1000

The graphs support the earlier claims about row/column replace-
ment. For a 256K array, the addition of 12 redundant rows and 12
redundant columns provide a yield in excess of 99 percent for p <
10-4. However, for the 16M array, the addition of 40 extra rows and
40 extra columns produces a negligible yield for p > 2.7 X 1075.

III. CONCLUSION

In this correspondence we show how hard defects can corrupt a
random access memory and describe the current technique for
controlling these defects during manufacture: row/column replace-
ment.

Row/column replacement is asymptotically ineffective as a means
of controlling hard defects. As we let the memory array grow
unbounded in each direction, the probability of reducing the fraction
of defects in the array goes to zero regardless of the fraction of extra
rows and columns available for spare switching.

Finally, the asymptotic failure described above may become a
significant limitation for very large memory arrays.

IV. FUTURE CONSIDERATIONS

As random access memories get larger, a more effective means of
controlling hard defects must be incorporated into their design. One
obvious method is the inclusion of on-chip error correction. From
Shannon’s theory we know that for any R < C(p) there exists a (n,
k.) code with k./n. > R such that the probability of a decoding error
can be made arbitrarily small. (Here, C(p) = 1 — h(p) where p is
the probability of a defective cell; if the location of the defects are
made available to the encoder or decoder, then C(p) = 1 — p[9].)
Such a code could be implemented on the rows of a RAM and provide
a high degree of protection. This contrasts vividly with the ‘“‘zero
yield”” which row/column replacement offers for large RAM’s.

Currently, on-chip error correction is being increasingly consid-
ered as a means of providing protection from so-called ‘“soft errors”’
[10]-[13]. These errors are transient in that they can be ‘‘scrubbed”’
from the system by rewriting the contents of the affected memory
cells. The advisability of using on-chip ECC’s to control both hard
and soft errors is something which should be considered.

ACKNOWLEDGMENT

The authors thank T. Berger for his helpful suggestions on the
asymptotic results.

REFERENCES

[11 T. Mano et al., “‘A redundancy circuit for a fault-tolerant 256K MOS
RAM,”’ IEEE J. Solid State Circuits, vol. SC-17, pp. 726-730, Aug.
1982.

[2]1 S.E. Schuster, ‘‘Multiple word/bit line redundancy for semiconductor
memories,”” IEEE J. Solid State Circuits, vol. SC-13, pp. 698-703,
Oct. 1978.

[3]1 R. P. Cenker ef al., “‘A fault tolerant 64K dynamic random access
memory,”” IEEE Trans. Electron. Dev., vol. ED-26, pp. 853-860,
June 1979.

[4] R.T.Smith, ‘‘Laser programmable redundancy and yield improvement
in a 64K DRAM, "’ IEEE J. Solid State Circuits, vol. SC-16, pp. 506-
513, Oct. 1981.

[5] T. E. Mangir, ‘‘Sources of failures and yield improvement for VLSI
and restructurable interconnects for RVLSI and WSI: Part I—Sources
of failures and yield improvement for VLSL,"* Proc. IEEE, vol. 72,
pp. 690-708, June 1984.

[6] C. H. Stapper et al., ‘‘Yield model for productivity optimization of
VLSI memory chips with redundancy and partially good product,”
IBM J. Res. Develop., vol. 24, pp. 398-409, May 1980.)

[71 F.). MacWilliams and N. J. A. Sloane, The Theory of Error
Correcting Codes. Amsterdam, The Netherlands: North Holland,
1977.

[8] L Csiszar and J. Korner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. New York: Academic, 1981.

[9] C. Heegard and A. A. El Gamal, ‘‘On the capacity of computer
memory with defects,”” IEEE Trans. Inform. Theory, vol. IT-29, pp.
731-739, Sept. 1983.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 11, NOVEMBER 1986

[10] T. C. May and M. H. Woods, ‘‘Alpha particle induced soft errors in
dynamic memories,”” IEEE Trans. Electron. Dev., vol. ED-26, pp.
2-9, Jan. 1979.

F. I. Osman, ‘‘Error-correction technique for random access memo-
ries,”” IEEE J. Solid State Circuits, vol. SC-17, pp. 877-881, Oct.
1982.

T. Mano et al., ‘“Circuit techniques for a VLSI memory,”” IEEE J.
Solid State Circuits, vol. SC-18, pp. 463-469, Oct. 1983.

J. Yamada et al., ‘‘A submicron 1 Mbit dynamic RAM with a 4-Bit-at-
a-time built-in ECC circuit,”” IEEE J. Solid State Circuits, vol. SC-
19, pp. 627-633, Oct. 1984.

[11]

[12]
[13]

A Parallel Algorithm to Compute the Shortest Paths and
Diameter of a Graph and Its VLSI Implementation

BHABANI P. SINHA, BHARGAB B. BHATTACHARYA,
SURANIJAN GHOSE, aND PRADIP K. SRIMANI

Abstract—In this correspondence we develop a parallel algorithm to
compute the all-pairs shortest paths and the diameter of a given graph.
Next, this algorithm is mapped into a suitable VLSI systolic architecture
and the performance of this proposed VLSI implementation is evaluated.

Index Terms—Diameter, parallel algorithms, pipelining, shortest
paths, VLSI architecture.

I. INTRODUCTION

Enumeration of shortest paths between all pairs of vertices and
finding the diameter of a graph constitute an important problem in
graph theory and have many practical applications involving some
commodity flow, e.g., in a computer communication network. In a
communication network, the diameter of the network graph is a
deciding factor in choosing the system topology which defines the
interprocessor communication architecture. Further, a knowledge of
the shortest paths between every two processing nodes in a network is
essential to determine dynamically the optimal feasible route from
one processor to the other in order to minimize the communication
delay.

Various algorithms [2]-[5] exist for this shortest path problem;
they are sequential in nature, and the time complexity of the best
known algorithm of this class to compute all-pairs shortest distances
is O(n32) [5] while that of all-pairs shortest paths is O(n3) where n is
the number of vertices.

The availability of low-cost, high-speed processor arrays during
the last decade gave an impetus for parallelization of programs [12].
With the steep decrease in hardware cost due to the recent VLSI
technology, there is a growing trend toward parallelization of
different existing algorithms and their VLSI implementation [7]-[10],
[13]-[16] to improve upon the execution time at the cost of providing
a larger number of processors. Guibas, Kung, and Thompson [9]
have given algorithms for dynamic programming and transitive
closure problems suitable for VLSI implementation and their ideas
can be readily extended to solve the shortest path problem as well. In
this correspondence we follow a different approach to design a

Manuscript received September 17, 1984; revised August 9, 1985.

B. P. Sinha and S. Ghose are with the Electronics Unit, Indian Statistical
Institute, Calcutta, 700 035, India.

B. B. Bhattacharya is with the Department of Computer Science, University
of Nebraska, Lincoln, NE 68588.

P. K. Srimani is with the Department of Computer Science, Southern
Illinois University, Carbondale, IL 62901, on leave from the Indian Institute
of Management, Calcutta, India.

IEEE Log Number 8610487.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 11, NOVEMBER 1986

parallel algorithm to compute the shortest paths between every pair of
vertices, and subsequently find the diameter of a graph. The
algorithm has then been mapped on a suitable VLSI architecture. The
results we have obtained regarding the number of processors and
computation time are, however, similar to those in [9].

The design of any algorithm for VLSI implementation is often
guided by the requirement of minimum interprocessor data communi-
cation time in a VLSI hardware using identical processor cells [9],
[11] so as to reduce both the cost of production and signal propagation
delay. A formal approach to design an algorithm suitable for VLSI
circuit and mapping that algorithm into an appropriate VLSI
architecture has been described by Moldovan [1]. The method
.consists of the following steps.

i) The algorithm is developed in a form in which all variables are
pipelined.

ii) The data dependence vectors [1] are then found.

iii) A suitable linear transformation of these data dependence
vectors is identified to select an appropriate VLSI systolic array.

Following the approach in [1], we first describe a parallel
algorithm for the shortest path problem with all variables suitably
pipelined. This algorithm can be executed in O(n) parallel steps, each
step requiring O(n) time of computation. We have indicated that each
of these parallel steps can also be executed in O(log n) time so that the
time complexity of the proposed parallel algorithm is O(n log n).
Next we map this algorithm in one of many possible VLSI systolic
architectures using n? processors which, incidentally, turns out to be
similar to Illiac IV architecture [6]. By choosing a different linear
transformation of data dependence vectors we could get a different
systolic architecture. This is in contrast to the approach of Guibas,
Kung, and Thompson [9] where the algorithms were developed on a
previously fixed interconnection pattern among the processor cells.

II. DESCRIPTION OF THE PARALLELIZABLE ALGORITHM

In this section, we first briefly state the sequential algorithm of Hu
[3] to compute the shortest distances. Next we identify the concur-
rently executable segments of Hu’s algorithm and finally present an
algorithm which is readily parallelizable and suitable for VLSI
implementation.

Let us denote the edge from vertex v; to v; of a graph by (v;, v;), the
set of vertices by V and the set of edges by E. Let D = [d,;] be the
distance matrix of the given graph where

0, if i=j

o, if (v;, v;) & E, i#j

ij
nonnegative weight of the edge (v, vj),

otherwise.

Hu’s algorithm to compute shortest distances between every pair of
vertices essentially computes the product matrix P = D X D
according to some well-defined rules, first through a forward
multiplication and then through a backward multiplication process.
This algorithm in Pidgin ALGOL is given in Fig. 1. The time
complexity of this algorithm is clearly O(n3).

It is easy to see that the entries of the product matrix which lie on
any line parallel to main diagonal as shown in Fig. 2, can all be
computed in parallel in both forward and backward steps, satisfying
the above ordering requirement of in-place computations. Fig. 2
shows the parallel steps with step i) in the forward multiplication
process for n = 4.

Let us define two integers / and u as follows.

/= 1, for i<=n
“li—-n+1, otherwise
i, for i<n
U= {n, otherwise. M

1001

forward : begin
for s=1 until n do
begin
for =1 until » do
begin
DPs—ds;
for k=1 until » do
Ps=min (py, dy+ di);
dy—pg;
end
end
) end;
backward : begin
for s=n step —1 until 1 do

begin
for t=n step —1 until 1 do
begin
DPody;
for k=1 until n do
De=min (py, dy+ di,);
ds =Py
end
end
end.
Fig. 1. Hu’s algorithm.

=4

Fig. 2.

=67 i:7

=5
Parallel steps in forward process.

! and u signify the lower and upper bounds of column numbers,
respectively, that should be processed at the ith parallel step. Thus at
the jth parallel step, the entries p;_j41,;, | < j < u can all be
computed in parallel. Referring to Fig. 1, we see that the most
recently computed d;’s need to be broadcast [1] to different parallel
steps in computing the entries p;_;,;; for which i — j + 1 = s.
Similarly, entries dy, are to be broadcast to compute p;_,, ; , for all /.
Elimination of this broadcasting of variables is desirable, whenever
possible, to minimize data communication time in between two
parallel steps and can be done through proper pipelining of variables.
We develop below our algorithm to compute shortest distances
between all pairs of vertices exploiting the above inherent parallelism

-in Hu’s method. The algorithm, written in Pidgin ALGOL, has been

described as Algorithm A, shown in Fig. 3. Here we have used three
variables —p;_; 1, r}k, c;(j, for pipelining of data, i, j, and k being
the three loop indexes. p;_; . ,; stands for the value of the (i — j + 1,
J)th entry of the product matrix before the kth iteration of the
innermost loops (innerloop 2 and innerloop 6), r",-k and cy; stand for
the respective row and column elements to compute pit j+1,; in the
kth ‘iteration of the innermost loops for given values of i and j,
respectively. The loop ‘‘forward’’ performs the forward multiplica-
tion and the loop “bac}cward” does the backward multiplication. At
the end of execution, c;; contains the shortest distance from vertex vy
toy;forall k,/,1 < k,j < n.
Theorem I: Algorithm A computes shortest distances between
every pair of vertices correctly.
Proof: We shall prove here only the correctness of the
‘‘forward’’ loop. The correctness of the ‘‘backward’’ loop can be
established likewise.

1002

Algorithm A :
1) begin
for j=1 until » do
for kl=l until » do
Cridy;
2) forward : for i=1 until 2n—1) do
begin
3) if /<n then
for k=1 until n do
ridi;
4) compute / and u;
5) innerloop 1 : for j=1 until « do
begin
6) P;Aj+1,j‘_°°§
7) innerloop 2 : for k—ll until » do
p: /HJ'_mm [p: itlp (rjk+c/lj)]7
8) r_[j pt 1+1p Cl —-Jj+1l,j P,+;+1p
end;

for j=1 until » do
for k=1 until n do
begin .
"}: I(mod m),k

9) innerloop 3 :

i i+ i
Tjks Ckj “Chkjs

end 4
end;
10) backward : for i=(2n—1) step — 1 until 1 do
begin

for j=1 until #» do
for k=1 until » do

11) innerloop 4 :

begm .
T r/+l(modn)ky Clq s
end;
12) compute / and u;
13) innerloop 5 : for j=u step — 1 until / do
begin
14) J IR

for k=1 until » do
+
Di- H,;—;nm [pi- it (rk+fk/)]v
P: ,+1p

15) innerloop 6 :
] n+
16) I'” pl J+IJ> cu —-j+1,j
end
end
end.

Fig. 3. Parallel algorithm for all-pairs shortest distances.

Innerloop 2 computes the (i — j + 1, j)th entry of the product
matrix. The sum of the row and column indexes of this entry is (i +
1). Since i varies from 1 to (2n — 1) in steps of unity, it implies that
innerloop 1 computes the entries along lines parallel to the main
diagonal starting from the left. From Statements 1), 3), and innerloop
3, it is easy to show by induction on i and j that in innerloop 2,

rl‘kzc:‘—jn K
Similarly in Statement 8), rh = ci_ _j+1,j» and both these are replaced
here by the newlx computed valueof (— j + 1, j)th entry of the
product matrix p; +,+, . in innerloop 2. Innerloop 2 uses rjk and ck,,
and forall k, Kk < jand k < i — j + 1, r,k and ckj have been
replacedby (i — j + 1, k)th and (k, j)th entries, respectively, of the
product matrix before p, ” 1,; is computed since the entries of the
product matrix are all calculated along diagonals starting from top
left. Hence, the loop ‘‘forward” correctly executes the forward
multiplication of Hu’s method. Q.E.D.

In the next section, we shall find a suitable VLSI architecture on
which Algorithm A can be implemented and then we shall describe
our parallel algorithm using the proposed architecture.

III. VLSI SYSTOLIC IMPLEMENTATION

To map Algorithm A into an appropriate VLSI array, we first
define the notion of data dependence vector.

Consider a program having m loop variables «;, oy, * -+, o, sSuch
that for 1 < p < g < m, the loop corresponding to «;, can never be
embedded by the loop corresponding to «,. We define the loop vector
I as an m-tuple of integers I = (a, a,, * * -, a,,) where g; is the value

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 11, NOVEMBER 1986

assumed by the loop variable ¢; at any stage of execution. Let X(;)
and Y([,) be two variables generated when I = I, and I = I,
respectively. Then (X(J;), Y([5)) is called a generated-used pair of
variables [1] if X(/) is dependent on Y (/) and the data dependence
vector [1] corresponding to (X (1)), Y(I,)) isdefinedasd = I, — L,.

In Algorlthm A, we identify three palrs of generated-used
variables: (p l, j+1js Pi-j+1,1)s (r“ll PR r,k) and (ck, l, ckj) in the
forward process. To discriminate between the generated and used
variables, let us use i, j, and k for the indexes of the used variables
and {’, j’, and k'’ for those of the generated variables. The data
dependence vector d; corresponding to a generated-used pair of
variables then comes outtobe d; = ((— i’,j — j', k — k)7,
obtained by equating the corresponding indexes of the generated and
used variables and then taking their differences. Hence, here we get
three data dependence vectorsd;, = (00 1)7,d, = (11 0)7, and d;
= (1 0 0)7 corresponding to the above three pairs of generated-used
variables. Let

D=ld, d; d;]=

- O
O -t

1
0
0

We now seek a linear transformation 3 = [5] on D to get 3D =
the transformed data dependence vector such that:

i) J is a bijection and consists of integers.

ii) Subfunction 7 can be related to the processing time and S can be
related to the geometrical properties of the algorithm concerning data
communication in the VLSI array.

iii) 7d; > Oforall/, 1 =1 < 3.

iv) Elements of A are smallest possible integers to optimize the
processing time and data communication requirement of the trans-
formed algorithm.

In our case, let

hy e U3
3=ty tn b3
By Ity I3

with

7r=[t11 157 t[3] and S= [tz} 12 t23] .

Ly I 13
Now nd; = t;3 > 0, wd, = t;; + t;; > 0,and ndy = ¢;; > 0. To
get maximum concurrency we shall choose the smallest possible
integers for ¢y, 15, and #;3. Solet #;; = 1, ¢, = 0, ;3 = 1. With this
choice of =, there are many possible choices for S satisfying bijection
property of 3. One of these leads to

1 01
J=10 1 0
0 0 1
which results in
1 11
A=3D=|0 1 0
1 00

with smallest possible mtegral elements. The original i, j, and k are
transformed to £, , and £ given by (7 k)T = 3@ j k)7. Fig. 4 shows
the network geometry for n = 4 which follows from this choice of 3.

It is ev1dent from A that the variables pf 1, travel in the direction
of k, r’ &8 travel in the direction of j. Variables ckj s do not move in
space, they are simply updated in time. Since p ’s move at a
speed n times that of r%, as evident from algorlthm A tfle processing
time is clearly O(2(2n" — 1)n) = O(4n? — 2n) considering both the
forward and backward processes. The end-around connections of the
processor cells are given in conformity with the requirements of
operations in Statements 9) and 11) of Algorithm A.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 11, NOVEMBER 1986

Fig. 5. VLSI array with modified end-around connections.

It is however easy to establish that the end-around connections can
be made similar to Illiac IV architecture and still the algorithm would
work. Moreover, the innerloop 2 and innerloop 6 can be a little bit
modified so that the minimum of (r,'-k + c;(j) for all k can be found out
in O(log n) time instead of O(n) time, resulting into overall
processing time to be O(n log 7}, in the same way as done in [7].
Before describing the hardware algorithm with this modification, let
us first fix the processor architecture as follows.

i) We shall use an n X n mesh connected SIMD processor array
consisting of #?2 identical processors with bidirectional interprocessor
communication link as in Fig. 5, which is similar to Illiac IV
architecture.

ii) Each processor P;; of the array has four internal registers — Ry,
Cij, Ajj» and By;. R;’s of different processors are connected by the
horizontal links and B;;’s are connected by vertical links.

iii) We consider the following instruction set for the processor
cells:

a) MOVE B(k)—Content of B;; is transferred to B; 4 (moa n,j» 1<i<n,
1<j=<n
b) MOVE R (= 1)—Content of R;; is transferred one position to the
right (+1) or left (- 1), 1=<i<n, 1<j<n
€) EXCHANGE—B;;«A;;, 1<i<n, 1<j=<n
d) EXCHANGE(X, y)—B;;<Ajj, for all i such that i=x+ k (mod n),
O<k=<yandforallj, 1<j<n
€) COMPARE-EXCHANGE—A;;<min (4;;, B;), 1<i=<n, 1<j<n
f) TRANSFER R(X)—R,;<A,;, 1<j=<n
8) TRANSFER C(x)—C,;< By, 1<j=<n
h) ADD(x, y)—A,-j<—'R,«j+ C,'j, l<i<n, ijSy
i) LOAD COLUMN(X)—Cjydiy, 1<i%n
J) LOAD ROW(X)—R; <d,;, 1<i<n
k) STORE COLUMN(X)—d; < Ci,, 1<i<n.

The LOAD and STORE instructions above communicate with
memory which stores initially d;’s. We now describe below the
- hardware algorithm using this processor architecture. Here we use a
procedure *‘find minimum and update RC (i)*> which computes the
minimum of the contents of the A registers of the rth column of the
processor array, 1 < r < u, [and u being defined as in (1), and then
updates the appropriate R and C registers of the rth column with this

1003

computed minimum value. This procedure will be described later.

After the execution of this hardware algorithm, the memory contains

the shortest distances between every pair of vertices in place of d;;’s.
Hardware Algorithm B:

begin

for i=1 until n do

begin
LOAD COLUMN(/); LOAD ROW(i); ADD(1, i);
find minimum and update RC(i); MOVE R(1);

end;

for i=2 until n do

begin .
ADD({, n); find minimum and update RC(i);
MOVE R(1);

end;

for i=n until 2 do

begin
MOVE R(—1); ADD(i— 1, n);
find minimum and update RC(i);

end;

STORE COLUMN(n);

for i=n—1 until 1 do

begin
MOVE R(—1); ADD(1, i);
find minimum and update RC(i);
STORE COLUMN(i)

end;

end.

The essence of the above algorithm is that at the ith parallel step,
the (— r + 1, Ntheentry, ! < r < u of the product matrix, is
computed by the rth processor column and it can be verified that both
the registers R, and C;_,,, contain this entry at this step.
Accordingly, the procedure ‘‘find minimum and update RC(i),”
when executed by the processors P,,’s (1 < m < n) of the rth
column (/ = r =< u) of the processor array, update the registers R,,
and C;_,,, with the minimum of the contents of all A4,,’s. The
procedure for all processors P,,’s of the rth column is given as
follows, assuming that 7 is a power of 2. .

Procedure: find minimum and update RC (i)

begin
. n n n

1) loop: for>j—2,4,8, , 1

begin
2) EXCHANGE (r+j (mod n), j); MOVE B(—j);
3) COMPARE-EXCHANGE

end; _
4) TRANSFER R(r); EXCHANGE;
5) if i—2r+1 (mod n)<n/2 then

MOVE B(i—2r+ 1) else MOVE BQ2r—i—1);
6) TRANSFER C(i—2r+1)
end.

The loop in Statement 1) of the above procedure computes the
minimum of the contents of A,,’s (I < m < n) implementing the
following algorithm which finds the minimum of 7 elements e,, e,,
-+, e, and sets e to this minimum value.

begin
jen/2;
while j> 1 do
begin
for i=1 until j do
begin
e;<min (e, €,;); j<j/2;
end,
end
end.

1004

Statement 2) in the procedure is so written that this minimum value
is stored in register A4,, after the execution of the loop. Statement 5)
transfers this minimum value to B;_, ., through the shorter route.

Let ¢, be the execution time of the COMPARE-EXCHANGE/ADD

instructions, #, be that for MOVE B(+ 1)/MOVE R(+ 1) instructions (¢, -

= data communication time between two adjacent processors), and ¢,
be that for the EXCHANGE/TRANSFER R/TRANSFER C instructions. The
execution time for the procedure ‘‘find minimum and update RC (i)’
is then found to be equal to

(log n)te+(n— 1)t,+(log m)t.+2f,+ (g— 1) 1L+t

3
=(log n+3)t,+ <7n_ 1>t,+ (log n)t..

If the memory access time for LOAD/STORE instructions is #, then
the time complexity of the algorithm B is

0(n log n)t.4+0(n?)t,+0(n log n)t.+0(n)ts.

To find out the shortest paths between every pair of vertices, we
can employ one more register in each processor to store the value of £
for which (r}k + c;(,») is minimum. After the shortest distances are
calculated, the shortest paths between every pair of vertices can then
be calculated from these k values [3] in O(n) time.

IV. CONCLUSIONS

This correspondence describes the parallel version of Hu’s
algorithm to compute shortest distances between all pairs of vertices
in a graph. Out of many possibilities a suitable VLSI architecture is
chosen on which the proposed algorithm is mapped with a time
complexity of O(n log n) in ¢, and f,, but O(n?) in ¢, where ¢, is the
time for one compare-exchange or addition operations, Z, is that for
one register transfer operation within a processor and ¢, is that for
data communication time between two adjacent processors. This
algorithm will be particularly suitable for calculating the diameter
and shortest paths in a computer communication network.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for their
constructive criticism and valuable comments.

REFERENCES

[1] D. I. Molodovan, ‘‘On the design of algorithms for VLSI systolic
arrays,”’ Proc. IEEE, vol. 71, pp. 113-120, Jan. 1983.

[2] E. W. Dijkstra, ‘‘A note on two problems in connection with graphs,’
Numer. Math., vol. 1, pp. 269-271, 1959.

[3] T.C. Hu, ‘“‘Revised matrix algorithms for shortest paths,”” SIAM J.
Appl. Math., vol. 15, pp. 207-218, Jan. 1967.

[4] R. W. Floyd, ‘Algorithm 97: Shortest path,”” Commun. Ass.
Comput. Mach., vol. §, p. 345, 1962.

[S] M. L. Fredman, ‘‘New bounds on the complexity of the shortest path
problem,”’” SIAM J. Comput., vol. 5, pp. 83-89, Mar. 1976.

[6] G. H. Barnes, ‘‘The Illiac IV computer,’’ IEEE Trans. Comput., vol.
C-17, pp. 746-757, Aug. 1968.

[7]1 D. Nassimi and S. Sahni, ‘‘Bitonic sort on a mesh-connected parallel
computer,”’ IEEE Trans. Comput., vol. C-27, pp. 2-7, Jan. 1979.

[8] M. Kumar and D. S. Hirschberg, ‘‘An efficient implementation of
Batcher’s odd-even merge algorithm and its application in parallel
sorting schemes,”” IEEE Trans. Comput., vol. C-32, pp. 254-264,
Mar. 1983.

[9] L. J. Guibas, H. T. Kung, and C. D. Thompson, ‘‘Direct VLSI

implementation of combinational algorithms,”” in Proc. Conf. Very

Large Scale Integration: Architect., Des., Fabrication, California

Inst. Technol., Pasadena, Jan. 1979, pp. 509-525.

H. T. Kung, “‘Let’s design algorithms for VLSI systems,’’ in Proc.

Caltech Conf. on VLSI, pp. 65-90, Jan. 1979.

, ““Why systolic architectures?’’ Computer, vol. 15, pp. 37-46,

Jan. 1982.

(10]

(1]

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 11, NOVEMBER 1986
[12] L. Lamport, ““The parallel execution of DO loops,”” Commun. Ass.
Comput. Mach., vol. 17, pp. 83-93, Feb. 1974.

A. Mukhopadhyay, ‘“WEAVESORT—a net sorting algorithm for
VLSI,”’ Univ. Central Florida, Orlando, Tech. Rep., pp- 53-81, 1981.
C. D. Thompson and H. T. Kung, ‘‘Sorting on a mesh-connected
parallel computer,”” Commun. Ass. Comput. Mach., vol. 20, pp.
263-271, Apr. 1977.

S. Todd, **Algorithm and hardware for a merge sort using multiple
processors,”” IBM J. Res. Develop., vol. 22, pp. 509-517, Sept.
1978.

C. D. Thompson, ‘‘“The VLSI complexity of sorting,”” IEEE Trans.
Comput., vol. C-32, pp. 1171-1184, Dec. 1983.

D. J. Kuck, The Structure of Computers and Computations, Vol.
1. New York: Wiley, 1978.

[13]

[14]
[15]

[16]

171

An Algorithm for Determining the Fault Diagnosability of a
System

JAGANNATHAN NARASIMHAN aAND KAZUO NAKAJIMA

Abstract—The fault diagnosability problem is the problem of comput-
ing the maximum number of faulty units which a system can tolerate
without losing its capability of identifying all such faulty units. We study
this problem for the model introduced by Barsi, Grandoni, and Maestrini
[2]. We present a new characterization of the model, and develop an
efficient diagnosability algorithm for a-system in this model.

Index Terms—Connection assignment, diagnosable systems, fault
diagnosis, self-diagnosis, system diagnosability, test links.

I. INTRODUCTION.

With the advent of inexpensive processing elements, it is now
possible to design and build large-scale computing networks. Thus,
fault diagnosis at the system level gains increasing importance. In this
area, Preparata, Metze, and Chien [13] first introduced a formal
graph-theoretic model. In this so-called PMC model, a system S is
decomposed into #n independent subsystems or units, and for the
purpose of fault diagnosis, a connection assignment of test links is
established so that each unit is tested by a subset of the other units.
Let U = {uy, uy, - * +, uy,} be the set of n units. Then, the connection
assignment of S may be represented by a digraph G = (U, T') where
each unit &#; € U is represented by a vertex and each edge (v;, u;) €
T represents a test link by which a test is carried out by unit ; € U
on unit #; € U. The outcome of test (u;, u;) is represented by the
weight w(y;, u;) of the edge, where w(y;, u;) = 0 (1) if u; evaluates
u; to be fault-free (faulty). The set of all test outcomes of S is called
the syndrome of S. In the PMC model, it is assumed that the test

‘outcome w(u;, u;) is reliable if u; is a fault-free unit; while if u; is

faulty, w(u;, u;) may or may not be correct, regardless of the
conditions of the units involved in the test.

Manuscript received September 4, 1986; revised January 15, 1986. This
work was supported in part by the Joint Services Electronics Program at Texas
Tech University under ONR Contract N00014-76-C-1136, and the Office of
Naval Research under Contract N00014-84-C-0104.

J. Narasimhan was with the Department of Electrical Engineering/
Computer Science, Texas Tech University, Lubbock, TX 79409. He is now
with Burroughs Corporation, Mission Viejo, CA 92691. ’

K. Nakajima was with the Department of Electrical Engineering/Computer
Science, Texas Tech University, Lubbock, TX 79409. He is now with the
Department of Electrical Engineering, University of Maryland, College Park,
MD 20742.

IEEE Log Number 8610488.

	1A.pdf
	2.pdf
	3A.pdf

