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These methods of reduction however have a disadvantage, namely,
that of stability preservation, i.e., the reduced order model may be
unstable even though the original high-order system is stable. To over-
come this problem a number of alternative techniques have recently
been proposed [1], [S], [6], [8]-[10], [12], [13]. All of these re-
cently proposed methods were very casually extended to reducing the
order of multivariable systems.

Our purpose in this note is to show that even though these methods
do produce stable reduced order models for single-input/single-output
systems, they do not necessarily produce reduced order models when
applied to multivariable systems. This is illustrated by the following
example where the “reduced order” model derived by a number of
these methods have orders that are higher than the original system,

Example
Consider the two-input/two-output system described by the matrix
transfer function

20+ 12s+s2  20+40s+ 11¢2
_ |20+ 12s+52 80+ 1225+ 3352
s3+ 1352 +325+20

The order of a multivariable system is defined as the minimum number
of state variables needed to represent the system in state-vector form.
To determine the order of the system described by G(s), the matrix
transfer function is expanded into a partial fraction expansion, thus

[K1] . [K2] N [K3]
s+1) (+2) (s+10)

1 -1 _fo 2], _fo 10
[Kll-[l _1], [Kzl"[o ], [K3] [O 30]'

The order of the system is given by [7]

n =rank [K;] + rank [K3] + rank {K3]
=1+1+1=3

G(s)

[GE)] =

where

hence the system is of order 3.
Applying the method of [9], [10] to [G(s)], a “reduced” order
model [R(s)] is obtained where

1.5385+0.8047s  6.1538 + 8.6036s
s2 +2.34325 + 1.5385

By expanding this transfer function into a partial fraction expansion,
the order k of the supposed reduced model is easily shown to be 4.
Thus the order of the reduced model is larger than the order of the orig-
inal gystem.

Also if the method of [1], [8], [12] is applied to [G(5)],a “reduced”
order model [R;(s)] is obtained where

1.5385+ 0.8047s  1.5385+ 2.9586s]

[R16)] = [

1.61616 + 0.9697s  1.61616 + 3.2323245
_ |1.61616 +0.9697s  6.46464 + 9.535365

52 +2.585865 + 1.61616
Again the order k of the supposed reduced model is 4, which is larger

than the order of the original system! The same result is obtained if the
method of [5], [6] is used.

Ra(9)

COMMENTS

The above example illustrates clearly that methods that are developed
for reducing single-input/single-output systems do not necessarily pro-
duce the desired results when applied to multivariable systems. In fact,
whenever the residue matrices in the partial fraction expansion of [G (s)]
are not of full rank, then we can expect these methods of reduction to
lead to reduced order models that have orders that are equal or even
greater than the order of the original system.
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An Iterative Algorithm for Testing Two-Asummability
of Boolean Functions

AJIT PAL

Abstract—An iterative algorithm for testing two-asummability of any
given Boolean function is described in this letter. The method is based
on the decomposition of Boolean functions in terms of reduced func-
tions, and it is suitable for machine computation.

I. INTRODUCTION

Two-asummability is a necessary and sufficient condition for linear
separability of Boolean functions up to 8 variables [1]. The testing of
two-asummability is, in general, much less involved than other methods
of testing two-asummability {2]. Moreover, the two-asummability
has many useful applications in the synthesis of threshold logic net-
works [1]. This has motivated a number of workers to develop effi-
cient methods for the testing of two-asummability [2]-[10). This
letter presents an iterative algorithm for testing two-asummability.
The algorithm is based on the decomposition of Boolean functions in
terms of reduced functions, This method can be advantageously used
in the synthesis of logic functions and realization of sequential ma-
chines using threshold gates [9].

II. FORMULATION OF THE PROBLEM

Consider a function F of n variables expressed in terms of reduced
functions: F=I1Jy+IpJy +---+1,,J, - - - (1), where m = 2", k being
the number of variables along which F has been expanded. Any
I;(1 <i<m) is a vector of k¥ variables and J; is a function of the re-
maining variables. J;’s are called reduced functions of F.

The necessary and sufficient conditions of two-asummability of F in
terms of the reduced functions can be expressed in terms of the follow-
ing three theorems. Necessary conditions are expressed in Theorems 1
and 2, and a sufficient condition is expressed in Theorem 3.
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EXPAND [N TERMS OF REDUCED
FUNCTIONS

ALL REDUCED
UNCTIONS PAIRWISE

F IS 2-ASUMMABLE

Fig. 1. Flowchart for testing two-asummability.

Theorem 1: A function is not two-asummable, if there exist two
reduced functions J; and J;, (1 <,/ < m) of F such that they are not
comparable, The proof of this theorem follows from the unateness
property of linearly separable functions [1].

Theorem 2: A function F is not two-asummable if any one of its
reduced functions is not two-asummable.

Since the reduced functions of a threshold function are also threshold
functions, the proof immediately follows.

Theorem 3: Let a function F be expressed in the form of (1). Fis
two-asummable iff, whenever I; 4'—[,- =Iy+Iy, 1< i, j, k, 1< m,there
does_not exist fourvectors ty, tp, tq, and t,, 1, €Jy, tp EJj tg € Ji and
t,€Jy such that 7, + tp =g +t,. Here + stands for vector sum {7].
This theorem is actually a restatement of the definition for two-
asummability in terms of expression (1) and so the proof follows.

Based on the above discussion the two-asummability of a function
can be tested by the following steps.

Step 1: Expansion of the given function in terms of reduced
functions.
Step 2: Checking of comparability of the reduced functions.
Step 3: Testing of two-asummability of the reduced functions.
Step 4: Checking of the sufficient condition of two-asummability
as stated in Theorem 3.
The flow diagram is shown in Fig. 1.

III. ALGORITHMS

Though our method is valid up to 8 variables, a computer program has
been developed to test two-asummability for functions up to 6 vari-
ables. In this section the actual algorithms followed in the program are
discussed. Assuming a function is represented by the decimal values of
its input vectors, any function of n > 4 is decomposed in terms of re-
duced functions of 3 variables.

Algorithm 1: Expansion of a n-variable function, 4 < n < 6, in terms
of reduced functions can be done by the following algorithm.

Step 1: Group the input vectors of F in 273 blocks, the jth
block, 1 <j< 2”73, containing input vectors having decimal values
from8(G-1)to(8i-1). .

Step 2: Subtract 8(j— 1) from each element in the jth block,
1 <j <2773 to get the (Jj)th reduced function.

Example 1: Consider F; =2(0, 1,2, 3,4,5,6,9,10, 13, 14, 15, 16,
20, 21, 22, 23, 28, 29, 30, 31). Following algorithm 1 we get:

Step 1: (0,1,2,3,4,5,6);(9, 10, 13, 14, 15); (16, 20, 21, 22, 23);
(28, 29, 30, 31)

Step2: J;=2(0, 1, 2, 3, 4,5,6), J,=2(1, 2,5,6,7),J3=
=(0,4,5,6,7),and J, =2(4,5,6,7)

Here Fy=IJ) +1,Jy +13J3 +1,J,, where Iy
I 4= 3,

Algorithm 2: Comparability of the reduced functions can be tested
by the following algorithm.

Step 1: For any iandj, 1<i,j<?2"3 and i #; perform step 2.

Step 2: Check whether there exist any elements fz, t; € J; but
ty sé.f If yes, perform step 3, otherwise, they are comparable.

Step 3: Check whether there exist any elements ¢y, ¢; EJ but
ty é] If yes, J; and J are not comparable, otherwise they are
comparable.

Example 2: Consider J; and J, of example 1. By step 2, we find
that 3&J,, but 3¢J, and by step 3 we find that 7€ J, but 7¢J;.
So,J; and J, are not comparable and F; is not two-asummable.

Algorithm 3: To test two-asummability of the reduced functions,
all possible two-asummable pairs are stored in the form of the follow-
ing two arrays and used to check the existence of two-summable pairs.

=0, 12=1, 13=2

0000124 356171777
1121335 2446566
2 ... e 5
3 ... oo 4

The elements of ith row and jth column of 4 and B are represented by

aj and by, respectively Note that, excepting void elements, any
pair (a,k, {7,,,) is two-summable with gk, b)), 1<i, /<4 and
1< Now, two-asummability of any reduced function can be

tested by the following steps.

Step 1: Start with k = 1, perform step 2.

Step 2: Check whether e, €Jyand bygeJ;forany l, 1<1< 4.
If yes, perform step 3, otherwise perform step 4.

Step 3: Check whether g, €J; or by eJ; for all n, I1#n,
1 <n< 4. If yes, perform step 4, otherwise J; is not two-asummable.

Step 4: If k is less than 7, increase ¥ by 1 and perform step 2,
otherwise J; is two-asummable.

Example 3 Consider the reduced function J, of example 1. In step
2 we find a5y €J, and by, €J, and in step 3 we find 2y, ¢J, or
by ¢ J,. SoJ, is not two-asummable.

Algorithm 4: The condition I; +I =TI, +1I, of Theorem 3 gives rise
to the following possibilities: i=j = k— liYi=k,j=1,i+#j and iii)
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i#j+k=+1. The possibility (/) corresponds to the checking of two-
asummability of the individual reduced functions which has been
already tested.

Step1: For alj+ILj=Ii+I,, where i+, 1<i,j<m, 1<k<
m=-1and (k + 1) < 1 <'m perform step 2.

Step 2: Check for the condition ap, €J;, bp, EJj, aq,é.fk and
bgreJy where 1<p,q<4and 1<r<7. If satisfied, F is not two-
asummable, Otherwise perform step 3.

Step 3: Check whether all the values of i, j, k, and ! have been
exhausted. If yes, F is two-asummable, otherwise perform step 1 with
other values of 7,7, k, and /.

Example 4: Consider F; of example 1.

Step 1: Withi=k =2andj=1= 3 perform step 2.

Step 2: We find ayq €J,, byg ©J; and agq ¢J5 and byg J, .
So, Fy is not two-asummable.

Conclusion: The iterative method discussed here is well suited for
machine computation. A computer programme in Fortran IV has
been written and tested up to 6 variables. (The program is available with
the author.) It is extendable up to 8 variables, in which case the two-
summable pairs for 4 variable functions have to be stored. It is difficult
to compare the efficiency of this method with other existing methods,
because none of them are computer oriented. If they are implemented
on digital computer, all possible two-summable pairs have to be stored
in the memory. For a n-variable function, the number of pairs to be so
stored are

@ - 1)2-n 202 L),

The number of pairs increases sharply with the number of variables.
The number of pairs to be stored for n = 6 are 1824. But we need to
store only 16 pairs (for n = 3), for testing two-asummability of 6-
variable functions. Similarly, for n =8, the number of pairs to be
stored are only 88 (for n=4), instead of 31 616. So, very efficient
utilization of memory space is achieved.

Secondly, the time taken to test two-asummability varies from one
function to another. If any given function does not pass through one of
the necessary conditions stated in Theorems 1 and 2, then the testing
time is very small. It has been found that most of the nonthreshold
functions belong to this category. As the number of variables increases,

the ratio of the threshold to nonthreshold functions decreases sharply.

So, the average testing time over a large number of functions is rather
small.
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Adaptive Prediction Applied to Seismic Event Detection
GREGORY A. CLARK AnD PETER W. RODGERS

Abstract-—-Adaptive prediction was applied to the problem of de-
tecting small seismic events in mi ismic background noise. The
Widrow-Hoff LMS adaptive filter [1], [2] used in a prediction con-
figuration is compared with two standard seismic filters as an onset
indicator. Examples demonstrate the technique’s usefulness with both
synthetic and actual seismic data,

I. INTRODUCTION

Small seismic events, such as low magnitude earthquakes and low
yield nuclear explosions are difficult to detect and locate because of
corruption by additive ambient seismic background noise. This letter
is concerned with detecting event onsets and their polarities, which can
be done with varying degrees of success at the expense of distorting the
event waveform [3], [4].

The microseismi¢ noise is nonstationary, has a narrow-band spectrum
centering around g Hz, and is oscillatory in appearance. It is due pri-
marily to small propagating surface and body waves generated by
oceanic waves and atmospheric effects.

Typically, fixed-parameter bandpass filters are used to improve
signal-to-noise ratio (SNR) before applying a detection algorithm [3],
{4]. Because the noise is nonstationary, we used an adaptive predictor,
which automatically chooses the correct passband and tracks the noise
statistics. In the following experiments, we compare the SNR improve-
ment ability of the adaptive predictor with that of computer simula-
tions of two standard seismographic filters. These two filters, the
WWSSN-SP (short period) and WWSSN-LP (long period), model the
passbands of the World-Wide Standardized Seismograph Network {5].

II. THE ADAPTIVE PREDICTION APPROACH

Fig. 1 shows the seismic event detection scheme proposed in this
letter. The low-pass filter removes high-frequency noise. The adaptive
predictor is simply a noise canceller [2] with the reference noise equal
to a delayed version of the input.

When no event is present, the canceller trys to predict the future
value of the noise and force z; toward zero, thus reducing the back-
ground noise entering the event detector.

When an event occurs, it represents data that is not correlated with
the background noise. The canceller does not predict the event, so a
larger output at this point in time indicates that an event has occurred.
From another point of view, the event represents a sharp nonstation-
arity in data statistics, so the error (output of the canceller) becomes
larger very quickly. Of course, the consequence of such processing
is that the signal becomes distorted, but not until the time equal to
the prediction distance (A) after the onset of the event. Because ac-
curate prediction is more important than signal distortion for the
event detection problem, we used a delay of one sample interval in
all experiments. )

Given the predictor size, the key to the success of the adaptive predic-
tion technique is the choice of the convergence constant u. It must be
large enough so the predictor can track microseismic noise nonstation-
arities, but small enough to guarantee good prediction (small misadjust-
ment [1]). Experiments show that both conditions can be met because
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