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Recognition of Unaspirated Plosives—A Statistical
Approach

A. K.DATTA, N. R. GANGULI anD S. RAY

Abstract—In this paper the results of a study of the computer recog-
nition of unaspirated plosives in commonly used polysyllabic words
uttered by three different informants are presented. The onglide
transitions of the first two formants and their durations have been
found to be an effective set of features for the recognition of un-
aspirated plosives. The rates of transition of these two formants as a
feature set have been found to be significantly inferior to the features
mentioned earlier. The maximum likelihood method, under the as-
sumption of a normal distribution for the feature set, provides an ade-
quate tool for classification.. The assumption of both intergroup and
intragroup independence of the features reduces recognition scores. A
prior knowledge of target vowels is found necessary for attaining rea-
sonable efficiency. A prior knowledge of voicing manner improves
classification efficiency to some extent. The physiological factors re-
sponsible for the variation of the recognition score for the various plo-
sives are discussed. For labials and velars the recognition score is very
high, nearly 90 percent. An attempt to correlate the dynamics of
tongue-body motion with the variations in recognition scores has been
made. Back vowels as targets have been found to give improved classi-
fication of the preceding consonants. A comparison of the result of
machine recognition with those of published results on perception tests
has been included. The results are found to be of the same order.

I. INTRODUCTION

UTOMATIC speech recognition (ASR) occupies probably
the most important role in the field of intelligence com-

munication between man and machine. The ultimate goal of”

ASR is an automata which can extract the full intelligence
content of speech and interpret the message contained in it for
decision making and information transferring purposes. This
complex problem has been investigated in depth in its various
aspects, namely, the general classificatory and decision making
aspects, as well as the particular problems of recognition of
vowels, consonants, and other phonemes, both in isolation and
in connected speech [1]-[15]. The variability of the features
associated with human speech has prompted the use of statis-
tical techniques in ASR particularly when the assumption of
distribution functions does not pose a problem. The maxi-
mum likelihood method has been shown to be a potentially
effective tool for such purposes [9]-[15].

Fundamentally, general ASR systems aim at the recognition
of speech without any inherent limitations of vocabulary. In
such a general approach it endeavors, at the primary level,
identification of the smallest units of speech (phonemes) from
the speech signal solely on the basis of the acoustic, phonetic
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and prosodic properties of these units. The reconstruction of
semantic units from those phonemes using linguistic con-
straints is a task for the higher level ASR. This approach may
be clearly distinguished from the specific ASR approaches
which aim at the recognition of words or such other larger
units over the field of a limited vocabulary. These approaches
though highly restrictive are lucrative, exhibiting fairly good
efficiency for very specific purposes. The efficiency, however,
falls sharply as the size of vocabulary increases [8] . The pres-
ent work has the approach of a general primary ASR sys-
tem and intends to throw some light on the area of the ma-
chine recognition of unaspirated plosive consonants. These
consonants have been taken from CV combinations, oc-
curring in polysyllabic commonly used words. The pres-
ent status of automatic vowel recognition is reasonably
satisfactory [1]-[5]; the main emphasis here has been to in-
vestigate the machine recognition of unaspirated plosives on
the assumption that the target vowels are known. A com-
parison of recognition scores when the target vowels are
known with those when target vowels are unknown is also
included. The selection of necessary acoustic, phonetic and
prosodic features, their measurements and the nature of varia-
tion of these, have been considered in some detail along with
the various classificatory methods employed.

The eight unaspirated plosive consonants of Telugu, a major
Indian language, studied in the CV context of the ten major
vowels are /k/, [g/, /t/, /d/, [t/, [d/, /p/, and [b/. The results of
the classification of these consonants in various contexts and
manners and their differential behaviors have been discussed
with reference to the physiological factors involved.

II. FEATURE SELECTION AND MEASUREMENT

The plosives are perceived and distinguished by their manner
and place of articulation. The differentiation between various
manners of articulation is a segmentation problem which has
not been taken up here. The determination of the place of
articulation of a plosive from the speech spectra is a difficult
task. The acoustic cues for these sounds are supposed to be in
the burst spectra, the aperiodic, as well as the vocalic transi-
tions [16]-[26]. The principal source of information regard-
ing acoustic cues for the identification of the place of articula-
tion of plosives has been through experiments on perception.
Various acoustic properties associated with these sounds are
influenced by the following vowels. However, recent studies
by Stevens et al. [23] suggest that cues for the place of artic-
ulation, which remain invariant under the influence of the fol-
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lowing vowels, are to be found more in the spectrum of the
onset of stimuli than in the continuing transitional dynamics
of the speech wave. Though the formant transitions are not
considered to be primary cues for the identification of artic-
ulatory position, results [23], [24] indicate that the aperiodic
and vocalic transitions combined form an effective cue for this
purpose once the target vowel is fixed. The unambiguous and
accurate determination of the poles and zeros, the important
characteristics of the place of articulation, in the burst spectra
is extremely difficult because of the weak intensity and short
duration (of the order of 5 to 10 ms) of the burst. On the
other hand, a formant tracker can trace the transitory move-
ments of the formants, particularly vocalic transitions of the
first three formants. The present experiment proposes to
study how effectively the onglide transitions of the first two
formants may be used for automatic recognition of plosives
according to their place of articulation. The basic features
which have been considered here to represent the transition
adequately for this purpose are the amount of transitions
[AF] and the duration of transitions [Az].

The acoustic characteristics depicting the articulatory situa-
tion at the time of plosion would be best represented if the
formant values were known at that time. The hypothesis that
the transitional data can provide cues for the determination of
the articulatory position of the plosives requires that these
should adequately reflect the cavity characteristics closest to
the time of plosion. It is, therefore, necessary that the initial
values of the formants be obtained at the instant of release of
the consonantal obstruction. Unfortunately, exact determina-
tion of the formant position just after the release is unclear
and unambiguous for unaspirated plosives. The transition
from plosion to the steady state of target vowels contains an
initial aperiodic portion where the vibration of the vocal
chords has not yet commenced. The energy content in this
state is very weak and defies easy detection of the spectral
structures. In the spectrograms also, this part is visible oc-
casionally only when there is a slight aspiration. It is, there-
fore, necessary to resort to extrapolation of the obtainable
formant-transition data. The tongue-body movement from
after release to the time of the attainment of a reasonably
steady state is very complex [25], [27]. The initial move-
ment is very fast, which merges into a movement of larger time
constant in the later stage. In the absence of dependable data
on the dynamics of the tongue-body motion, a simple linear
extrapolation has been used here to trace the formant transi-
tion back to the time of release (Fig. 1). Such measurements
have been found to tally with the spectrographic data where
traces of the aperiodic transition have been discernible.

The frequencies of the formants at the steady state as mea-
sured from the base line to the central line of the formant
bands, where they are parallel to the base line, are subtracted
from the values of the respective formants extrapolated to the
time of the end of burst spectra. These values give the amount
of formant transitions AF; and AF, (Fig. 1). The scale used
for this measurement is derived from the callibrated tone of
500 Hz recorded on each and every spectrogram. The dura-
tion of transition At is measured from the end of burst spectra
to the point where both the first two formants have attained a
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Fig. 1. Extrapolation of formants.

reasonably steady state. The time duration has been measured
with a scale formed from the average of two time marker re-
cordings, one at the beginning and one at the end of every
group of 50 spectrograms. Throughout the recordings, no sig-
nificant variation of these scales has been noticed.

Altogether, four different feature combinations have been
tried from the three basic transitional features, namely, AF;,
AF, and At, the derived features like rates of transition
AF;/At and AF,[At, and the inverse of the duration of tran-
sition 1/At. The feature combinations tested are [AF;,
AF,], [AF,, AF,, At], [AF,, AF,, 1/At], and [AF,/At,
AF,|At].

As statistical techniques with parametric representation have
been used for classification, an examination of the nature of
the distribution of the basic features is in order. The distribu-
tion of formant frequencies for the steady state of vowels has
been reported to be normal [28]. Since the amount of transi-
tion is obtained from the difference of two values of the
formant at two different instances, and as the physiological
mechanism remains basically the same, its distribution also
may reasonably be assumed normal. As the data for each CV
combination are not sufficiently large to conduct a rigorous
normality test, an indirect approach has been developed to test
the normality of Az. Descriptive measures of skewness [, ]
and kurtosis [B,] [29] have been calculated for each of the
features AF'y, AF,, and At. These values have been compared
with 0 and 3, the corresponding measures for a normal vari-
able. The features are then ranked separately on the basis of
B; and B, values, in each case the feature with the lowest dif-
ference being given the lowest rank. The two sets of ranks for
B; and B, are then added, and combined ranks varying from 1
to 3 are then given to the features on the basis of their rank
totals. In the case of the same rank total for more than one
feature, they have been differentiated by looking into the in-
dividual differences of their [B;, 8, ] —values from [0, 3]. For
each feature, the ranks obtained with different CV combina-
tions have been averaged. They are presented in Table 1.

As is evident from this table, the average rank of At is less
than or at most equal to the larger of those of AF; and AF,.
Therefore, as AF; and AF, have already been taken to be
normal, A¢ can also be so considered.
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TABLE I
AVERAGE RANKS, OF DIFFERENT FEATURES
Plosive Type
Feature Unvoiced Voiced Pooled
AFy 1.82 1.95 2.04
AF, 2.09 2.05 2.13
At 2.09 2.00 1.83

III. METHODS OF CLASSIFICATION

Let x'=(x,, X5, ***,X,) be an n-dimensional feature vec-
tor. Let x be multivariate normal with parameters u and 2y,
k=1, 2, ++-,m where m is the number of groups. In the
general maximum likelihood method of classification, under
the assumption of equal a priori probability of the groups, x is
assigned to that group k for which L, defined by (1) is maxi-
mum [30].

Li=- Ylog, 1Z¢l- £ (x- m) Z¢* (- ). 6))

Altogether, three different classification methods have been
used. In method 1 the above mentioned formula has been
used without any restriction on the interdependence of the
features. In method 2 the variations of the features are as-
sumed to be group independent and therefore the dispersion
matrices have been taken to be equal. Here Ly reduces to

n n . n n .e
L= > Nxug -3 303 N
i=1/j=1 i=1

i=1

@

where 2, =2, =-++=%,, =%, say,and ' = (\¥),

In the third method the features are assumed to be intra-
group independent. The subregions containing different
groups are also assumed to occupy equal volume in the feature
space. In other words, the two assumptions made are 1) Z is
diagonal and 2) |Z; | is constant. Here the problem reduces
to assigning x to the group k, provided Dy defined by (3) is
minimum.

n ,
Dy =3 (%= px)* [0k,

i=1

(€))

where 0%; is the variance of the ith feature in the kth group.
This method is known as the minimum-weighted distance
method of classification [31].

IV. EXPERIMENTAL PROCEDURE

The present study has been conducted with eight unaspirated
plosives namely /k/, /g/, /t/, /d/, {t], /], [p/, and [b]. They
have been selected in the CV combinations with ten major
vowels both long and short. These vowels are /a/, fa/, [e/,
fe:], lo], Jo:f, I/, fu:/, /i/, [iz/. The coarticulation effect of
distant vowels on consonants has been observed to be quite
significant [32]. The CV combinations, therefore, have been
taken from commonly used polysyllabic Telugu words. The six
hundred words uttered by three male informants constitute the
whole speech sample. The recordings of these words, spoken
by ten native educated informants, have been made in an
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Fig. 2. Block diagram for plosive recognition.

empty auditorium 12m X 30m X 6m size on TDK tapes with
an AKAI 1710 tape recorder. The informants belonged to the
age group of thirty to thirty-five years. The tapes were re-
played before an audience of 12 native students of postgrad-
uate and undergraduate classes. The three informants were
chosen on the basis of highest recognition scores. The spec-
trograms have been made with a Kay Sonagraph having Sona-
Marker facility. The selected bandwidth of the system has
been 80 Hz to 8 KHz, with the filter bandwidth of 300 Hz.
The formant transitions and the duration of transitions have
been measured manually from the spectrograms.

Fig. 2 represents the present scheme in the context of a gen-
eral ASR system. Segmentation, feature extraction, and for-
mation of the measurement vector have been explained earlier.
The classifier has two separate phases. In a nonadaptive sys-
tem the input vector is switched to the training phase initially.
After an adequate number of training samples are fed, the in-
put vector is channeled to the classification phase. In the
training phase the estimated values of the mean representative
vector and the dispersion matrix for each class are computed
and stored in permanent store. In the classification phase, for
each input vector x, the discriminant scores L are first com-
puted with the help of stored values of u; and = for all the
m classes. The class number #, for which the score is a maxi-
mum, is then obtained through usual sorting procedures and
the input vector is then assigned to that class.

V. DISCUSSION OF THE RESULTS

'On the same basic transitional data, twelve classification ex-
periments have been conducted with four feature combina-
tions under each of the three methods of classification. Again,
for each experiment, the data were grouped into a total of
twenty-one subgroups, seven subgroups under each of the
three main groups. The three main groups are unvoiced plo-
sives [U], voiced plosives [V], and the unvoiced and voiced
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TABLE 1I
AVERAGE RECOGNITION SCORES FOR DIFFERENT FEATURE
COMBINATIONS BY DIFFERENT METHODS WITH TARGET
VoweL KNOowWN

Method 1 Method 2 Method 3

Maximum Maximum Minimum

Likelihood Likelihood Weighted

Method Method Distance

Feature [Diff. Disp. [Equal. Disp. Method

Combination Matrices] Matrices]

AFy, AF,, At 74.9 68.9 69.0
AF, AF,, 1/At 73.9 68.5 68.9
AFy, AF, 67.2 61.6 63.8
AF,[At, AF, /At 67.0 62.6 63.6

mixed together [M]. The subgroups are one for each of six
target vowels and one for all vowels taken together. The
groups have been so formed that an assessment of the effect of
prior knowledge of the voicing manner and the target vowels
on the efficiency of recognition can be made.

Table II presents a summary of all these recognition results.
It immediately reveals that the maximum likelihood method
without any restrictive assumption using the feature set [AF,
AF,, At] gives the best recognition results. Both the assump-
tions of intragroup independence and intergroup variational
independence of the features lower the recognition score by
about 6 percent. The last two classification procedures ex-
hibit almost equal performance. The method of minimum
distance, however, is the computationally simplest method.
It may be of some interest where cost consideration is an im-
portant factor and one can afford this relatively small amount
of loss in performance.

The performance of the feature set [AF;, AF,, 1/Af] is
only marginally inferior to the set [AF,, AF,, At], whereas
those of the other two feature sets are significantly worse.
This leads to the conclusion that all the three basic transitional
parameters, namely, the amount and the duration of the tran-
sitions of formants, are important cues for the classification
of the unaspirated plosives. The basic features in the original
form represent these plosives better than the derived features,
at least for the classificatory methods employed here. In the
succeeding paragraphs the results will be discussed only in
terms of method 1 and the feature set B, [AF,, AF,, At], for
which the recognition scores have been consistently higher.

Fig. 3 shows that the recognition score improves signifi-
cantly if one knows the succeeding vowels beforehand. In
fact, for method 1 and feature set B, the improvement is of
the order of 60 percent. This strongly suggests that the tran-
sitional data are useful only with a priori knowledge of the
target vowels. Further, the prior knowledge of voicing manner
improves the classification score by about 10 percent.

Fig. 4 presents the recognition scores of the various plosives
in different contexts. It may be noted that for both the ex-
treme points of articulation, namely velar and labial, the recog-
nition scores are significantly higher than the other two points.
In fact, for voiced labials and velars, the average recognition
score has reached the 90 percent level. Fully correct classifi-
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Fig. 4. Recognition scores of plosives for different target vowels.

cation has been observed for 10 out of 48 CV combinations.
High recognition scores for bilabials may be due to the lesser
degree of involvement of the tongue in the articulation of
these plosives. The tongue, therefore, has a larger time to
settle for the target vowels. Fig. 5, drawn from the results
of cineradiographic studies of the movements of different
tongue points by Houde [27], illustrates the much lesser de-
gree of complication in the tongue motions for labials in
comparison with those for velars. It has been suggested that
the main source of variation of formant frequencies is due to
the inaccuracy of the positioning of the tongue [28]. The
transitions of formants are, therefore, expected to be more
stable for the bilabials than for the other plosives. This prob-
ably explains the high classification scores for the labials. Ta-
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s # ‘IONGUE POINTS

Fig. 5. Articulatory diagram of tongue-body motion.

TABLE III
AVERAGE MOVEMENTS IN mm OF DIFFERENT TONGUE POINTS FOR
SPECIFIED TRANSITIONS

Tongue Points
Recognition
Transition Ty T, T3 Ta Score [%]
g 2.5 3.5 3.5 3.5 100
ga 10.0 11.5 12.5 8.0 85
gu 2.5 2.5 1.5 1.0 100

ble III presents average total displacements of different tongue
points (results obtained from the same source [27]) for /gi/,
/ga/, and [gu/ utterances and the corresponding recognition
scores. The negative correlation of the displacement with rec-
ognition scores further substantiates the point.

The alveolar and dental plosives show consistently lower
recognition scores. A reference to the confusion matrices
(Appendix) indicates that the confusions amongst these two
plosives themselves are mainly responsible for this. In fact,
of the total error of 26 percent for unvoiced plosives in these
two groups, 18 percent is due to the confusion amongst them.
For voiced plosives, the respective figures are 35 percent and
20 percent. The closeness of these two articulatory positions
is possibly the main reason for this confusion.

Each segment inside a vertical bar represents the plosive
pair of a particular articulatory position in combination with
a particular target vowel (Fig. 4). The slope of a segment re-
flects the relative status of the voiced over unvoiced counter-
part of the plosive pair with respect to the recognition score.
The preponderance of positive slopes for all groups except
alveolar indicates that voiced plosives are generally better
classified. However, the alveolar group exhibits a reverse
trend. The plosives are generally better classified for the target
vowels /of, /u/, and f9/. The differences in the classification
scores between voiced and unvoiced plosives with respect to
these vowels are also small. It may be of interest to note that
plosive recognition is, on an average, poorer when the targets
are front vowels. The back and central vowels provide very
good targets in this respect.

Much attention has been given towards automatic recogni-
tion of words with a limited vocabulary. Reddy [8] has given
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a useful review of work in this field. Recent experiments by
Rabiner [33] with 54 selected words have achieved recogni-
tion score of 85 percent. Unfortunately, machine recognition
of consonants has failed to attract as much attention. It
would, therefore, be difficult to find a frame of reference for
the evaluation of the present results in a specific context.
However, Sakai et al. [1] reported about 70 percent recogni-
tion for consonants, in general. Pal et al. [10] have reported
some experiments using fuzzy algorithms where recognition
scores vary from 60 percent to 85 percent for plosives. The
present experiment produces an overall recognition score of
75 percent, starting from 62 percent for /t/ to 90 percent for
/b/ and /g/.

These results of machine recognition compare well with hu-
man perception. Experiments with segmented and gated
speech [24] reveal that the highest recognition scores were
obtained when aperiodic plus vocalic transitions of the CV syl-
lables were presented to the listeners. Fig. 6 represents a com-
parison of the results of this perception test [24] and those of
present machine recognition. The overall performance of the
machine is marginally better than that of native listeners. Per-
ception tests conducted by Stevens et al. [23], with voiced
synthetic plosives /b/, /d/, and [g/ in conjunction with vowels
[a/, [i/, and [u/, provided an average score of 81 percent. A
corresponding figure for these plosives with the vowels /a/,
fa/, /o], [i],/u/,and /e[ in the present experiment is about 82
percent.

VI. CONCLUSION

The feature set [AF;, AF,, At] has been found to provide
adequate cues for the classification of unaspirated plosive
sounds. The assumption of a normal distribution for these
features has also been found reasonable. The features display
significant dependence both' inside the groups and between
groups. The use of transitions of higher formants is likely to
improve recognition scores, though these are more difficult to
trace [21], [25]. A prior knowledge of the target vowel is
necessary and prior knowledge of the voicing manner is cer-
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tainly helpful for the automatic recognition of plosives. In the
present state of ASR this information can be satisfactorily ob-
tained without much difficulty.

APPENDIX

CONFUSION MATRICES FOR THE FEATURE SET
[AF;, AF,, At] —-TARGET VOWEL KNOWN

Unvoiced
Classified as Total No. of
&/ 1t It I/ Observations
Actual Plosive
/k/ 71 5 i5 0 89
i/ 2 33 5 1 41
[t/ 8 19 60 6 93
/vl 1 6 5 60 72
Total 295
Voiced
Classified as Total No. of
lg/ Jdf /d/ Jof Observations
Actual Plosive
fef 69 3 3 2 77
/d/ 4 49 19 6 78
/d/ 9 13 56 5 83
o/ 0 4 1 50 55
Total 293
Unvoiced and Voiced Pooled
Classified as Total No. of
Velar Alveolar Dental Bilabial Observations
Actual Plosive
Velar 129 12 22 3 166
Alveolar 7 85 16 11 119
Dental 23 53 89 11 176
Bilabial 1 13 7 106 127
Total 588
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