


ancestor terms of two genes are used, e.g., SimUI [20]. and
the measures based on annotation statistics of all common
ancestors, e.g., simGIC [21] are very popular. Details about
the different similarity measures functions are discussed [2]
and [9]. Most of these measures have certain limitations, as
discussed in detail in Section 2. To overcome these limita-
tions, in this paper we have proposed a shortest path based
hybrid measure (SPBHM) for computing the similarity
between two GO terms. It combines both structural and
semantic information embedded in the GO graph. Effective-
ness of the proposed measure is established through several
studies like PPI prediction, correlation analysis and miRNA
functional similarity.

2 RELATED WORK

There are many approaches to measure similarity between a
GO term pair. An edge based method was introduced by
Rada et al. [23], that was based on the simple concept of
number of edges traversed to go from one node to another.
Although this works well on lexical analysis in medical
terms, Resnik [10] has shown that edges in the GO graph do
not represent the same uniform distance. This is because the
terms at the same level do not have the same specificity for
a GO graph. Some terms have many children while some
have a few, some GO branches are long and represent deep
concepts while some are short representing shallow con-
cepts. Depth of a term does not represent the specificity of a
term. Terms at higher level may be more specific than
another at a lower level [7]. So an information content (IC)
based measure is more effective in this area. Information
content of a term is defined as the negative logarithm of the
probability of occurrence of the term [10]. It is defined as
ICðtÞ ¼ �logðpðtÞÞ, where pðtÞ is the probability of occur-
rence of a term t, and is defined as

pðtÞ ¼
annotationðtÞ þ

P

d2descendentðtÞðannotationðdÞÞ
P

c2descendentðrootÞ annotationðcÞ
: (1)

Here annotationðtÞ is the number of genes annotated by
term t, and descendentðtÞ is the set of all terms that are
descendants of t in the GO graph. Note that terms that are
more generic (i.e., near the root of the GO) will have higher
pðtÞ values and hence smaller IC values. On the other hand,
more specific terms will have smaller pðtÞ and hence larger
IC values. Common well known IC value based measures
are proposed by Resnik [10], Lin [11], Jiang [12] and the Rel-
evance measure proposed by Schlicker et al. [13].

According to the traditional IC based measure, the speci-
ficity of a term is fully dependent on the number of genes
taken in the annotation corpus but it ignores the edge den-
sity and graph topology information in the different por-
tions of the GO graph. A new approach for the definition of
term specificity is introduced in the field of semantic simi-
larity measure [24]. The new definition of IC value of a term
is proportional to the number of descendants and parents
and the depth of the term under consideration. In this
paper, we are considering measures based on the traditional
annotation based IC only.

Resnik defines the similarity between terms t1 and t2 as
the IC value of the lowest common ancestor term (LCA).

For a given pair of terms t1 and t2, the LCA is that common
ancestor term of these terms which is at the maximum dis-
tance from the root of the GO. This LCA is sometimes also
called the Most Informative Common Ancestor (MICA)
[25]. Therefore, SimResnikðt1; t2Þ ¼ ICðLCAðt1; t2ÞÞ. Accord-
ing to Resnik, terms are considered to be more similar if the
IC value of their LCA is higher. The serious drawback of
this measure is that when two different term pairs located
in different levels of the GO graph have the same LCA, then
they have the same similarity value; this is misleading. In
order to overcome this Lin invented another measure
defined as follows:

SimLinðt1; t2Þ ¼
2 � ICðLCAðt1; t2ÞÞ

ðICðt1Þ þ ICðt2ÞÞ
: (2)

The problem of Lin’s measure is that if ICðt1Þ � ICðt2Þ �
ICðLCAðt1; t2ÞÞ, then SimLinðt1; t2Þ � 1 irrespective of
whether t1 and t2 are very general, or very specific terms.
Note that the similarity should be high only in the latter
case. This problem is known as shallow annotations of
genes [14]. Jiang’s [12] measure is similar to Lin’s measure,
and has the same limitation. Relevance similarity measure
proposed by Schlicker et al. [13] has removed these prob-
lems by combining both Lin and Resnik similarity. It is
defined as follows:

SimRelðt1; t2Þ ¼
2 � ICðtÞ

ðICðt1Þ þ ICðt2ÞÞ
� ð1� pðtÞÞ; (3)

where t is the LCA of t1 and t2. Here the effect of shallow
annotation is reduced by cofactor ð1� pðtÞÞ. When a term
pair is less specific, then their LCA term has higher proba-
bility value, which produces a smaller value of the cofactor
and vice versa. Now consider the case when the probabili-
ties of LCA terms of two term pairs are either close to 0 or 1.
Then the similarity adjustment factor ð1� pðtÞÞ has a very
small effect according to the Relevance measure, and the
two term pairs show almost similar values. This is dis-
cussed in detail in Li et al. [14]. Li et al. proposed another
measure named simIC [14], with a new cofactor to remove
the above problem of the Relevance measure. However, this
new measure is able to distinguish well two pairs both of
which are highly similar, it fails when the two pairs have
lower similar values.

The above mentioned node based measures are some-
times inadequate to describe the distance or similarity of a
pair of terms [25]. So edge based measures have become
popular. Wang et al. [17] proposed a measure where the
semantic value (SV) of a term t1 is computed as a function of
the SVs of t1 and all its ancestors. They consider SV ðt1Þ ¼ 1;
and SVt1ðtÞ ¼ maxðwe � SVt1ðt

cÞÞjtc 2 childrenðtÞ; for all
ancestors t of t1. Here we ðwe < 1Þ is the semantic contribu-
tion factor of edge ewhich links the terms t and tc. They con-
sider that terms further from the annotating term have less
semantic contribution as they are more general. The seman-
tic value of a term t1 is then calculated as SV ðt1Þ ¼
P

t2ancestorðt1Þ
SVt1ðtÞ. Finally they measured semantic simi-

larity between terms t1 and t2 as

SimWangðt1; t2Þ ¼

P

t2ancestorðt1Þ\ancestorðt2Þ
SVt1ðtÞ þ SVt2ðtÞ

SV ðt1Þ þ SV ðt2Þ
:

(4)
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Wang’s measure also suffers from the shallow annotation
problem. If two terms are the same then they always have
similarity value equal to one, regardless of whether they are
general or specific terms. Nagar and Hisham [15] have pro-
posed another path length based measure. They define simi-
larity function as SimNagarðt1; t2Þ ¼ e�f�pathlengthðt1;t2Þ. Here
pathlengthðt1; t2Þ is the length of the shortest path to go
from t1 to t2 in the GO graph and f is a tuning factor. The
function is based on an exponential transfer function that
produces a similarity value proportional to the path length
between a term pair. Another variant is proposed by
Shaohua Zhang et al. [16], where they refine Nagar’s model
by also considering the depth of the LCA with respect to the
root as a contributing factor to the exponential transfer func-
tion. One serious drawback of the edge based measures is
that, either they consider weight of all the edges as 1 or they
consider edges on the same level as having equal weight.
As the GO terms on the same level may have different spe-
cificities, so edges should also have different weights.
Wang, Nagar and Zhang have validated their measures
through the functional classification of genes in yeast bio-
logical pathway. Shen et al. [19] have proposed a hybrid
measure which combines both the structure and node based
information. The intuition is that if LCA of a term pair is
located at a higher level of a GO graph then their dissimilar-
ity should be larger and vice versa. For this, they assign a
weight to each GO term as the reciprocal of its IC value. So
the weights will be more for less specific terms appearing at
a higher level. The measure finds the path connecting the
two terms and their LCA with the smallest sum of weights.
This value contributes to the semantic distance between the
terms. So if the LCA term is near the root of GO graph then
the path will have higher dissimilarity value and vice versa.
Note that, here even if two different term pairs have the
same LCA, they have different contributions to the dissimi-
larity value. Finally they normalize the sum of weights by
an arctan function, as follows:

distðt1; t2Þ ¼
arctan

P

t12path1
1

ICðt1Þ
þ
P

t22path2
1

ICðt2Þ

� �

p

2

; (5)

here path1 and path2 are the shortest paths that connect the
terms t1 and t2, respectively, with the LCA. As LCA appears
twice according to the formulae so they did not consider it
in the second path of Eq. (5). This distance is converted to
similarity value by subtracting it from 1. For validating this
measure, the DIP yeast protein interaction data and gene
expression data are considered. However, a problem with
this measure is that the contributions of common ancestor
terms are not considered. It has the same problem as noted
for Wang’s and other path length based measures, namely,
if two terms are the same, then their dissimilarity value is
always 0 (similarity is always 1), irrespective of the specific-
ity of the term pair. They have considered the LCA term to
contribute to the dissimilar semantic value. This appears to
be counter intuitive as the LCA term is common for the two
terms under consideration. Note that the weight 1

ICðt1Þ
will

produce a very high value for the terms with IC values less
than 1. This will produce very high dissimilarity value for
all gene pairs which have their LCA near the root regardless
of the position of the genes’ annotated terms. Another

limitation is that although the weighted approach is consid-
ered, the contributions of all the terms in the shortest path
are the same. Keeping these in mind, we have proposed a
shortest path based measure where we consider the contri-
bution of both the similar and dissimilar parts of the GO
sub graph corresponding to a given term pair. In our
approach we have calculated the individual weights of
terms using an exponential transfer function and consider a
coefficient which is decreasing proportionally as the path
length increases. More details are provided in Section 3.

Validation of the similarity measures is an important
issue. Some common approaches are correlation of ontologi-
cal similarity with sequence similarity [13], [7], with gene
expression [26], with Enzyme Commission (EC) number
and validation with PPI data [27]. Some authors have also
used functional classification of genes in a biological path-
way [17], [15] for this purpose. Rather than using a single
approach for validating the proposed measure, we establish
its effectiveness using (i) PPI prediction efficiency for yeast
and human, (ii) correlation with gene expression data of
yeast and human, (iii) functional classification of genes in a
biological pathway for yeast, (iv) quantifying the GO simi-
larity among the target gene set of a human miRNA and
(v) performance validation with the online CESSM [28] tool.
Detailed analysis of the validation schemes are provided in
Section 4.

3 PROPOSED MEASURE

3.1 Measuring Similarity between Two GO Terms

In the previous section, several existing measures have been
described, and their limitations have been discussed. In
order to overcome these limitations, a new measure called
SPBHM has been proposed in this article. Here, we describe
this measure in detail, where a weighted shortest path based
approach has been adopted. SPBHM combines information
content values of GO terms along with their graph structure
information. To measure semantic similarity of two GO
terms we have considered three shortest paths: one from
LCA term to root term, and the other two from the annotated
terms to the LCA, but excluding the LCA. While the former
path contributes to the similarity component, the latter path
contributes to the dissimilarity component. A natural intui-
tion from the GO graph structure is that if the common
ancestor terms are more specific, then the GO similarity
should be higher than the case when the terms are more gen-
eral. The converse occurs for the remaining or uncommon
terms. That is, if they are more specific in the GO DAG, then
the dissimilarity should be lower than if the terms are more
general. From this intuition, we have defined the dissimilar
component for a GO term pair t1 and t2 as

disðt1; t2Þ ¼
X

ti2patht1

1� e
� 1
ICðtiÞ �W 1

ti

� �

þ
X

tj2patht2

�

1� e
� 1
ICðtjÞ �W 2

tj

�

:

(6)

Here patht1 and patht2 are the shortest paths from the

terms t1 and t2 respectively up to the LCA but excluding
the LCA term. Every node i in the subgraph is weighted by

the value ð1� e
� 1
ICðtiÞÞ. We refer to the shortest path as the
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minimum weight path connecting the annotating term to
the immediate descendant of the LCA term. The value of

ð1� e
� 1
ICðtiÞÞ will increase exponentially as the IC value

decreases. We define a coefficient W 1
ti

for patht1 as

W 1
ti
¼ e

�
li
Lt1 ; where Lt1 is the total number of nodes on the

shortest path from the term t1 to the immediate descendant
of LCA term. The number of nodes starting from the term t1
to the ith term on the shortest path from t1 is denoted by li.

W 2
tj

is defined analogously. Note that this coefficient and

hence the semantic contribution decrease exponentially as
we move up to the LCA term. As is evident from the formu-

lation ofW 1
ti
andW 2

tj
, these start with a value of e�

1
L, and ter-

minate with a value e�1. Therefore if L is large, the
weighting coefficients will start at higher values.

The similarity component of SPBHM is written as

simðt1; t2Þ ¼ 2�
X

t0
i
2path

e
� 1
ICðt0

i
Þ �W 0

ti
: (7)

Here we consider the shortest path, path, as the mini-
mum weighted path connecting the LCA term to the root
term. Note that this is the same for both t1 and t2 and hence
we have multiplication by two in Eq. (7). For the similarity

component we consider e
� 1
ICðt0

i
Þ as the contribution of each

node. As stated above, e
� 1
ICðt0

i
Þ will produce higher value

when IC values are more specific. Weight W 0
ti
is defined as

e
�

l0
i

LtLCA , where LtLCA
is the total number of nodes on the

shortest path from the LCA term to the root term. l0i is the
number of nodes starting from the LCA term to the ith term
on the aforementioned shortest path. To normalize
simðt1; t2Þwe use the arctan function:

arctanðsimðt1; t2ÞÞ
p

2

: (8)

Similarly we normalize the dissimilarity value of Eq. (6)
and convert it to a similarity value as follows:

1�
arctanðdisðt1; t2ÞÞ

p

2

: (9)

Finally we get the overall similarity value between t1 and
t2 by averaging the above Eq. (8) and (9) as bellow:

GOsimSPBHMðt1; t2Þ

¼
arctanðsimðt1; t2ÞÞ

p

2

þ 1�
arctanðdisðt1; t2ÞÞ

p

2

� �� ��

2:

(10)

As mentioned above, weights of the shortest paths are
used for measuring the similarity of two GO terms. The
time complexity of the proposed measure is proportional to
that of finding the shortest paths in the ancestor sub-graph
of GO terms. Dijkstra’s algorithm is used for this purpose,
which has time complexity OðlogN � EÞ. Where N and E is
the number of nodes and number of edges respectively in
the subgraph of the annotated GO terms. As the number of

edges and nodes in a subgraph of a GO term is small com-
pared to the full GO graph, so the required time reasonable.
For the purpose of efficient computation, we have precom-
puted the shortest paths from each annotated GO term to all
its ancestors. This avoids repeated calculation of shortest
paths for annotated terms during the similarity computa-
tion of a long list of gene pairs. Note that the arctan function
has the property of higher resolution for lower values of its
input. As the input to the function is the summation of
weights of the nodes along the shortest paths, so it shows a
better correlation and resolution than many other measures.
This is also evident from Fig. 7 in Section 5.6, where the dis-
tribution of three different measures are plotted.

3.2 Measuring the Similarity between Genes or
Gene Products

Let us consider gene products A and B having the following
annotations anotðAÞ ¼ tA1 ; t

A
2 ; t

A
3 . . . tAm and anotðBÞ ¼ tB1 ; t

B
2 ;

tB3 . . . tBn with m and n number of GO terms respectively. To
compute the semantic similarity between A and B, the pro-
posed measure or any other existing measure is used to
compute the similarity values between all the pairs of terms
annotating the two gene products. This provides a matrix of
dimension m� n, denoted by SimMat. Some common
methods for aggregating the term pairwise similarities into
an overall similarity value between two gene products are
discussed here.

Maximum similarity approach MAX8ði;jÞðSimMatijÞ
considers the maximum value of the matrix as the similarity
between A and B. This measure has a problem that it disre-
gards the similarity value of the other term pairs for a
multi-functional protein.

In the average (AVG) approach the arithmetic average of
similarity values of the all term pairs is taken as follows:
1

m�n

P

8ði;jÞ SimMatij. Because of averaging property, this
measure sometimes underestimates the true similarity.

Best match average (BMA) is another effective combina-
tion method used in [13], which considers all the maximum
similarity values of each term of A to all the terms of B and
vice versa. Let Rowscore ¼ 1

m

Pm
i¼1 max1<¼j<¼nðSimMati;jÞ

be the average of the maximum similarity values of each
term in anotðAÞ to anotðBÞ. Similarly let Colscore ¼ 1

n

Pn
j¼1

max1<¼i<¼mðSimMati;jÞ be the average of maximum simi-
larities of each term in anotðBÞ to anotðAÞ. Now avg

ðRowscore; ColscoreÞ is used to obtain the BMA score.

4 DATASETS AND VALIDATION APPROACHES OF

PROPOSED MEASURE

4.1 Gene Ontology Data

We have collected annotation data for the species Saccharo-
myces Cerevisiae and Homo Sapiens from the Uniprot data-
base dated February 2013. We collected GO graph data
from www.geneontology.org. We have considered all rela-
tions of GO graph viz., is_a, part_of, regulates etc. In a part of
the study, we have also simulated the results on GOSemSim
(version 1.12.1) [29] package, an R package from the http://
www.bioconductor.org. The results are provided in Table 2
and Table 3 in the supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2013.149.
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4.2 Protein-Protein Interaction Data of Yeast and
Human

We collected three yeast protein-protein interaction (PPI)
data sets from different databases [30], [31], [32]. We used
around 4,837 positive interactions for yeast proteins from
DIP (Database of Interacting Proteins) [33] and MIPS (Mam-
malian Protein-Protein Interaction Database) [34] and the
same number of negative instances from Ben-Hur and
Noble [30]. The data set in Jain and Davis [31] has around
4,100 PPI data for yeast from the core set of DIP yeast data
set (dated 2009). They have generated negative data set of
same size as the positive one by selecting random protein
pairs which do not occur in iRefWeb [35] (September 2010).
The third data set used for analysis is by Yu et al. [32] from
where we have taken the high confidence yeast protein
interaction data set of 5,621 non-redundant interactions. Yu
et al. prepared a negative database for yeast which consists
of random protein pairs, filtering out those available in the
bioGRID database entries.

Data sets for human were collected from Jain and Davis
[31] and Yu et al. [32]. Data set of Jain and Davis [31] has
around 1,500 unique human protein interactions while Yu
et al. [32] has around 15,000 high confidence interactions
from HPRD. The same number of random negative data sets
were used. For drawing the ROC plots, the threshold of the
similarity values are varied between (0,1). The protein pairs
with similarity values greater than the threshold are pre-
dicted to be positives, while those below the threshold are
predicted to be negatives. Thereafter the true positive and
true negative, and false positive and false negative values
are computed, and ROC curves are plotted. The area under
the curve (AUC) obtained from the ROCplots is used to com-
pare the performance of the proposed measure vis-a-vis the
other GO similarity measures. Results are discussed in Sec-
tion 5.1. We have noticed that presence of same protein pairs
in different data sets used in this work are very low (less
than 5 percent).

4.3 Gene Expression Data for Yeast and Human

Correlation between gene expression and GO similarity
value among the gene products are very important as many
gene products that participate in the same biological process
or are functionally related, have similar expression profiles
[26], [36]. We have downloaded different gene expression
data sets for yeast and human. For yeast, Eisen data set [37]
which consists of 2,467 genes with 79 experiments, and the
Spellman data set [38] containing 6,178 genes with 77 experi-
ments are used. We have collected several gene expression
data sets, namely GSE10073, GSE8506 for yeast and
GSE20247, GSE9574, GSE5788, GSE13466, GSE20437 for
human, from Gene Expression Omnibus of NCBI [39]
(http://www.ncbi.nlm.nih.gov/). We measure the Pearson
correlation coefficients of gene expression among the gene
pairs and also calculated the corresponding GO similarities
using SPBHM as well as the measures of Relevance, Resnik,
Wang, Jiang, Lin, simIC, Shen, Zhang, simUI and simGIC.
All the similarity values lie between [0,1]. Each similarity
measure is divided into 100 intervals, and the gene pairs
belonging to the same interval are grouped together. There-
after the average similarity and the average Pearson

correlation coefficient are computed for each interval result-
ing in two vectors GOi

k;avg and PCi
k;avg, where i ¼ 1; 2; . . . 100

and k 2 [SPBHM, Relevance, Resnik, Wang, Jiang, Lin, simIC,
shen, zhang, TCSS]. Finally the Pearson correlation coefficient
between these two vectors is computed for each similarity
measure. This is referred to as the average Pearson correla-
tion of the measure [26]. In general, higher this value, better
is themeasure.

4.4 Biological Pathways of Yeast

Participating genes in a biological pathway are involved in
different molecular functions and some of them are
assigned different Enzyme Commission numbers. These EC
numbers are assigned to genes according to the subtype of
reaction that they catalyze at the molecular level. Classify-
ing the genes according to the molecular function is an
important validation for a GO similarity measure. For this
purpose we have taken a few pathways from yeast pathway
database [40] (http://pathway.yeastgenome.org/). Results
are demonstrated for the Glycolysis and tryptophan degrada-
tion pathways. For computing the pairwise gene similarities,
we have used the proposed SPBHM and Relevance meas-
ures over the MF ontology. We used MAX as the combina-
tion approach here for both the similarity measures. The
genes are clustered according to each measure using com-
plete linkage hierarchical clustering.

4.5 Human miRNA Target Gene Sets

Yu et al. [22] have calculated the microRNA functional simi-
larity through the analysis of GO similarity of targeted
genes. Each miRNA has a certain GO profile [41]. Inspired
by Yu et al. [22] we hypothesize that a microRNA often tar-
gets similar type of genes with respect to GO. In order to
verify this we compute that GO similarity observed among
a set of target genes of a miRNA. We have taken experimen-
tally validated human miRNA target genes from miRTar-
Base [42]. We included those miRNAs having at least two
genes in their target set, and where at least 60 percent of
genes have significantly enriched GO BP terms (p-value <

.001). After this preprocessing step, our data set covers
around 70 percent of the total miRNAs in miRTarBase data
set. The average GO similarity between the genes that are
targets of a particular miRNA is computed using the differ-
ent measures.

4.6 CESSM Data Set

CESSM [28] is an online tool for performance comparison of
a measure. GO graph and annotation information of pro-
teins are included. In this data set there are 13,430 protein
pairs collected from different species. GO similarity value
of those protein pairs are computed using a given measure.
Then the correlation values between the GO similarity and
Enzyme Commission number, Pfam domain and sequence
similarity are calculated. Resolution of a measure is also cal-
culated by the tool. Higher resolution and correlation value
supports the efficiency of a measure. Details are available in
[21]. We provided the results obtained for the measures
those are now currently discussed in this paper for all three
aspects of GO.
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5 RESULTS AND DISCUSSION

5.1 Protein Protein Interaction of Yeast and Human

First we have investigated the performance of the different
GO based similarity measures on three yeast and two
human PPI data sets as described in Section 4.2. The GO
similarity values of all the protein pairs in the PPI data
(both positive and negative) are computed using all the
measures, viz, Resnik [10], Jiang and Conrath [12], Lin [11],
Relevance (Schlicker) [13], Wang et al. [17], TCSS [31], simUI
[21], simGIC [21], Shen et al. [19], Shaohua Zhang [16] and
the proposed SPBHM measure. The ROC curve is plotted
and the area under the curve is measured. Table 1 in the
supplementary material, available online, shows the AUC
values corresponding to the different measures in terms of
BP, CC and MF ontologies on the three yeast PPI data sets.
Here Figs. 1a, 1b and 2 show the summary of results for BP,
MF and CC respectively. As can be seen from the figures,
the proposed measure performs well for all the three data
sets providing the best values in eight out of nine cases. In
only one case, the simIC measure performed best, closely
followed by the proposed SPBHM. Performances of Rele-
vance measure is also very close to simIC closely followed
by the Resnik measure. Many authors have found that
Resnik measure provides the best performance [31], [43] for
yeast PPI data. However our results show that simIC and
Relevance measure are equally good, if not better. On the
other hand Jiang, Lin, Wang, simUI, simGIC and Zhang
measures performed very poorly for this data sets. Hence
these latter measures were not taken into consideration in

case of the Human PPI data sets. As mentioned in Section
4.2 we have used two data sets for human. AUC values
obtained for the different measures are plotted in Fig. 3, and
the detailed results are mentioned in Table 2 of the supple-
mentary file, available online. From Fig. 3 we see that in five
out of six cases, SPBHM outperforms Resnik, Relevance,
simIC, Shen and TCSS measures. Interestingly, the pro-
posed measure outperforms Relevance, simIC and Resnik
with p-values 0.004, 0.01 and 0.002 respectively using wil-
coxon signed rank test indicating its potential superiority.
Note that irrespective of the measure used, the AUC values
are in general larger for BP, showing that it is perhaps the
most discriminative among the three categories of gene
ontology. Best values are bold faced in the table of supple-
mentary material, available online. In summary, the pro-
posed hybrid measure (SPBHM) and node based measures
(simIC, Relevence, Resnik), in general, performed better
than the graph structure (Wang, TCSS, Shen), vector (simUI,
simGIC) and simple path (Zhang) based measures.

5.2 Correlation of Gene Expression with GO
Similarity Value

To analyze the correlation with gene expression we used
different data sets mentioned in Section 4.3. We have taken
around 126,000 gene pairs for yeast data to calculate the cor-
relation. We used BMA approach to aggregate the GO term
similarity for all the measures. Detailed results are provided
in supplementary material (Tables 5, 6 and 7 for BP, CC and
MF respectively), available online. A bar plot in Fig. 4 shows
average of the correlation value obtained from the four data
set for each ontology. Proposed measure achieved the high-
est correlation (computed using the approach described in
Section 4.3) of 0.81 for BP ontology on Eisen’s data set fol-
lowed by Relevance, Shen, simIC and Lin measures respec-
tively. For other data sets also, SPBHM is found to yield the
best performance. For CC similarity, the proposed measure
achieves the best performance for Spellman’s, Eisen and
GSE10073 data sets. On the other data set we find that
Resnik measure performed the best, while SPBHM also per-
formed reasonably well. In case of MF similarity, proposed
measure achieves the highest correlation for Eisen, Spell-
man’s and GSE10073 data sets (Table 7 of supplementary,
available online), while for the other data set SPBHM’s per-
formance is close to the best values.

We also have conducted correlation analysis on human
data sets as shown in Tables 1, 2 and 3 for BP, CC and MF
respectively. In this case we have considered only the

Fig. 1. Barplot of AUCs of different measures on yeast PPI data sets in (a) BP and (b) MF ontology.

Fig. 2. Barplot of AUCs of different measures on yeast PPI data sets in
CC.
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Resnik, Relevance and simIC measures, as these are found
to provide competitive performance for the yeast gene
expression data as well as the PPI data (Section 5.1). More-
over these two measures are also indicated to be better by
many other authors [31], [43]. As can be seen from the
tables, SPBHM generally outperforms the other three for
most of the data sets. In only a few cases, it is marginally
inferior to Resnik, Relevance and simIC measures.

5.3 Functional Classification of Genes in a
Biological Pathway

Fourteen genes appear in the Glycolysis pathway [40] of
yeast. The dendrogram generated by complete linkage hier-
archical clustering of these genes using the proposed
SPBHM and Relevance measures are shown in Figs. 5a and
5b, respectively. In Table 4 we have listed the gene clusters
with EC numbers of individual genes and four clusters
obtained using both the measures. We see that SPBHM has
clustered the genes such that all the genes in a cluster have
similar subtype of EC numbers. Let us consider the second
cluster of five genes. As can be seen, SPBHM is able to
group together CDC19, PYK2, PGK1, PFK1 and PFK2, all of
which have similar molecular functions (EC numbers start-
ing with 2.7 for all of them). In contrast, the cluster obtained
using Relevance measure is mixed. Closer analysis reveals
that Relevance measure has failed in the first level itself
when it assigns high similarity to CDC19, PYK2, ENO1 and
ENO2. On the other hand, SPBHM first groups (CDC19 and
PYK2), thereafter combining these with PGK1. Note that
gene pair CDC19 and PYK2 both have a similar MF GO

term pyruvate kinase activity (GO:0004743), at level seven
with a large IC value. SPBHM measured a similarity value
of 0.95 for these two genes. Similarly gene pair PFK1 and
PFK2 have a very high GO similarity (they have the same
EC number also) and share a common enriched MF term 6-
phosphofructokinase activity (GO:0003872) with a high IC
value. So these pairs are placed in same cluster at the first
level. Five genes CDC19, PYK2, PGK1, PFK1 and PFK2 are
clustered in the second level. All these genes have common
ancestor MF GO term kinase activity (GO:0016301), a level
five GO term with enriched p-value of 4.94e-09, and they
have almost common EC number subtypes. The five genes
clustered using Relevance measure have a common
enriched MF GO term metal ion binding (GO:0046872) with a
larger p-value of 3.0e-05 as compared to that found by
SPBHM. Similar investigation has been conducted using
Wang’s measure whose performance is found to be quite
inferior. The results are omitted here for brevity. The above
results establish the superiority of the proposed SPBHM
similarity measure.

Clustering results for the tryptophan degradation path-
way [40] is shown in Table 5 for the two measures. Both of

TABLE 2
Correlation of Gene Expression Data [39] of Human

with GO CC Similarity Score (BMA)

TABLE 1
Correlation of Gene Expression Data [39] of Human

with GO BP Similarity (BMA) Score

Fig. 3. Barplot of AUCs of different measures on human PPI data sets for three ontologies in (a) Yu et al.’s and (b) Jain et al’s data.

Fig. 4. Correlation with gene expression and GO similarity on yeast data
set. Bar plot shows the average value obtained from the four gene
expression data set for various measures.

TABLE 3
Correlation of Gene Expression Data [39] of Human

with GO MF Similarity Score (BMA)
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the measures perform equally for this data. The dendro-
grams by the two measures are shown in Figs. 6a and 6b
respectively. Here genes ADH1, ADH2, ADH3, ADH4,
ADH5 and SFA1 have enriched MF term alcohol dehydroge-
nase (NAD) activity (GO:0004022), at level 6 in GO graphwith
p-value 1.116558e-20. Genes ARO8 and ARO9 also have an
enriched MF term aromatic-amino-acid:2-oxoglutarate amino-
transferase activity (GO:0008793), at level 6 in the GO graph
with p-value 4.984313e-08. Genes ARO10, PDC1, PDC5 and
PDC6 have a similarMFGO term pyruvate decarboxylase activ-
ity (GO:0004737) also at level 6 with p-value 1.491544e-14. All
three gene sets have similar EC number subtypes. The results
imply that a good functional classification is achieved by the
proposed one as well as Relevancemeasure for this data set.

5.4 Semantic Similarity among the Target Gene Set
of miRNAs

Here we have measured the average semantic similarity of
the experimentally validated targeted gene sets [42] of
human miRNAs. After preparation of the data (see Sec-
tion 4.5), for each targeted gene set we found the enriched
GO BP terms and their participation in enriched KEGG
pathways. As can be seen from Table 7 in the supplemen-
tary material, available online, the gene sets have highly
enriched GO terms with very small p-values computed
using Clusterprofiler toolbox [44] with hypergeometric test.
Many of them participate in common KEGG pathways.
Thus it is expected that they should exhibit high average
GO BP similarity. Our results also confirmed the same

(average GO BP similarity of miRNAs in the range 0.70 to
0.94). In a part of the study, the values of the SPBHM and
eight other measures are computed for every pair of genes
in the target set of a miRNA. Table 6 shows the correlation
between SPBHM and the other eight measures. Results are
shown on only 14 miRNAs, though the trend is the same for
all others. From the values in Table 6 it is clear that the pro-
posed SPBHM has high correlation with Relevance measure
as also with simIC, Jiang, Wang and Lin’s measures. The
agreement of SPBHM with Resnik’s measure appears to be
the least. The results indicate that our hypothesis about
high GO similarity between target genes of a miRNA is sup-
ported not only by SPBHM but also by most of the other
widely used measures.

5.5 CESSM Results

In this section a summary of different correlation analysis
based on EC number, Pfam domain and sequence similar-
ity, as obtained using the CESSM [28] online tool, are dis-
cussed. Twelve measures viz., Resnik, Relevance, simIC,
Jiang, Lin, simUI, simGIC, Wang, Shen, TCSS, Zhang and
SPBHM are used for comparison. Details are provided in
the supplementary material, available online. BMA combi-
nation approach is used here for all the measures except for
the group wise measures (simUI and simGIC). In the BP
ontology, SPBHM performed best for the correlation with
EC number similarity and Pfam domain similarity. For
sequence similarity, performance of SPBHM is the fourth
best after simUI, Resnik and simGIC measures. For CC

TABLE 5
Clustering Result of Yeast Tryptophan Degradation Pathway

[40] by the SPBHM and Relevance Measure

TABLE 4
Clustering Result of Yeast Glycolysis Pathway [40]

by SPBHM and Relevance Measure

Fig. 5. Dendrogram of genes in the yeast glycolysis pathway based on GO MF distance using (a) the proposed SPBHM and (b) Relevance measure.
The vertical axes show the distance (or 1-similarity) at which the clusters are merged.
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ontology with EC correlation, Resnik (0.3776) is marginally
superior to SPBHM (0.3762) followed by the other measures.
For Pfam domain and sequence similarity measure it per-
formed fourth best, being better than relevance, simIC, Lin,
Jiang, Wang, TCSS, Zhang and Shen. For MF ontology
SPBHM performed better than all eight aforementioned
measures for Pfam similarity. In case of EC correlation simi-
larity, SPBHM shows the best correlation performance. In
the case of sequence similarity, SPBHM performed better
than Shen, simIC and Relevance measures only. In terms of
the resolution parameter, SPBHM performed the best for BP
and CC, (0.9337 and 0.9798 respectively). We have aggre-
gated the ranks of different measures obtained from the dif-
ferent CESSM results, SPBHM got the rank one followed by
simGIC and Resnik measures.

5.6 Further Analysis of SPBHM

In the previous sections we have established the effective-
ness of the proposed SPBHM as compared to several well-
known measures of ontological similarity. In this section we
discuss how well the proposed measure is able to handle
the shallow annotation problem. Let us consider three GO
terms, namely GO:0046483 heterocycle metabolic process,
GO:0044237 cellular metabolic process and GO:0008152 meta-
bolic process. Of these, GO:0046483 is the most specific term
(lower down the ontology), while GO:0008152 is the most

general (directly connected to the root term). The IC values
of the three terms are 3.95, 1.33 and 1.165, respectively, as
per the gene annotation database. Now we compute the GO
BP similarity of the three terms with respect to themselves
using the measures of Lin, Jiang and Wang and also with
the proposed SPBHM. While the first three measures are
unable to indicate the difference in the specificity of the
three terms in the ontology, SPBHM is able to correctly indi-
cate this by providing values 0.86, 0.77 and 0.65, respec-
tively. Resnik and Relevance measures are also able to
indicate this difference between the three terms by provid-
ing values (0.34, 0.117, 0.103) and (0.98, 0.76 0.688) respec-
tively. We have also seen that simIC and TCSS are also able
to provide different similarity scores for these three cases.
This example aptly demonstrates that SPBHM is able to
tackle the shallow annotation problem quite well.

The resolution of SPBHM is found to be better than the
Relevance measure. In fact, genes that are found to be
greater than 0.9 similar according to the Relevance measure,
are found to have similarity values in the range of 0.78 to
0.99. Thus while the Relevance measure is unable to capture
the subtle difference in similarities of many gene pairs
SPBHM can easily distinguish such cases. Consider a term
pair with nearly equal IC values with their LCA term
ICðt1Þ � ICðt2Þ � ICðLCAðt1; t2ÞÞ. According to the Rele-
vance measure (see Eq. (3)) the similarity value is adjusted
by the probability of the LCA term ð1� pðLCAÞÞ. If the

TABLE 6
GO BP Similarity Analysis of Target Gene Set of Some Human miRNAs [42]

Fig. 6. Dendrogram of genes in the yeast tryptophan degradation pathway based on GO MF distance using (a) the SPBHM and (b) Relevance mea-
sure. The vertical axes show the distance ( or 1-similarity) at which the clusters are merged.
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LCA terms of two gene pairs have a probability very close to
0 or 1, then their similarity values also become very similar.
In contrast, in such cases SPBHM calculates the value by
considering the summation of the weighted paths which
will be different, depending on the location of the LCA
terms. Consider the following human genes: CDK2, CCND2
and ERBB4 with entrez ids 1017, 894 and 2066, respectively.
The LCA term cell division (GO:0051301) between the gene
pair CCND2 and CDK2 ( obtained using MAX combination)
has 408 annotations with p-value 0.0007. The similarity val-
ues of this gene pair using the measures Relevance, Lin,
Wang, Jiang, Resnik and SPBHM are 0.999, 1, 1, 1, 0.46 and
0.89 respectively in GO BP ontology. In contrast, the genes
CCND2 and ERBB4 has an LCA term positive regulation of
epithelial cell proliferation (GO:0050679) and is more specific
than that in the previous example. This LCA term has 98
annotations with respect to the same background gene set
with p-value 4.49e-05. The similarity values of this gene
pair using the measures Relevance, Lin, Wang, Jiang, Resnik
and SPBHM are 0.999, 1, 1, 1, 0.59 and 0.96 respectively in
GO BP ontology. Evidently, the first four measures are
unable to capture the fact that although both the gene pairs
are highly similar, the similarity in the second case should
be higher because the corresponding LCA term is more spe-
cific. In contrast, both Resnik and SPBHM (as also simIC
and TCSS, results omitted) are able to detect this fact, pro-
viding higher similarity values for this gene pair. Several
similar examples, including for the measures, have been
observed but are omitted here for the sake of brevity.

For better understanding of the unique property of
SPBHM, we have shown the distribution chart of pair
wise GO BP ontology term similarity scores. There are
2,024 directly annotated terms in the yeast protein cor-
pus. As the number of term pairs generated from this
corpus is large we have selected 50 percent of the total
terms randomly. Then the similarity value of each pair is
calculated using Relevance, simIC, SPBHM measures. As
can be seen from Fig. 7a, the histogram plots of the
scores follow similar patterns for all the three measures.
It is also evident that most of the term pairs lie in a very
low score range (0-.1). This is expected since most of the
term pairs will have low similarity while only a few will
have high similarity scores. While SPBHM measure has

distributed the score of the term pairs into different
ranges. One reason is that, SPBHM does not assign a
score zero to the all term pairs have the root node as
LCA. It assigns a score which is proportionally decreas-
ing with the increase of distance from the root to the
term pair. The other reason is it has better resolution.
Boxplot (Fig. 7b) shows that SPBHM has wider ranges
for the distribution of scores.

6 CONCLUSION

In this paper we have proposed a new GO similarity mea-
sure, called SPBHM, integrating the topological property of
GO DAG and annotation statistics of GO terms. SPBHM
measures similarity between two GO terms as a function of
their similarity as well as dissimilarity values along the
shortest weighted paths from the root. To measure the dis-
similarity value between a term pair, SPBHM uses the
aggregation of the contributions of all uncommon ancestor
terms along the shortest weighted paths from annotating
terms to next descendant of LCA. For measuring the simi-
larity of the term pair, the weighted path from the LCA to
the root is considered.

As shown in this article, this measure efficiently handles
the shallow annotation problem, as it considers the both the
difference of level between the terms and their LCA, as well
as the IC values along the path. This is the unique feature of
SPBHM, making it different from the other popular path-
based measures. Moreover this measure is able to capture
subtle differences between highly similar term pairs. It is
intuitively clear that although two terms pairs may be
highly similar, however from the human perspective it is
generally possible to say if one of the two pairs is more simi-
lar than the other. SPBHM is able to indicate these finer dif-
ferences; this is not true for many of the existing measures,
as shown in Section 5.6. Extensive experimental results pro-
vided in this article demonstrate that the proposed SPBHM
performs better when predicting PPIs, has higher correla-
tion with gene expression similarity, and is better able to
classify functions of genes in a biological pathway. As a fur-
ther validation, it is shown that SPBHM correlates well with
some other existing measures when used for computing the
similarity of genes that are targets of a given miRNA.

(a) (b)

Fig. 7. GO similarity score distribution Histogram (a) and boxplot (b) of Relevance, simIC and SPBHMmeasures on BP ontology.
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As is evident, the performance of the measures is depen-
dent on the properties of the data set. For the case of PPI
data set, if the proteins in the corpus have more specific GO
term annotations, then the measures that can handle shal-
low annotations will perform better, e.g., SPBHM, Resnik,
Relevance, simIC, Shen and TCSS. The others measures
(that cannot handle shallow annotations) do not perform
well because they tend to show higher similarity for shallow
annotated terms present in the negative data set. In contrast,
if the proteins have more general annotations, then neither
the above measures that can handle shallow annotations,
nor the others that cannot (e.g., Lin, Jiang, Wang, simUI,
simGIC), will perform well. In fact, in such situations it
might be misleading to use GO similarity scores for PPI
prediction.

For the studies related to correlation between GO similar-
ity and other types of similarities (e.g., gene expression and
sequence similarity), the choice of the measure depends on
the nature of the data. For example, for gene co-expression
studies if the data contains highly co-expressed gene pairs,
then the measures that have higher resolution in the higher
similarity range should be preferred. The converse is true
for a data containing gene pairs with low co-expression.
The advantage of using SPBHM is that it is not only able to
handle shallow annotation problem, and hence performs
well for PPI prediction (see Figs. 1a, 1b, 2, 3a and 3b), its res-
olution is also more for a greater range of similarities
(Figs. 7a and 7b and discussion in Section 5.6). Hence it per-
forms well for correlation studies as well.

There is some scope for improving the proposed mea-
sure. An exponential and arctan function is used in SPBHM.
It is important to see the effectiveness of other transfer func-
tions in this regard. Moreover, instead of using information
from only the shortest weighted path, it may be better if all
weighted paths are considered. As pointed out in [2], it is
important to study the term specificity of SPBHM based
other ways of computing IC values. Moreover annotation
length bias [2] of SPBHM should also be investigated. These
need to be investigated in future.
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