¢ as ¢ nondistinct
cells, and involved lines as distinct objects to be distributed in
q cells, such that the content of each cell corresponds to a multiple
bridging fault M, € M,. Since we need at least two lines to make a
bridge fault meamngful we have 1 < g < |k/2] in a network with
k lines, and therefore the problem of counting N, (k) reduces to the
enumeration of all possible ways of placing r distinct objects into
Lk/2] nondistinct cells for all r-element subsets of (1,2, -,k),
with r = 2, such that some cells may remain empty (which implic-
itly takes care of different values g can assume), and each nonempty
cell contains at least two objects.

B. The Number S'(r, n)

To enumerate N,,,(k) we would make use of the concept of asso-
ciated Stirling number of the second kind' [6].

Definition 2: Let S'(r,n), r = 2n denote the number of par-
titions of a set R, |R| = r, into n blocks, all of cardinality = 2. In
fact, this number is called 2-associated Stirling number of the sec-
ond kind [6].

Clearly, S’(r, n) represents the number of distributions of r dis-
tinct objects into n nondistinct cells with no cells left empty and
each cell containing at least two objects, the content of each cell
being unordered in nature.

Lemma 1: The following is an algebraically closed relation for
S'(r,n):

S'(r,n)

1 n
- 13-
n! i=0

r!

()go( 1)( r=nv

Proof: By definition, S'(r,n) is the number of equivalence
relations with n classes on the setR = {1,2, - - -, r}, the cardinality
of each class being =2. Alternatively, the problem can be viewed as
finding the number of r-permutations of n distinct cells with repeti-
tions such that each cell is included at least twice in every per-
mutation and then dividing the result by #! in order to take care of
the indistinguishability of cells.

The exponential generating function [6]-[8] for S'(7, n) is there-
fote given by

)(n—t—J)"

#lx) = ;l—!{e" -x -1} = ;S’(r, n):—;

-3 1)()(e —
z(n —t—J)"

(gl )
= — 1y
n!igo ,;o( ) p=0 p!
A little change in running variables now yields
B(x)
13 x &
23S ()Sen ("]

j=0

r—j r!
Jo-i-re iy

Since S’(r, n) happens to be the coefficient of x”/r! in the expansion
of §(x), the lemma follows. Q.E.D.

The formula presented in Lemma 1 for computing S’(r, n) is,
however, extremely cumbersome to manipulate. One can circum-
vent this by innovating a recurrence relation for S’(r, n) which is
reflected in Lemma 2.

'"The ordinary Stiriing number of the second kind, commonly denoted
by S(r,n) [7], is the number of partitions of a r-element set into » non-
empty blocks.
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C. Recurrence Relations for S'(r, n)

Lemma 2a: The number §'(r, n) satisfies the following triangular
recurrence. Forr = 2n, r = 2,

S'(ryn)=nS'r — L,n)+ (r —1DS'(r —2,n—1)

with boundary conditions S'(r,0) = 0 for all r; S'(r,1) = 1;
S'(r,ry =0 for r' > |r/2]; §'(r,2) =2""'—=r — 1 for r = 4.

Proof: We will present a combinatorial proof. Clearly,
§'(r,0) = 0 since we cannot put r objects into no cells at all.
§'(r, 1) = 1 because there is only one way of distributing  objects
into one cell, and S'(r, r') = O for ' > | r/2] since in this case it is
not possible to distribute » objects into ' cells with each cell con-
taining at least two elements.

To prove §'(r,2) = 27! — r — 1, forr = 4, we can proceed as
follows. Let C, and C, be two cells. The number of ways C, can be
filled up with objects taken from an r-element set R is the number
of all possible subsets of R, which is 2". The objects not selected for
C, can be put in C,. Removing the distinction between C, and C
(to take of indistinguishability of cells), we obtain (2"/2) possible
distributions. If we now exclude those cases where any of the cells
is either empty or contains exactly one element, we get the number
S'(r, 2). Therefore,

$'(r2)=2"-r-1.

To prove the recurrence we assume that the given r objects are
hi, hy, - -+, h,. Consider now a fixed object, say #,. The number
of ways of partitioning the remaining set (h,, s, * - -, h,) into n sub-
sets such that each subset contains at least two objects is clearly
S'(r — 1, n). We can now reinsert k, in each of these n cells thereby
getting nS’(r — 1, n) possible configurations. In all these distribu-
tions, the cardinality of all subsets containing 4, would be at least
3. The number of distributions where 4, belongs to a subset of
cardinality exactly 2 can be obtained by picking up another object
from the set (2, hs, - - - , h,), putting it in some cell together with A,
and inserting the remaining (- — 2)objects into (n — 1) cells where
each of these (n — 1) cells. contains at least two objects. Since
the partner of h; can be chosen from the set (b, b3, -, k) in
(r — 1) possible ways, the triangular recurrence for S'(r,n)
follows. Q.E.D.

Lemma 2b: Forr = 2n,r = 2, the number S’ (r, n) satisfies the
following vertical recurrence:

YU+LM=EC%%—%n—D

p=1

with the same boundary conditions.

Proof: We single out a particular object from (r + 1) objects
and place it in some arbitrary cell, say C,. Let us now choose p other
objects from the remaining r objects and place those in C,. Note that
p should be =1; otherwise, C, would contain less than 2 objects.
The choice of p objects can be made in () possible ways. The re-
maining (r — p) distinct objects can be distributed in other (n — 1)
nordistinct cells with each cell contairting =2 objects in S'(r — p,
n — 1) possible ways. Summing over all p’s, for 1 < p <7, the
lemma follows. Q.E.D.

D. Unimodality and Asymptotic Analysis of the Number S'(r, n)

Since the number N, (k), i.e., the number of all multiple group
bridging faults, is connected to S'(r, n) as we will see later on, it is
interesting to analyze the global behavior of the combinatorial se-
quence S'(r, n). In this context we recall some definitions.

Definition 3: A sequence Vo, v, * * *, U, Of real numbers is called
unimodal if there exists an integer M = 0 such that [6], [9]

VoSV S SUy 1 SUySZUys =" = Uy,
The properties described below reveal some behavioral character-
istics of 8'(r, n).
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Property 1: The sequence S'(r, n) of 2-associated Stirling num-
bers for fixed r, n-variable is unimodal and if M(r) denotes maxi-
mum of {n: §'(r, n) maximum}, then M(r + 1) = M(r) + A where
A=0orl.

Proof: The proof follows immediately by making an induction
on r. For r = 2,3 the proof is self-evident. Now suppose that the
claim holds good for i < r. Then

M(@) < M()) for1 <

Now let 2 < n < M(r). Then from the triangular recurrence for
S'(r, n), we have

S'r+1,n) =S +1,n—1)=n[S0Fn —SFrn—1)]
+rS'r—-1,n—-1)—-S0r—-1,n-2)]+8rn-1)

i<jsr

which is therefore positive by induction hypothesis. Therefore,
Sr+1,n)=8F+1,n-1) for2<n < M(r).

Let us noW suppose M(r) + 2 < n < |(r + 1)/2]. From the
vertical recurrence, therefore,

Sr+1,n)—-8S@+1,n-1)
—E()[S (r—j,n—1-80@-jn-2)]

which is negative by the induction hypothesis and M(j) < M(r) for
j < r. Hence, S'(r,n) is un1m0da1 with M(r + 1) = M(r) or
Mr +1)=M@r) + 1. Q.E.D.
Property 2a: For even r, asymptotically as r — @, §'(r,r/2) =
\/E (r/e)r/Z
Proof: Let r = 2t. Then usmg Lemma 2a recursively and
from the fact that S’(r,r’) = 0 forr’ > |r/2], we obtain

S(r—z-)—S(Ztt)-tS(Zt—l 1)

+ Q- 1)8'Qt -2t - 1)
2t - )2t - 3)8'@2t - 4,1t — 2)]

2t -1)@2t-3)---5.3.1

2t ' r2

2't! e
by Stirling’s approximation of the factorials.
Property 2b: For odd r, i.e.,

r — 0,

Q.E.D.
r =2t + 1, asymptotically as
S'(B [%J) = 0.2357(r — 1)(r — 1)/1.4715]"7 172,

Proof:
S'(2t + 1,1)

tS'(2t,t) + 2185'Q2t — 1,t — 1)
t8'(2t,t) + 24t — 1)S'(2t -2,t-1)
+ 2t —2)S'(2t — 3,t — 2)]

K20 2t(r — 1)(2r — 2)!
T 20! 27 — 1)!
2t(2t = 2)( —2)(2r — 4)!
+
27 — 2!

plt = p + 1)
22!—2p

II

L)

( ) {(Zt*Zp)P(r_p+l)2—(ZI'2p)}p !
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where
. x!
YT o)
= 2'2 (t)A,_,,B,,
p=0 \P
where
Ap=?P,2"* and B, =m!.

The exponential enumerators for A,, and B,, are (1/2)x(1 — x)™**

and (1 — x)™', respectively. Hence, by the rule of product of gener-
ating functions [7],

S5+, t)— = 2'—(1 X721 - x)”

=0
Therefore,

(2t + 2)11!
S'Q2t +1,¢) =
( ) 3.2 - DI + 1)
-~ tr+2evo.3osé:eA

by Stirling’s approximation of the factorials where ¢ =

log. 6 — (5/2) log. 2. Putting s = (r — 1)/2 and after a little sim-

plification, this yields the desired result. Q.E.D.
From Properties 1, 2a, and 2b the next theorem follows.
Theorem 1: The asymptotlc (as r — ) maximum value of
S'(r, n) for a given r is at least O((r/e)"">).

E. 2-Associated Bell Number

Definition 4: 'We define the number B'(r) of all partitions of the
setR = {1,2,---,r}, r = 2 such that each block of a partition is
of cardinality =2, as 2-associated Bell number.? Clearly,

Lrr2]

B'(r) =2 8'(r,n).

The following lemmas depict the behavior of B'(r).
Lemma 3: The generating function for B'(r) is given by

o o
EB’(r)F =exple* —x — 1)
r=0 N

- "
- 2(7) {”,2,,,3 2 5 (p,)'}

2P2+3P3+" Hrpr=r

where §; = 1/(G — 1.

The proof of Lemma 3 can be easily obtained from the expansion
of exp(e* — x — 1).,

Lemma 4: The sequence of 2-associated Bell numbers B'(r) sat-
isfies the following récurrence:

r r—1
Br+i)=2 (r)B’(r -my=3 <’)B'(r)
m=1 \IM =0 \It

with boundary conditions B'(0) = 1, B'(1) = 0, B'(2) = 1.

Proof: Let R’ be the set {1,2,+-,r,r + 1} and let Z(R') be
the set of all partitions of R’ where each block in every partition is
of cardinality =2. Wé single out an arbitrary element say y € R’ and
consider the setR = R’ — = 1,letZy(R") be
the set of all partitions of R’ such that the block containing y is
{y} U M. Since there is a bijection between Z(R — M) and Zy(R'),
we have

ZR") = U Zu(R")

M|=1
and therefore

*The ordinary Bell number Ei(r) is the number of all partitions of the set R,
[R| = r, [6]-[8]. The asymptotic study of B(r) can be found in [11}.
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B+ = @) =3 ()pe -m=3 (s

m=1 h=0

Q.E.D.
Table I shows values of B'(r) for different r’s obtained by using
the above recurrence.

F. Enumeration of N,,(k)

Theorem 2: The number of all possible multiple group bridging
faults N,,(k) in a network with % lines is ’

Npg(k) = B'(k + 1) + B'(k) — 1.

Proof: Note that in a network having r lines the multiplicity ¢
of multiple group bridging faults lies within 1 < g < [r/2]. The
number of ways of placing r distinct objects in | 7/2] nondistinct
cells with empty cells allowed but each nonempty cell containing at
least two objects is now given by

Lr2]
S'(r,1) + S8'(r,2) + -+ +S< ‘}J) ES(rn—B()

The set of r lines involved in a faulty instance out of k lines may be
any of the total of () possible choices for 2 < r < k. Therefore,

|
M~
R
N—
&
~
3
-

ng(k) -

5 (o + (- (o

=B'(k + 1)+ B'(k) — 1.

Q.E.D.

The following example projects some idea about the combina-
torial explosion of the number N,,,(k) as k gets large.

Example 1: Consider the enumeration of N,(k) in circuits
having i) 5 lines, ii) 10 lines, and iii) 15 lines.

i) k = 5; Nn.e(5) = B'(6) + B'(5) — 1 = 51.
ii) k = 10; N,,(10) = B'(11) + B'(10) — 1 = 98253 +
17722 — 1 = 115974.

iii) k = 15;N,,(15) = B’(16) + B'(15) — 1 =
166888 165 — 1 = 1382958 544.

In a practical situation, however, the occurrence of short-circuit
faults in all possible ways is highly improbable, and in most cases,
fault instances remain confined to adjacent lines in the network. The
computation of multiple group bridging faults in such an environ-
ment is considered in the next section.

1216070380 +

III. COMBINATORIAL FORMULATION OF THE PROBLEM IN
A PRACTICAL ENVIRONMENT

The most realistic model of short-circuit faults in a physical net-

work is based on the assumption that all lines which are likely to be -

involved in a faulty situation are geometrically contiguous (for
example, in parallel tracks of a printed cnrcult board). In such an
environment we assume that the network has altogether k lines lying

side by side and a fault instance can only affect an r-subset of

contiguous lines for 2 < r < k. The multiplicity ¢ of any multiple
group bridging fault lies within the range 1 < q =< [r/2] as before.

Combinatorially, the number of possible multiple group bridging
faults involving r adjacent lines is equivalent to the number of
partitioning the integer r into exactly q parts where order counts, for
all values of ¢ and where no partition contains any number less than
2.

Note that fora given g, there is a bijection between the set of all
ordered partitions of r into g parts with each part being =2 and the
set of all ordered partitions of the integer (r — ¢) in g parts, each
being =1. The cardinality of the latter'set is [8]

e
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Therefore, the number of all multiple group bridging faults in-
volving r contiguous lines will be (assuming each of these r lines
is involved in every fault instance)

L§J (r -q - 1)

q=1 q - 1 '
Since we can choose r contiguous lines from a set of k contiguous
linesin(k = r — 1) possible ways, the total number of multiple

group brldgmg faults N, (k) in a set of k contiguous lines where all
lines affected in every fault instance are contiguous, is given by’

Z(k—wl)%(';‘i_l).

Nig(k) = 1

The relation can be simplified by using some results of Fibonacci
numbers [7], [8], which are defined by the well-known recurrence

Fy = Fi-y + Fis

$(

g=1

Wl[hFo = 0, F] =1.
Lemma 5:
-q - 1)
=F_.
q-1 l
The proof immediately follows from the relation [10]
-j+1
F,+2=1+2<' J )
j=1 J

Lemma 6:

D

rF, = nF,; — Fpis + 2.

r=1

Proof: Let § be the required sum. Then,

S=F1+2F2+3F3 '+ﬂF,,
= nEF - 2 EF = nFps — Fues + 2,
r=1j=1
using a well-known relation [8]
S Fi=Fu2—1. Q.E.D.
i=1
Theorem 3:
Nielk) = Fees — (k + 2).

Proof: We have

=2 g=1
= E (k — r + 1)F,_, (from Lemma 5)
r=2
=k(Fy +F,+ -+ Fey)
- (F] + 2F2 + -+ (k - I)Fk_1)
= k(Fk+1 - 1) - [(k - 1)Fk+1 - FH.; + 2]
(from Lemma 6)

k +2).

= Fiz —

Q.E.D.

*In this context note that in a set of k lines lying side by side with the above
restriction that each “multiple bridging fault” can only involve contiguous lines
but with the freedom that “all lines” involved in a “multiple group bridging
fault” need not be contiguous, the number of all multiple group bridging faults
comes out very easily to be (28! — 1).
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TABLE 1
rio 1 2 3 4 5 6 7 8 9 10
Bn|1 o0 1 1 4 11 4 162 715 3425 17722
ro. 11 12 13 14 15 16
B'(r) | 98253 580317 3633280 24011157 166888165 1216070380

It is well known that [8] the Fibonacci number F; is given by
F=_1_[<1+\/§)‘_<1—\/§)"]
Vs 2 2

1 i
=~ £ 1618)

as i gets large. Therefore,

L
V5

< 2k—1

Nig(k) = —=(1.618)** — (k + 2)

as k becomes large.

Example 2: Consider a circuit with 10 lines lying side by side.
Assume any fault instance can only involve adjacent lines. The
number of all multiple group bridging faults in this context N (k)
will therefore be

N.(10) = Fi; — (10 + 2) = 233 — 12 = 221.

IV. CONCLUSION

In this correspondence a measure of the number of all possible
multiple bridging faults in a logic circuit is given. It has been shown
that this number is related to the 2-associated Bell number B'(k)
which grows up more rapidly than that of (k/e)'?\. However, if fault
instances are assumed to be confined within sets of adjacent lines
then their numerical complexity comes out to be on the order of the
(k + 3)th Fibonacci number F,.s, which increases less than that of
2*~!. Moreover, it is known that some undetectable bridging fault in
a network can invalidate a valid stuck-at fault test set [13], which
further aggravates the test generation problem. With large-scale
integration, particularly in MOS LSI networks, the occurrence of
bridging faults has got a substantial probability [14], and the stuck-
at fault model becomes less and less sound. The inherent numerical
complexity embedded in the short-circuit fault-detection problem
will possibly render the test generation approach for bridging faults
an infeasible one. The best alternative to cope with the testing
problem of bridging faults will therefore be designing easily testable
networks assuming a wider class of fault model including both
stuck-at and bridging faults.
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Semisystolic Array Implementation of Circular, Skew Circular,
and Linear Convolutions

OKAN ERSOY

Abstract — Semisystolic array implementation of circular and linear
convolutions in one and multidimensions are discussed. The common fea-
ture of the various architectures studied is the broadcasting of the input
sequence to the cells of the array. In the case of circular convolutions, there
is also circular communication between the cells. A circular convolution of
period N can be calculated in N time steps whereas the response time for
the computation of N outputs of linear convolution with finite weight and
data vectors is also N time steps without initial delay.

Index Terms — Convolution, FFT algorithms, parallel processing, semi-
systolic arrays, Toeplitz forms, VLSI.

1. INTRODUCTION

Systolic and semisystolic array implementations of signal
processing tasks promise to be of great significance in digital and
optical signal processing because of simplicity, regularity, and
parallelism [1], [2]. Circular and skew circular convolutions (CC
and SCC) are basic building blocks in the computation of FIR filters,
convolutions, and fast Fourier transforms [3]-[S]. They can be
written as

CC: y(n) = 2 x(n — k)h(k) mod N )
SCC: y(n) = i sgn(k — n)x(n — k)h(k) mod N 2)
where
sgn(x) = 1 x=0
-1 x<0. 3)

Linear convolution is obtained if reduction modulo N in (1) is
skipped.
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