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Abstract

We use the ordinal solution of open games to define constituents of analytic
and coanalytic sets. Various properties of theses constituents are established
and it is shown that they behave just as regularly as the classical constituents
of Luzin and Sierpinski.

AMS (MOS) subject classification (1970). Primary 02K30, 04A15; Secondary
28A05.
Keywords and phrases. Analytic set, coanalytic set, constituents, prewell-
ordering, open games.

1 Introduction

Exactly ten years ago David Blackwell (1967) had the remarkable in-
sight that the reduction principle for coanalytic (Π1

1) sets could be deduced
from the determinacy of open games. This turned out to be an idea with
far-reaching consequences. For, soon after the publication of Blackwell’s pa-
per, Addison and Moschovakis (1968) observed that the determinacy of open
games could be made to yield a stronger property of coanalytic sets. They
called it the prewellordering property. Furthermore, though it will not con-
cern us here, they proved that the prewellordering property and hence the
reduction principle hold at all Σ1

2k and Π1
2k+1 (k ≥ 1) levels of the projecive

hierarchy under the hypothesis of the determinacy of projective games, thus
settling an outstanding problem of descriptive theory.

Though the prewellordering property was first isolated by Addison and
Moschovakis, the fact that it holds for coanalytic sets is implicit in the
literature of classical descriptive set theory. Indeed it is an easy matter
to check, using known results on constituents of a coanalytic set, that the
constituents define a prewellordering (cf. Kuratowski, 1966, pp. 499-501).
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Now in the approach of Blackwell-Addison-Moschovakis a prewellordering is
defined directly by looking at a certain class of open games. Obviously this
prewellordering determines what may be called constituents of the coanalytic
set.

The main purpose of this article is to study these constituents. The mo-
tivation for this study arose from the question whether the covering theorem
holds for these constituents and the question whether open games can be
used to define constituents of analytic (Σ1

1) sets.

We show that the answer to both questions is yes. We define constituents
of analytic and coanalytic sets directly by using Blackwell’s results on the
ordinal solution of open games (see Blackwell, 1970). The basic idea here is
to associate (Borel measurably) countable ordinals with subsets of the set
of finite sequences of positive integers and Blackwell’s analysis suggests how
this should be done. Section 2 of this aticle is devoted to an exposition of
Blackwell’s results on open games. In Section 3 we present an example of
an analytic non-Borel set due to Blackwell and also develop some machin-
ery that is used in the sequel. We define constituents and show that they
possess the same desirable measure and category theoretic properties as the
‘classical’ constituents in Section 4. The covering theorem is established for
our constituents in Section 5. And finally we show in Section 6 that the
constituents of a coanalytic set obtained through open games induce just
the prewellordering that is obtained by the Blackwell-Addison-Moschovakis
method.

2 Ordinal solution of open games

Let P be the set of finite sequences of positive integers, including the
empty sequence e. Elements of P will be called positions. Let S ⊂ P . With
S associate a two-person game G(S) of complete information as follows.
Two players, I and II, alternately choose positive integers, with I choosing
first. A sequence ω = (n1, n2, · · · ) of such choices is called a play. A play
ω = (n1, n2, · · · ) is a win for I just in case e 6∈ S and 〈n1, n2, · · · , nk〉 6∈ S
for every k ≥ 1; ω is a win for II otherwise. A strategy s for I is a function
on the set of finite sequences of positive integers of even length into the set
of positive integers. A play ω = (n1, n2, · · · ) is said to be consistent with
a strategy s for I if s(e) = n1 and s(〈n1, · · · , n2k〉) = n2k+1 for all k ≥ 1.
A winning strategy for I is a strategy s for I such that all plays consistent
with s are wins for I. One defines these notions analogously for player II.



Ordinal solution of open games and analytic sets 21

Say that the game G(S) is determined if either I has a winning strategy or
II has a winning strategy.

The games G(S) are just the special case of the games introduced by
Gale and Stewart (1953) in which the winning set for player II is open. It
is a well-known result of Gale and Stewart that such games are determined.

We now proceed to describe the ordinal solution of the games G(S) due
to Blackwell (1970).

Let then p ∈ P and B ⊂ P . We say that II can force the next position
after p in B if p is of even length and pm ∈ B for every m ≥ 1, or p is of odd
length and pm ∈ B for some m ≥ 1. [Here pm denotes the concatenation of
the two finite sequences p and 〈m〉.] We abbreviate the expression “II can
force the next position after p in B” by IICFp(B). Analogously we define
I can force the next position after p in B and abbreviate the expression by
ICFp(B). Let us observe that,

¬IICFp(B) =⇒ ICFp(B
c). (2.1)

We now define a map ϕ : 2P → 2P as follows:

ϕ(B) = B ∪ {p ∈ P : IICFp(B)}.

It is easy to see that ϕ is monotone, that is,

B1 ⊂ B2 ⊂ P → ϕ(B1) ⊂ ϕ(B2).

Next we observe that for each S ⊂ P there is a smallest fixed point of ϕ
containing S. To see this, we define Sα by transfinite induction as follows:

S0 = S; Sα = ϕ(∪β<αSβ), 0 < α.

Finally, set WS = ∪α<ω1
Sα, where ω1 is the first uncountable ordinal.

Lemma 2.1. For each S ⊂ P , WS is the smallest fixed point of ϕ con-
taining S.

Proof. Plainly, WS ⊂ ϕ(WS). For the reverse inclusion, let p ∈
ϕ(WS). Then p ∈ WS or IICFp(WS). If p ∈ WS , we are done. So as-
sume IICFp(WS). If p is of odd length, then pm ∈ WS for some m ≥ 1, so
there is α < ω1 such that pm ∈ Sα and hence p ∈ ϕ(∪β<α+1Sβ) = Sα+1,
so p ∈ WS . If p is of even length, then pm ∈ WS for all m ≥ 1. Choose
αm < ω1 such that pm ∈ Sαm

, m ≥ 1. Let α be any ordinal less than ω1
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such that αm ≤ α for all m ≥ 1. Then pm ∈ Sα for all m ≥ 1 and hence
p ∈ ϕ(∪β<α+1Sβ) = Sα+1, so p ∈ WS . This proves that ϕ(WS) ⊂ WS .
Hence ϕ(WS) =WS .

Let B ⊂ P such that S ⊂ B and ϕ(B) = B. It is easy to prove by
induction on α that Sα ⊂ B for all α, which shows that WS ⊂ B. This
completes the proof. 2

The above analysis enables us now to associate with each S ⊂ P a
function αS :WS → ω1 whose value at p ∈WS is the smallest ordinal α such
that p ∈ Sα.

We are now in a position to state Blackwell’s result on the games G(S).

Theorem 2.1. Let S ⊂ P . Then

(a) αS(p) = 0 ⇐⇒ p ∈ S,

(b) p ∈WS and αS(p) > 0 =⇒ IICFp({q ∈WS : αS(q) < αS(p)}).

(c) p 6∈WS =⇒ ICFp(W
c
S).

Proof. (a) is obvious. To check (b), assume that p ∈ WS and αS(p) =
α > 0. Then p ∈ Sα and p 6∈ Sβ for β < α. It now follows from the definition
of Sα that IICFp(∪β<αSβ). But ∪β<αSβ = {q ∈ WS : αS(q) < αS(p)}.
This proves (b).

To prove (c), let p 6∈WS. It now follows from Lemma 2.1 that p 6∈ ϕ(WS).
Hence ¬IICFp(WS), so from (2.1) we have: ICFp(W

c
S). This terminates the

proof. 2

The game theoretic content of Theorem 2.1 is set forth in the following

Corollary 2.1. If p ∈WS, then II has a winning strategy in the game
G(S) starting at p. If p 6∈ WS, then I has a winning strategy in the game
G(S) starting at p.

This is an immediate consequence of Theorem 2.1 and we omit the easy
proof. The result of Gale and Stewart on the determinacy of the game G(S)
falls out of Corollary 2.1. Indeed, if e ∈WS then II has a winning strategy
and if e 6∈WS then I has a winning strategy. So G(S) is determined.
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3 Example of an analytic non-Borel set

Here and in the sequel a subset of a Polish space is said to be analytic if
it is empty or a continuous image of the space Σ, where Σ = NN , N being
the set of positive integers and the topology on Σ is the product of discrete
topologies.

Topologize the set 2P by giving it the product of discrete topologies on
{0, 1}, so it becomes a homeomorph of the Cantor set. We shall use the
same symbol to denote a subset of P as well as its indicator function. Set

E = {S ∈ 2P : I has a winning strategy in G(S)}.

We shall prove in this section that E is an analytic non-Borel set of 2P . This
fact was stated without proof by Blackwell (1970).

To establish the non-Borel nature of E, we need some preliminaries which
will also be useful in the sequel. Let X be a Polish space and let f be
a continuous function on Σ into X. With each x ∈ X associate a game
G′(x) of complete information between players I and II as follows. Players
alternately choose positive integers m1, n1,m2, n2, · · · with I making the
first move. Player II wins just in case x 6∈ cl(f(Σ(m1))), or there is i ≥ 2
such that x ∈ cl(f(Σ(n1, · · · , ni−1))) and x 6∈ cl(f(Σ(m1, · · · ,mi))), where
cl denotes the closure operator on X and for p ∈ P , Σ(p) is the set of all
infnite sequences of positive integers for which p is an initial segment.

The game G′(x) is just one of the games considered in Section 2. To
formalize this, define a map ψ : X → 2P by:

〈n1, n2, · · · nk〉 ∈ ψ(x) ⇐⇒ (x 6∈ cl(f(Σ(n1)))) or

(∃i ≥ 1)(2i + 1 ≤ k) and x ∈ cl(f(Σ(n2, n4, · · · , n2i)))−

cl(f(Σ(n1, n3, · · · , n2i+1))).

It is easy to see that the game G′(x) is precisely the game G(ψ(x)). The
next lemma summarizes the main facts about the function ψ and the games
G(ψ(x)).

Lemma 3.1. (a) The function ψ : X → 2P is Borel measurable.

(b) x ∈ f(Σ) =⇒ I has a winning strategy in G(ψ(x)).

(c) x 6∈ f(Σ) =⇒ II has a winning strategy in G(ψ(x)).
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Proof. We omit the easy proof of (a). To prove (b) let x ∈ f(Σ). So
there is m1,m2, · · · such that x = f({mk}). To win G(ψ(x)), I has only to
play m1,m2, · · · . Suppose next that x 6∈ f(Σ). It is easy to see that II can
win G(ψ(x)) by imitating I’s move. This completes the proof. 2

The function ψ defined above will be called the canonical map on X
to 2P induced by the function f . The other fact we need is that the map
ϕ : 2P → 2P introduced in Section 2 is Borel measurable.

Lemma 3.2. The map ϕ is Borel measurable.

Proof. It suffices to prove that for fixed p ∈ P , the map S 7→ ϕ(S)(p)
is Borel measurable. We distinguish two cases.

Case 1. The length of p is odd. Then

{B : ϕ(B)(p) = 1} = {B ∈ 2P : B(p) = 1}
⋃

∞
⋃

m=1

{B ∈ 2P : B(pm) = 1}.

Case 2. The length of p is even. Then

{B : ϕ(B)(p) = 1} = {B ∈ 2P : B(p) = 1}
⋃

∞
⋂

m=1

{B ∈ 2P : B(pm) = 1}.

In either case, the set {B ∈ 2P : ϕ(B)(p) = 1} is seen to be Borel, which
completes the proof. 2

Theorem 3.1. The set E is an analytic non-Borel subset of 2P .

Proof. First we prove that E is analytic. For this observe that for
S ∈ 2P

S ∈ E ⇐⇒ (∃B ∈ 2P )(S ⊂ B,ϕ(B) = B and e 6∈ B).

The above equivalence follows from Lemma 2.1 and the fact noted in Section
2 that I has a winning strategy in G(S) just in case e 6∈ WS . Consequently
E is the projection to the first coordinate of the set

{(S,B) ∈ 2P × 2P : S ⊂ B,ϕ(B) = B and e 6∈ B}.

But as is easily seen by using Lemma 3.2 the above set is Borel in 2P × 2P .
Hence E is analytic.

To show that E is not Borel in 2P , let X be an uncountable Polish
space. As is well-known X contains an analytic non-Borel set A. Let f be



Ordinal solution of open games and analytic sets 25

a continuous function on Σ onto A and let ψ be the canonical map on X to
2P induced by f . It is immediate from Lemma 3.1 that ψ−1(E) = A. As ψ
is Borel measurable and A is not Borel it follows that E is not Borel, which
terminates the proof. 2

4 Constituents of analytic and coanalytic sets

The ordinal analysis in Section 2 of the games G(S) provides us with a
method of associating (Borel measurably) ordinals with subsets of P . This
in turn enables us to define constituents of an analytic set as well as con-
stituents of its complement. The constituents defined here have points of
similarity with but are different from the “classical” constituents of Luzin
and Sierpinski (1923), Sierpinski (1926, 1933) and Selivanowski (1933). How-
ever, as will be shown, our constituents have the same desirable properties
as the “classical” ones and are in fact somewhat simpler.

To begin with define maps ϕα : 2P → 2P for each ordinal α < ω1 as
follows:

ϕα(S) = Sα.

Lemma 4.1. For each α < ω1, the maps ϕα are Borel measurable.

Proof. The proof is by induction on α. For α = 0, the map ϕα is the
identity function and so Borel measurable. Suppose that 0 < α < ω1 and
ϕβ is Borel measurable for β < α. Define ψα by :

ψα(S) = ∪β<αSβ = ∪β<αϕβ(S), S ∈ 2P .

Plainly ψα is Borel measurable and ϕα = ϕ◦ψα. It now follows from Lemma
3.2 that ϕα is Borel measurable. This completes the proof. 2

Next we define two ordinal valued functions σ and τ . To define σ let
S ⊂ P . Since WS is countable and the values of αS are countable ordinals,
there is α < ω1 such that αS(p) ≤ α for all p ∈ WS . It follows from the
definition of αS thatWS ⊂ Sα and henceWS = Sα. We define σ(S) to be the
smallest ordinal β such that WS = Sβ. Thus σ is a function on 2P into ω1.
The function τ has for domain the set 2P −E and its value at S ∈ 2P −E is
defined to be αS(e) (note that αS(e) is defined because e ∈WS). The values
of τ are again countable ordinals.

Lemma 4.2. For each α < ω1, the sets {S ∈ 2P : σ(S) ≤ α} and
{S ∈ 2P − E : τ(S) ≤ α} are Borel in 2P .
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Proof. Use Lemma 2.1 to see that for any S ∈ 2P

σ(S) ≤ α⇐⇒ ϕ ◦ ϕα(S) = ϕα(S).

Hence
{S ∈ 2P : σ(S) ≤ α} = {S ∈ 2P : ϕ ◦ ϕα(S) = ϕα(S)}.

Since ϕ and ϕα are Borel measurable it follows that {S ∈ 2P : σ(S) ≤ α} is
a Borel subset of 2P .

Next note that for any S ∈ 2P

e ∈ Sα ⇐⇒ e ∈WS and τ(S) ≤ α

⇐⇒ S ∈ (2P − E) and τ(S) ≤ α.

Consequently,

{S ∈ 2P − E : τ(S) ≤ α} = {S ∈ 2P : ϕα(S)(e) = 1}

so that {S ∈ 2P − E : τ(S) ≤ α} is a Borel set in 2P , which completes the
proof. 2

We are now ready to define constituents. Let then A be a non-empty
analytic subset of a Polish space. Let f be a continuous function on Σ onto
A and let ψ be the canonical map on X to 2P induced by f . For α < ω1 set

Aα = {x ∈ X : e 6∈ ϕα ◦ ψ(x)},

Bα = {x ∈ X : σ(ψ(x)) > α}.

Theorem 4.1. (a) The sets Aα, Bα, α < ω1, are Borel in X.

(b) α < β < ω1 =⇒ Aα ⊃ Aβ.

(c) α < β < ω1 =⇒ Aα −Bα ⊂ Aβ −Bβ.

(d) A =
⋂

α<ω1
Aα =

⋃

α<ω1
(Aα −Bα).

Proof. The Borel measurability of ϕα and ψ imply that Aα is Borel
in X, while Lemma 4.2 implies that Bα is Borel in X. To prove (b) note
that if α < β < ω1 then ϕα ◦ ψ(x) ⊂ ϕβ ◦ ψ(x) for each x ∈ X, so that
Aα ⊃ Aβ. For (c) let x ∈ Aα − Bα, so e 6∈ ϕα ◦ ψ(x) and σ(ψ(x)) ≤ α.
If α < β then σ(ψ(x)) ≤ β so x 6∈ Bβ. Since σ(ψ(x)) ≤ α it follows that
ϕα ◦ ψ(x) = ϕβ ◦ ψ(x) and so e 6∈ ϕβ ◦ ψ(x) and hence x ∈ Aβ . Thus
x ∈ Aβ −Bβ, which proves (c).
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Next observe that for any x ∈ X,

x ∈ A

⇐⇒ψ(x) ∈ E

⇐⇒I has a winning strategy in G(ψ(x))

⇐⇒e 6∈Wψ(x)

⇐⇒(∀α < ω1) (e 6∈ ϕα ◦ ψ(x))

⇐⇒(∀α < ω1) (x ∈ Aα).

Hence A =
⋂

α<ω1
Aα. Finally note that for any x ∈ X,

x ∈ A⇐⇒ e 6∈Wψ(x)

⇐⇒ (∃α < ω1) (Wψ(x) = ϕα ◦ ψ(x) and e 6∈ ϕα ◦ ψ(x))

⇐⇒ (∃α < ω1) (σ(ψ(x)) ≤ α and e 6∈ ϕα ◦ ψ(x))

⇐⇒ (∃α < ω1) (x ∈ Aα −Bα),

so that A =
⋃

α<ω1
(Aα −Bα). This proves (d). 2

We shall call the sets Aα−Bα, α < ω1, the constituents of the analytic set
A determined by the function f , while the sets Acα = {x ∈ X : τ(ψ(x)) ≤ α,
α < ω1} will be called the constituents of the coanalytic set X−A determined
by f . We have given above incidentally a new proof of the fact that an
analytic set can be expressed as the intersection as well as union of ℵ1 Borel
sets.

Next we prove that our constituents have all the desirable properties of
the “classical” constituents.

Theorem 4.2. Let µ be a finite measure on the Borel subsets of X. Then
A is µ-measurable and there is an α0 < ω1 such that µ(A) = µ(Aα0

−Bα0
)

and µ(X −A) = µ(Acα0
), where µ is the completion of µ.

Proof. For each p ∈ P and α < ω1, define

Lα(p) = {x ∈ X : p 6∈ ϕα ◦ ψ(x) and σ(ψ(x)) > α}.

Then Lα(p) is Borel in X and β < α < ω1 implies Lβ(p) ⊃ Lα(p). Fix p ∈ P .
The sets Lα(p), α < ω1, form a transfinite sequence of non-increasing Borel
sets. Since the measure algebra B(µ) (B = Borel σ-field on X) satisfies the
countable chain condition, it follows that there exists β(p) < ω1 such that
µ(Lα(p)) = µ(Lα+1(p)) for all α ≥ β(p). Now let α0 be a countable ordinal
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such that β(p) ≤ α0 for all p ∈ P . Then we have: µ(Lα(p)) = µ(Lα+1(p))
for all α ≥ α0 and for p ∈ P . In particular µ(Lα0

(p)− Lα0+1(p)) = 0 for all
p ∈ P . Put L =

⋃

p∈P (Lα0
(p)− Lα0+1(p)), so L is Borel and µ(L) = 0. We

now claim that
Aα0

−Bα0
⊂ A ⊂ (Aα0

−Bα0
) ∪ L (4.1)

The inclusion on the left follows from Theorem 4.1. To prove the inclusion
on the right, let x ∈ A and x 6∈ Aα0

−Bα0
. Since A ⊂ Aα0

, we have: x ∈ Aα0
.

Consequently, as x 6∈ Aα0
− Bα0

, x must be in Bα0
, so that σ(ψ(x)) > α0.

This implies that ϕα0
◦ ψ(x) 6= ϕα0+1 ◦ ψ(x).

Choose p ∈ ϕα0+1 ◦ ψ(x) − ϕα0
◦ ψ(x), so that x ∈ Lα0

(p). But as
p ∈ ϕα0+1 ◦ψ(x) it follows that x 6∈ Lα0+1(p). Hence x ∈ Lα0

(p)−Lα0+1(p),
so x ∈ L. This proves the claim. Since Aα0

−Bα0
is a Borel set and µ(L) = 0,

it follows from (4.1) that A is µ-measurable and that µ(A) = µ(Aα0
−Bα0

).

Next note that the argument used to establish the inclusion on the right
of (4.1) actually proves that Bα0

⊂ L. Hence µ(Aα0
∩ Bα0

) = 0 and so
µ(A) = µ(Aα0

), from which we conclude that µ(X − A) = µ(Acα0
). This

completes the proof of Theorem 4.2. 2

We have thus reproved Luzin’s theorem that an analytic set is universally
measurable. The next result gives the category analogue of Theorem 4.2.

Theorem 4.3. The set A possesses the Baire property and there exists
α0 < ω1 such that A− (Aα0

−Bα0
) and (X −A)−Acα0

are meagre.

Proof. Use the fact that the quotient algebra B/N (N = the σ-ideal
of meagre Borel sets) satisfies the countable chain condition to prove that
there is α0 < ω1 such that Lα0

(p) − Lα0+1(p) is meagre for every p ∈ P .
Define L as in the proof of Theorem 4.2. Then L is meagre. Since Aα0

−Bα0

is Borel in X and hence possesses the Baire property it follows from (4.1)
that A − (Aα0

− Bα0
) is meagre and that A possesses the Baire property.

Furthermore (X − A) − Acα0
⊂ Aα0

∩ Bα0
⊂ L, so that (X − A) − Acα0

is
meagre. This completes the proof. 2

5 Covering theorem and the first principle of seperation for

analytic sets

An extremely important property of the “classical” constituents is the
Covering Theorem of Luzin. We prove below the Covering Theorem for our
constituents.
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Let A be a non-empty analytic subset of a Polish space X and let f be
a continuous function on Σ onto A. Denote by ψ the canonical map on X
to 2P induced by f . Finally let Aα, Bα be as in the previous section.

Theorem 5.1. If A′ is an analytic subset of X such that A′ ∩ Aα 6= ∅
for every α < ω1, then A ∩A′ 6= ∅.

Proof. We shall define two sequences m0
1,m

0
2, · · · and n01, n

0
2, · · · of

positive integers inductively such that

cl
(

f
(

Σ(m0
1,m

0
2, · · · ,m

0
k)
))

∩ cl
(

g
(

Σ(n01, n
0
2, · · · , n

0
k)
))

6= ∅, (5.1)

for every k ≥ 1, where g is a continuous function on Σ onto A′. Since f and
g are continuous, the diameters of sets in (5.1) tend to 0 as k → ∞. The
completeness of X now implies that the intersection over all k of the sets in
(5.1) reduces to a singleton, say, {x0}. Plainly x0 ∈ A ∩A′.

We first define m0
1. Fix α < ω1. We then have:

A′ ∩Aα = A′ ∩ {x ∈ X : e 6∈ ϕα ◦ ψ(x)}

⊂ A′
⋂





∞
⋃

m1=1

{x : 〈m1〉 6∈
⋃

β<α

ϕβ ◦ ψ(x)}



 .

Since A′ ∩Aα 6= ∅, it follows that there is m1(α) such that

A′
⋂

{x : 〈m1(α)〉 6∈
⋃

β<α

ϕβ ◦ ψ(x)} 6= ∅.

This sets up a map α 7→ m1(α) from ω1 to N , so there exists m0
1 such that

m1(α) = m0
1 for uncountably many α. Hence

A′ ∩ {x : 〈m0
1〉 6∈

⋃

β<α

ϕβ ◦ ψ(x)} 6= ∅

for uncountably many α. Now for fixed x the sets
⋃

β<α ϕβ ◦ ψ(x) are obvi-
ously non-decreasing in α and so

A′ ∩ {x : 〈m0
1〉 6∈

⋃

β<α

ϕβ ◦ ψ(x)} 6= ∅ (5.2)

for all α < ω1. Replacing α by α+ 1 in (5.2) we get

A′ ∩ {x : 〈m0
1〉 6∈ ϕα ◦ ψ(x)} 6= ∅ (5.3)
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for all α < ω1. Now

{x : 〈m0
1〉 6∈ ϕα ◦ ψ(x)} ⊂ {x : 〈m0

1,m
0
1〉 6∈

⋃

β<α

ϕβ ◦ ψ(x)}.

So (5.3) yields

A′ ∩ {x : 〈m0
1,m

0
1〉 6∈

⋃

β<α

ϕβ ◦ ψ(x)} 6= ∅ (5.4)

for all α < ω1. Replacing α by α+ 1 in (5.4) yields

A′ ∩ {x : 〈m0
1,m

0
1〉 6∈ ϕα ◦ ψ(x)} 6= ∅

for all α < ω1. Now A′ =
⋃∞
n1=1 g(Σ(n1)), so for every α < ω1 there is n1(α)

such that
g(Σ(n1(α))) ∩ {x : 〈m0

1,m
0
1〉 6∈ ϕα ◦ ψ(x)} 6= ∅.

Hence there is n01 such that

g(Σ(n01)) ∩ {x : 〈m0
1,m

0
1〉 6∈ ϕα ◦ ψ(x)} 6= ∅

for uncountably many α and hence for all α < ω1.

For the inductive step assume that m0
1,m

0
2, · · · ,m

0
k, n

0
1, n

0
2 · · · , n

0
k have

been chosen so that

g(Σ(n01, n
0
2, · · · , n

0
k)) ∩ {x : 〈m0

1,m
0
1,m

0
2,m

0
2, · · · ,m

0
k,m

0
k〉 6∈ ϕα ◦ ψ(x)} 6= ∅

(5.5)
for all α < ω1. Now

{x : 〈m0
1,m

0
1, · · · ,m

0
k,m

0
k〉 6∈ ϕα ◦ ψ(x)} ⊂

∞
⋃

mk+1=1

{x : 〈m0
1,m

0
1, · · · ,m

0
k,m

0
k,mk+1〉 6∈ ∪β<αϕβ ◦ ψ(x)}. (5.6)

Consequently by arguing as above and using (5.5) and (5.6) one deduces
that there is m0

k+1 such that

g(Σ(n01, · · · , n
0
k))∩{x : 〈m0

1,m
0
1, · · · ,m

0
k,m

0
k,m

0
k+1〉 6∈ ϕα ◦ψ(x)} 6= ∅ (5.7)

for all α < ω1. Since

{x : 〈m0
1,m

0
1, · · ·m

0
k,m

0
k,m

0
k+1〉 6∈ ϕα ◦ ψ(x)} ⊂
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{x : 〈m0
1,m

0
1, · · ·m

0
k,m

0
k,m

0
k+1,m

0
k+1〉 6∈

⋃

β<α

ϕβ ◦ ψ(x)}

it follows from (5.7) that

g(Σ(n01, · · · , n
0
k)) ∩ {x : 〈m0

1,m
0
1, · · · ,m

0
k+1,m

0
k+1〉 6∈ ϕα ◦ ψ(x)} 6= ∅ (5.8)

for all α < ω1. Since

g(Σ(n01, · · · , n
0
k)) =

∞
⋃

nk+1=1

g(Σ(n01, · · · , n
0
k, nk+1))

it follows from (5.8) that there is n0k+1 such that

g(Σ(n01, · · · , n
0
k, n

0
k+1)) ∩ {x : 〈m0

1,m
0
1, · · · ,m

0
k,m

0
k,m

0
k+1,m

0
k+1〉

6∈ ϕα ◦ ψ(x)} 6= ∅

for all α < ω1, which implies the proof of the inductive step.

Putting α = 0 in (5.5) we get:

g(Σ(n01, · · · , n
0
k)) ∩ {x : 〈m0

1,m
0
1, · · · ,m

0
k,m

0
k〉 6∈ ψ(x)} 6= ∅

for each k ≥ 1. Thus

cl (g(Σ(n01, · · · , n
0
k))) ∩ cl (f(Σ(m

0
1, · · · ,m

0
k))) 6= ∅

for all k ≥ 1 and the proof is complete. 2

The Covering Theorem can now be stated as

Theorem 5.1′. If A′ is an analytic subset of X such that A′ ⊂ X − A,
then there is α < ω1 such that A′ ⊂ Acα.

An immediate consequence of Theorem 5.1′ and the fact that a Borel
subset of X is analytic is:

Corollary 5.1. The following conditions on the coanalytic set X − A
are equivalent.

(a) X −A is analytic.

(b)X −A = Acα for some α < ω1

(c) The function τoψ is bounded on X −A.

The first principle of Seperation for analytic sets, viz., any pair of disjoint
analytic sets can be seperated by a Borel set, follows from Theorem 5.1′,
while Souslin’s theorem that a set which is both analytic and coanalytic is
Borel falls out of Corollary 5.1.
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6 The prewellordering property of coanalytic sets

The purpose of this section is to show that our constituents, just like
the “classical” ones, can be used to establish the prewellordering property
of coanalytic sets.

Let C be a coanalytic subset of a Polish space X. Following Kechris and
Moschovakis (1971) we say that C possesses the prewellordering property if
there exist a function ρ on C into an ordinal and relations R, R′ on X such
that R is a coanalytic subset of X×X and R′ is an analytic subset of X×X
and for every y ∈ C the following condition holds.

(∀ x ∈ X) (x ∈ C and ρ(x) ≤ ρ(y) ⇐⇒ xRy ⇐⇒ xR′y) (6.1)

Suppose that C is a coanalytic subset of a Polish space X. Assume without
loss of generality that C 6= X. We shall show that the coanalytic set C
possesses the prewellordering property. Put A = X−C. Hence A is analytic.
Let f be a continuous function on Σ onto A and let ψ be the canonical map
on X to 2P induced by f . For ρ take the function τ ◦ ψ whose domain is C
(recall that the domain of τ is 2P − E).

In order to define the relations R and R′, we associate with x, y ∈
X a two person game G(x, y) of complete information between players I
and II as follows. Players I and II alternately choose positive integers
m1, n1,m2, n2, · · · with I making the first move. Player II wins just in case
x 6∈ cl (f(Σ(m1))) or there is i ≥ 2 such that y ∈ cl (f(Σ(n1, · · · , ni−1)))
and x 6∈ cl (f(Σ(m1, · · · ,mi))). Now define

R = {(x, y) ∈ X ×X : II has a winning strategy in G(x, y)}

Lemma 6.1. R is coanalytic in X ×X.

Proof. Define F : X ×X → 2P as follows.

〈n1, n2, · · · , nk〉 ∈ F (x, y) ⇐⇒ (x 6∈ cl(f(Σ(n1)))) or

(∃i ≥ 1)(2i + 1 ≤ k and y ∈ cl(f(Σ(n2, n4, · · · , n2i)))

and x 6∈ cl(f(Σ(n1, n3, · · · , n2i+1)))).

It is easy to check that F is Borel measurable. Moreover it is fairly obvious
that the game G(x, y) is identical with the game G(F (x, y)). Consequently,
R = F−1(2P − E). The Borel measurability of F and the fact that 2P − E
is coanalytic now imply that R is coanalytic. This completes the proof. 2
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To define the relation R′ observe that if y ∈ C player II can win G(x, y)
with a strategy t that ensures every k ≥ 1 that y ∈ cl(f(Σ(n1, n2, · · · , nk)))
whenever x ∈ cl(f(Σ(m1,m2, · · · ,mk))), where (m1, n1,m2, n2, · · · ) is a play
consistent with t. More formally we proceed as follows.

Denote by Po the set of finite sequences of odd length and by Pe the set of
finite sequences of positive even length. If p = 〈n1, n2, · · · , n2k〉 ∈ Pe, denote
the sequence 〈n1, n3, · · · , n2k−1〉 by po and the sequence 〈n2, n4, · · · , n2k〉 by
pe. The set of strategies of player II is NPo which is topologized by giving
it the product of discrete topologies on N . If p = 〈n1, n2, · · · , nk〉 ∈ P and
t ∈ NPo, we say that p is consistent with t if t(〈n1〉) = n2, t(〈n1, n2, n3〉) =
n4, · · · . Denote by Cp the set of t ∈ NPo such that p is consistent with t.
Plainly Cp is clopen in NPo . Define R′ by

xR′y ⇐⇒ (∃t ∈ NPo)(∀p ∈ Pe)

{t ∈ Cp and x ∈ cl(f(Σ(po))) =⇒ y ∈ cl(f(Σ(pe)))}

so that

R′ = Π

(

⋂

p∈Pe

[

(

X×X×
(

NP0 −Cp
)

)

⋃

(

(

X−cl
(

f(Σ(po))
))

×X×NPo

)

⋃

(

Cp × cl
(

f(Σ(po))
)

× cl
(

f(Σ(pe))
)

)

]

)

,

where Π is projection to X × X. As the set within the square brackets is
Borel in X ×X ×NPo and the intersection preceeding it is countable, R′ is
analytic. Thus we have

Lemma 6.2. R′ is analytic.

The next two lemmmas are obvious.

Lemma 6.3. If y ∈ C, then xRy ⇐⇒ xR′y.

Lemma 6.4. If y ∈ C, then xRy =⇒ x ∈ C.

Lemma 6.5. Let x, y ∈ C. Then τ ◦ ψ(x) ≤ τ ◦ ψ(y) ⇐⇒ xRy.

Proof. We sketch the proof. Let x, y ∈ C and assume that τ ◦ ψ(x) ≤
τ ◦ ψ(y). Put S = ψ(x) and T = ψ(y) and α = τ(S). We shall describe
a winning strategy for player II in the game G(x, y). Suppose that I plays
n1, n2, · · · in G(x, y). Let k be the smallest positive integer such that x 6∈
cl(f(Σ(n1, n2, · · · , nk))). If k = 1 then any sequence of moves will win
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G(x, y) for II. Assume k > 1. By Theorem 2.1 αS(〈n1〉) = α1 < α. Since
αT (e) ≥ αS(e) > α1 there is m1 such that αT (〈m1〉) ≥ α1. Then this m1

is II’s reply to I’s first move in G(x, y). To determine II’s response to I’s
second move n2 proceed as follows. Use Theorem 2.1 to obtain l1 such that
αS(〈n1, l1〉) = α2 < α1 so that by Theorem 2.1 again αS(n1, l1, n2〉) = α3 <
α2. Now αT (〈m1〉) > α2, so αT (〈m1,m1〉) ≥ α2 and hence there is m2

such that αT (〈m1,m1,m2〉) ≥ α3. II now plays m2 in G(x, y). Continuing
in this manner, II’s moves m1,m2, · · · ,mk−1 can be determined so that
y ∈ cl(f(Σ(m1,m2, · · · ,mk−1))). We have thus described a winning strategy
for II in G(x, y). Hence xRy.

For the converse assume that x, y ∈ C and τ ◦ ψ(y) < τ ◦ ψ(x). Let S
and T be as above and β = τ(T ). We shall describe a winning strategy for
player I in G(x, y). Since αS(e) > β there is n1 such that αS(〈n1〉) ≥ β.
I’s first move in G(x, y) is n1. Suppose that m1 is II’s response to n1 in
G(x, y). By Theorem 2.1 αT (〈m1〉) = β1 < β. If β1 = 0 then player I wins
G(x, y). Assume that β1 > 0. Then by Theorem 2.1 there is l1 such that
αT (〈m1, l1〉) = β2 < β1. Now αS(〈n1〉) > β1 so αS(〈n1, n1〉) ≥ β1 > β2.
hence there is n2 such that αS(〈n1, n1, n2〉) ≥ β2. Then n2 is I’s second
move in G(x, y). Continuing in this manner I’s moves n1, n2, · · · against II’s
m1,m2, · · · can be specified so that x ∈ cl(f(Σ(n1, n2, · · · , nk))) whenever
y ∈ cl(f(Σ(m1,m2, · · · ,mk−1))). Clearly the strategy thus described is a
winning strategy for I in G(x, y) and hence ¬(xRy). This completes the
proof of Lemma 6.5. 2

Lemmas 6.4 and 6.5 now establish (6.1). We have thus proved

Theorem 6.1. If C is a coanalytic subset of a Polish space X, then C
possesses the prewellordering property.

Addison and Moschovakis (1968) have shown that the reduction principle
is a consequence of the prewellordering property. We now prove the reduction
principle for countably many coanalytic sets, first established by Kuratowski
(1936).

Theorem 6.2. Let Cn, n ≥ 1 be coanalytic subsets of a Polish space
X. Then there exist coanalytic subsets Bn, n ≥ 1 of X such that (i) Bn ⊂
Cn, n ≥ 1, (ii) Bn ∩Bm = ∅ for n 6= m and (iii) ∪n≥1Bn = ∪n≥1Cn.

Proof. Let N be the set of positive integers. Set C = ∪n≥1(Cn ×{n}).
Then C is a coanalytic subset of the Polish space X ×N . By Theorem 6.1
there exists ρ : C → ω1 and relations R and R′ on X × N such that R is
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a coanalytic subset of (X × N) × (X × N) and R′ is an analytic subset of
(X ×N)× (X ×N) and such that (6.1) is satisfied.

Define

B1 = {x ∈ C1 : (∀n ≥ 1) (x ∈ C1 ⇐⇒ ρ(x, 1) ≤ ρ(x, n))}

and for m ≥ 2,

Bm = {x ∈ Cm : (∀i < m)(x ∈ Ci =⇒ ρ(x,m) < ρ(x, i) and

(∀n ≥ m)(x ∈ Cn =⇒ ρ(x,m) ≤ ρ(x, n)}.

It is easy to verify that the sets Bn satisfy conditions (i) - (iii) in the state-
ment of the theorem. It remains to verify that the sets Bn are coanalytic.
Observe that

x ∈ B1 ⇐⇒ (x ∈ C1) and (∀n ≥ 1)((x, 1)R(x, n) or ¬((x, n)R′(x, 1)))

and for m > 1

x ∈ Bm ⇐⇒ (x ∈ Cm) and (∀i < m)(((x,m)R(x, i)) and ¬((x, i)R′(x,m)))

and (∀n ≥ m)(((x,m)R(x, n)) or ¬((x, n)R′(x,m))).

It follows immediately that the sets Bn are coanalytic. This completes the
proof. 2

Acknowledgement. Discussions with B. V. Rao and K. P. S. Bhaskara
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Editors’ notes: This unpublished notes written during 1977–
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fit of those working in Descriptive Set Theory but not familiar
with Effective Set Theory. Along with Addison and Moschovakis
(1968) referred to in the original article, Martin (1968) should
also be mentioned. The unpublished manuscript of Kechris and
Moschovakis (1971) referred to in the original article has since
appeared as Kechris and Moschovakis (1978). Standard reference
for this article now is the book by Moschovakis (1980).
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