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Regular Correspondence

A Note on the Quantitative Measure of Image Enhancement
Through Fuzziness

SANKAR K. PAL

Abstract—The ““index of fuzziness” and “entropy” of an image reflect
a kind of quantitative measure of its enhancement quality. Their values
are found to decrease with enhancement of an image when different
sets of S-type membership functions with appropriate crossover points
were considered for extracting the fuzzy property plane from the
spatial domain of the image.

Index Terms—Entropy, fuzzy set, image processing, index of fuzzi-

ness, property plane.

I. INTRODUCTION

The present correspondence illustrates an application of the
theory of fuzzy sets in image processing problems. The prob-
lem is to provide a quantitative measure of enhancement qual-
ity of an image through the evaluation of its amount of fuzzi-
ness. These are explained by the terms ‘““index of fuzziness”
and “entropy” [1], [2] of a fuzzy set. Index of fuzziness
reflects the ambiguity present in an image by measuring the
distance between its fuzzy property plane and nearest ordinary
plane. The term ‘“‘entropy,” on the other hand, uses Shannon’s
function in the property plane but its meaning is quite differ-
ent from the one of classical entropy because no probabilistic
concept is needed to define it. These two terms which give an
idea of ‘“‘indefiniteness” or fuzziness of a set may be regarded
as the measure of an average intrinsic information which is
received when one has to make a decision (as in pattern
analysis) in order to classify the ensembles of patterns de-
scribed by a fuzzy set. These quantities are found to decrease
with enhancement of image.

The fuzzy property plane has been extracted from the spatial
domain using S-type membership function [3], [4] along
with two fuzzifiers. The role of the fuzzifiers is to introduce
different amount of ambiguity in a property plane by changing
the crossover point and slope of the transformation function.
The effectiveness of the algorithm with different values of
these fuzzifiers is demonstrated on a set of enhanced images.

II. Fuzzy SET AND IMAGE DEFINITION

A fuzzy set (4) with its finite number of supports x;, x5,
***,Xp in the universe of discourse U is defined as

A ={(ug (x), x)}

or, in union form

A=Uuwifxi, i=1,2,-,n
i

(1a)

(1b)
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where the membership function p4 (x;) having positive value in
the interval [0, 1] denotes the degree to which an event x;
may be a member of 4. If uy(x;)=0.5, x; is said to be the
crossover point in 4.

Since a gray tone image possesses some ambiguity within the
pixels due to the possible multivalued levels of brightness,
it is justified to apply the concept and logic of fuzzy set rather
than ordinary set theory to an image processing problem.
Keeping this in mind, an image X of M X N dimension and L
levels can be considered as an array of fuzzy singletons, each
with a value of membership function denoting the degree of
having brightness relative to some brightness level /, /=0, 1,

-+, L - 1. In the notion of fuzzy set, we may therefore write

X=UU pmn/xmn m=1,2,--- ,M;n=1,2,--+ N
m n R

(2)

where pyn/Xmn (0 < p;un < 1) represents the grade of pos-
sessing some property p,,, by the (m, n)th pixel x,,,. This
fuzzy property p,,, may be defined in a number of ways
with respect to any brightness level depending on the problems
to hand. This is explained in Section IV.

III. EVALUATION OF FUZZINESS OF AN IMAGE
A. Index of Fuzziness

The index of fuzziness of a set 4 having n supporting points
is defined as [1]

2
7(A)=n—kd(A,A) (3)

where d(4, A) denotes the distance between fuzzy set 4 and
its nearest ordinary set A. The set 4 is such that u (x;)=0
if puyg(x;)<0.5 and 1 for uy (x;) > 0.5. The number 2 and the
positive constant k appear in order to make y(4) lie between
0 and 1. The value of k£ depends on the type of distance
function used. For example, k = 1 for a generalized Hamming
distance whereas k = 0.5 for an Euclidean distance. The cor-
responding indexes of fuzziness are called the “linear index of
fuzziness” v, (A4) and the “quadratic index of fuzziness” v4(4).
Considering “d” to be a generalized Hamming distance we have

A4, 4)=3 |maCxd) - a(x| =2 kanalxs) (4)
i i
and
2
M= =D pandx),  i=1,2,00,n (5)

where A N A _is the intersection between fuzzy set A and its
complement 4. M4 1(x;) denotes the grade of membership
of x; to such a fuzzy set 4 N 4 and is defined as

BanaCep) =min {ug (xp), walxp)}, forall i (6a)
=min {ug (x;), (1 - La(x;))}, forall i. (6b)
From (5) it is seen that
(Y1)min =0 for w;=0orl (7a)
and
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(Y1)max =1 for py=py=---=u, =05 (7b)
Furthermore, it follows that

71(4) = 71(4%) (70)
and

71(4) = 71(4) (7d)

where A* is a ‘“sharpened” version of A4 such that u¥ (x;) =

Ma (x;) for wy (x;) = 0.5 and uf (x;) S g (xy) for py (x;) <O0.5.
Extending (5) in two-dimensional image plane we may write

711(X)= —ZZ Mxn X(Xmn)

m=1,2,-++,M; n=1,2,++,N. (®

Equation (8) defines the amount of fuzziness present in the
property plane of an image X. M corresponds to py,. X N X
is the intersection between fuzzy image planes X = {pymn/Xmn}
and X ={(1 - pyun)/Xmn}, the complement of X. uxn ¥(Xmn)
denotes the degree of membership of (m, n)th pixel x,,, to
such a fuzzy property plane X N X so that

xnX(Xmn) = Pmn O Pmn = min {ppy, (1 - Pmn)},
for all (m, n). (&)
Similarly, for an Euclidean distance we have
0.5
YqX) = \/—— [ZZ MxCemn) — Lx(Xmn)) ]
m=1,2,-"-,M;n=1,2,+- N (10)

where X is the nearest ordinary image plane of fuzzy plane X.

B. Fuzziness through Entropy

The entropy of a fuzzy set 4 having n supporting points is
defined as [1]

H(‘pl:‘Ph"'

»Pn) =~ in ( ) 2 Z‘PA(xz) In(pq(x)) (11)
where
x-
¢A(xi)=“A—(l)y i=1,2,-,n. (12)
D Ha(xy)
i
The entropy is then seen to lie between 0 and 1 in a way
Hmin=0 for ‘Pj=17 j€{1>2’.'.’n}
@; =0, iFj (13a)
Hypax =1 for ¢y =9 ="""=¢,=1/n. (13b)

It is to be mentioned here that this method (unlike the previous
one) does not depend on the absolute values of u but their
relative values. In other words, a fuzzy set with a single non-
zero M-value would have zero entropy and a set having a
constant p-value for all the elements would have H = 1. There-
fore, an image X with u(x,;,)=1 or 0, X,y €X (ie., fully
bright or dark) according to this definition would be possess-
ing maximum entropy, but this is intuitively unappealing.

De Luca and Termini [2] defined entropy of a fuzzy set 4
in analogy with information theoretic entropy, although quite
different conceptually, as

H(A)=—— ZSn(uA (x2)),

i=1,2,"*,n (14)

with the Shannon’s function
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Sn(ug (x7) = -ty () In pyg (x;)
= (1 - g (x))In (1 - pg(x)). (15)

Therefore, like the index of fuzziness, this entropy, (14) is
also dependent on the absolute values of u and satisfies the
properties

Hpin=0 for pg;=0orl (16a)

Hpax =1  for py=pp=---=4,=05 (16b)

H(A) = H(4%*) (16¢)
and

H(A)= H(4). (16d)

In fact, these conditions (7) or (16) may be regarded as the
criteria to be satisfied by a function in order to measure fuzzi-
ness in a set.

With this notion, we define the entropy of an M X N dimen-
sional image plane X as

1

HOX) = 33 22 Snax Gemn)) an

with
Sn(tx(xmn)) = ~Ux(Xmn) In Px (X mn) - (1 - x (xmn))
“In (1 - ux(xmn))

m=1,2,">* M;n=1,2,--+ N. (18)

C. Interpretation of yY(X) and H(X) for Image Enhancement

In the previous section, we have described y(X) and H(X)
for providing a measure of the fuzziness present in two-dimen-
sional image plane X. (X) measures the distance between
fuzzy property plane of X and its nearest ordinary plane.
H(X), on the other hand, is based on the well-known property
of Shannon’s function Sn(u) (15)—monotonically increasing
in the interval [0, 0.5] and monotonically decreasing in [0.5,
1] with a maximum (= In 2) at g = 0.5—in the fuzzy property
plane of X.

For gray tone image processing problem, an image pattern
X looks ambiguous to a people or device which knows only
black and white gray levels. The nature of this ambiguity
(fuzziness) in X therefore arises from the “incertitude” present
when one has to decide whether the (m, n)th pixel intensity
Xmn has to be considéred white or black. We may measure
this incertitude or uncertainty by uxn #(xmn) or Sn(x(xmn))
which is 0 if uy (x,,,) =0 or 1 and is maximum for ux (x,, ) =
0.5; the average (normalized) amount of incertitude is mea-
sured by the terms y(X) or H(X).

Now through processing, if we can remove partially the un-
certainty on the gray levels of X, we say that we have obtamed
an average amount of 1nformat10n given by 8= y(X) - v(X")
or 8H=H(X)- H(X') where X' is the processed (sharpened)
version of X. The criteria Y(X') <y(X) and H(X') <H(X)
in order to have positive 8 and 8§ H-values are followed from
(7c) and (16c¢), respect1ve1y If the uncertainty is completely
removed, then Y(X')=H(X')=0. In other words, Y(X) and
H(X) can be regarded as the measure of average amount of
information (about the gray levels of pixels) which has been
lost for transforming the classical pattern (two tone) into a
fuzzy pattern X.

IV. PROPERTY PLANE AND FUZZIFIERS

The operations described in Section III are restricted in
fuzzy property plane. To enter this domain from the spatial
image plane, we need a membership function which will
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transform each x,,, in the spatial domain to its corresponding
Pmn-value in the property domain. This function may be
either S-type or 7-type or their complements depending on
the problem in hand. The S-function defines the compatibility
function corresponding to fuzzy plane “x,,, is xyax~° Whereas
the m-function corresponds to a plane “x,,, is 1,” 0<I<
Xmax. The corresponding fuzzy p,,,-values denote the degree
of possessing maximum brightness level x,,x and some other
level I by the (m, n)th pixel x,,,.

Now in our problem of measuring fuzziness of an image we
are interested in a monotonic increasing/decreasing function
as represented by S/(1 - §)-function which will result in an
one-to-one mapping of the elements in the x-plane ranging
from 0 to xpax to the p-plane in the interval [0, 1]/[1, O].
To represent such an S-function, we define a simple expression

-F
(*max ~ xmn)] <

Fd (19)

Pmn = Gs(xmn) = [1 +

where F, and Fg are the exponential and denominational
fuzzifiers, respectively. These two positive constants have the
effect of altering the ambiguity (fuzziness) in the fuzzy
property plane by changing the crossover point and slope of
the S-function. Their effect on the iy and H-values has been
studied in the next section. The function Gg is symmetric in
the interval [0, xpax] if it leads to the crossover point at
Xmax/2. Otherwise, it is said to be nonsymmetric.

If for example, we use |(xmax/2) - Xmn | instead of (xmax -
Xmn), (19) would represent a m-function (G,) symmetric over
Xmax/2. Since such a function would result in the same
p-value for any two pixel intensities located symmetrically on
opposite sides of x;,,5/2, the conditions (7a), (7b), and (16a),
(16b) (except for u; =0) would not convey the appropriate
interpretation of fuzziness of an image. For example, an
image X with X, =Xmax/2, Xmn €X would have p,,, =
Ga(xmn)=1 and hence Y(X)=H(X)=0. Similarly, the
image X with x g = Xxmax /4 and X, = 3xmax /4, (k, ) # (m, n),
Xk, Xmn €X would have (for symmetrical G,-function)
Pmn = 0.5 and hence y(X) = H(X)=1. Both of the cases are
not intuitively appealing. Only the case when x,,, =0 or
Xmax for which p,,, =0 and y(X)=H(X)=0, conveys an
appropriate information regarding ambiguity in X.

Again, it is to be mentioned here that the above Gg-function
results in an a-level property plane where « is the value of p,,,
for x,,, =0. Since this violates the condition (7a) or (16a)
for x,,, = 0, the algorithm includes provision for constraining
all the zero x,,,-values to zero p,,,-value. However, the
results without using this constraint are also reported for
comparison.

V. EXAMPLE AND DISCUSSION

Fig. 1 shows a 96 X 99, 32-level image of handwritten script
(“Shu”). Fig. 2(a), (b), and (c) are its different enhanced
versions as obtained by histogram equalization technique,
contrast intensification technique, and contrast intensification
along with smoothing, respectively [5]. Table I illustrates
the values of ;(X), 74(X), and H(X) for different slopes of
the symmetrical Gg-function (crossover point at 15.5). Results
for different nonsymmetrical Gg-functions (for F, =2) are
explained in Table II. Here we have considered the values of
F4 to be 70, 60, 50, 45, 35, 30, 25, and 15 so that the cross-
over point of the nonsymmetrical Gg-function can lie between
the gray levels 2 and 3,6 and 7, 10 and 11, 12 and 13, 14 and
15, 16 and 17, 18 and 19, 20 and 21, and 24 and 25,
respectively.

From Table I it is seen that the quadratic distance when used
in (3) results in higher effective values of y as compared to
those of linear distance. The absolute y-values and H-values
for a fixed corssover point are decreased as the curve tends to
be steeper (with increase in the values of F, and Fy) resulting
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Fig. 1. Original image.

in a decrease in ambiguity in p-plane. These values are mini-
mum for Fig. 2(¢) and maximum for Fig. 1. This relative
order (as in Table I) for different enhanced images is seen to
be maintained as long as the crossover point is restricted in the
left half [0, 15.5] of the gray scale. As we keep the crossover
point moving from 15.5 towards xp,,x =31, the amount of
fuzziness in the equalized image [ Fig. 2(a)] tends to be greater
(after the crossover points 16.5, 16.5, and 18.6 are reached
for v;, 74, and H, respectively) than that of input image
(Fig. 1). It is revealed under investigation that Fig. 2(a),
since it possesses an almost uniform histogram, contains as
compared to Fig. 1, a large number of levels around the cross-
over points (as selected in the right half of gray scale) and it
is these levels which cause an increase in (P, N pmn)-value
of y(X) and Sn(p,,,)-value for H(X).

As mentioned in the previous section, the above results were
obtained using the constraint & =0 in (19). For comparison
of these results, the parameters y and H were also computed
1) without using this constraint and 2) using an ideal S-func-
tion which is defined as [3]

Pmn = 2(xmn/xmax)2 for xmn <P (202)
=1-2((emn - xmax)/xmax)2

for B<X;mn<Xmax (20b)

with  (crossover point) =xp.y /2 and 0<p,, <1. The

results are shown only for 7; (Table I) as a typical case of
illustration. The use of (19) alone (i.e., with a # 0) results in
an increase in the absolute values of fuzziness (especially for
Fig. 2(b) and (c) having a large number of zero gray levels)
but does not change the relative order of fuzziness for these
images, whereas (20) does change. It is also to be noted that
(20) is symmetric across  and there is no control over the
crossover point in order to make it nonsymmetric.

In a part of the experiment, the entropy under Kaufmann’s
definition (11) was also computed for these images. Since
these images are neither fully bright nor fully dark (for which
it leads to an unappealing concept of H = 1), the order of their
H-values is not changed from that obtained with (14) (Table I).
Experiments were also conducted using G,-functions, but the
results as explained in Section IV, did not reflect the appro-
priate measure of enhancement-quality for different values of
the fuzzifiers.
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Fig. 2. Different enhanced images.
TABLE I
“INDEXES OF FuzzINEss” AND “ENTROPY” OF IMAGES FOR DIFFERENT
SYMMETRICAL S-FUNCTIONS (CROSSOVER POINT AT X,,/2 = 15.5)
IMAGE
Y1(X) Yq(X) H(X)
W@ @ 3 I @ ® M@ @

Fig. 1 0.800 0.760 0.760 0.744 0,286 0.804 0.767 0.752 0.966  0.951 0.999  0.944
Fig. 2a 0.711  0.681 0.684 0.670 0.367 0.753 0.727 0.717 0.880 0.863 0.994 0.857
Fig. 2b 0.196 0.789 0.641 0.786 0.103 0.403  0.389  0.384 0.233 0.230 0.842 0.229

Fig. 2c 0.096 0.091 0.578 0.089 0.043 0.261  0.250 0.246 0.134 0.729 0.812 0.128

(1): F,= 1 and Fg= 15.5; (2): F.= 2 and F = 37.42; (3): Fo=3 and F = 59.63

« without the constraint a = 0 in equation (19)
ISF using Ideal S-Punction (equation 20)
*+ using equation (11), Entropy under Kaufmann's definition
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“INDEXES OF FuzzINESS” AND “ENTROPY” OF IMAGES FOR DIFFERENT
NoNsYMMETRICAL S-FUNCTIONS (CORRESPONDING CROSSOVER POINTS,
CP For F, = 2 ARE ALSO MENTIONED)

IMAGE F =70 _Fd=60 Fy =50 Fg=15 Fy = 40 Fy=35 Fy =30 Fy=25 Fy=15
CP = 2,01 CP = 6.15 CP = 10.28 CP = 12,36 CP = 14,43 CP = 16,5 CP = 18.57 CP = 20.64 CP = 24.79

0.869 0.917 0.882 0.845 0.794 0.725 0.643 0. 547 0.319

Fig. 1 0.876 0.921 0.884 0.849 0.799 0.733 0.652 0.557 0.330
0.979 0.989 0.987 0.979 0.963 0.937 0.896 0.836 0.624
0,569 0.619 0.658 0.674 0.678 0.679 0.666 0.637 0.508

Fig. 2a 0.636 0.683 0.715 0.727 0.725 0.723 0.707 0.677 0.558
0.780 0.810 0.838 0.850 0. 860 0. 865 0.864 0.852 0.763
0.166 0.180 0.188 0.191 0.189 0.187 0.179 0.166 0.120

Fig. 2b 0.352 0.380 0.392 0.395 0.391 0.385 0.371 0.346 0. 264
0.215 0.222 0.228 0.230 0.231 0.230 0.227 0.220 0.186
0.068 0.075 0.082 0.086 0.089 0.092 0.095 0.098 0.097

Fig. 2c 0.202 0.219 0.235 0,242 0.247 0.251 0.256 0.258 0.253
0.107 0.113 0.120 0.124 0.127 0.131 0.134 0.137 0.138
Upper Score: Yl(X); Middle Score: Yq(X) and Lower Score: H(X) of equation (14)
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for both rectangular search regions and for arbitrary convex search
regions.

Index Terms—Convex and rectangular search regions, image track-

ing component, iterative growth techniques, search pattern generation,
spiral search pattern.
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