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Abstract

We survey some recent work in high dimensional multiple testing estimation
and other multivariate inference problems depending on random matrices
and graphical problems. Different approaches to these problems are explored
featuring classical procedures like the Benjamini-Hochberg multiple tests,
empirical Bayes and Bayes tests and estimates and use of shrinkage as a
major method in estimation. The choice of topics reflects to some extent our
taste and interests.
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1 Introduction

A striking feature of the current statistical scenario is the preponderance
of problems with a high dimensional parameter space, often accompanied
by a rather low level of replication, which aggravates the curse of dimen-
sion. Most of these problems have led to substantial new research in theory,
methodology and computation- so much so that Bickel and Doksum (2007)
write in a new edition of their old classic, “As a consequence our second edi-
tion, reflecting what we now teach our graduate students, is much enlarged
from the first”, and of their writing as “an enterprise that at times seemed
endless, gratifyingly ended in 1976 but has, with the field, taken on a new
life.”

We survey some of those problems that have been of some interest to us.
The reader may consider our survey as a random walk in a new territory,
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guided by our interests rather than a desire to represent all aspects of these
problems. A representative survey can only be written when this emerging
area has stabilized. We will concentrate on two categories of problems on
multiple tests and related estimating problems in Section 2, and classification
and some other problems in Sections 3 and 4. In Section 5 we comment on
some high dimensional multivariate problems.

2 Multiple testing

2.1 Multiple tests and the Benjamini Hochberg. A relatively simple ex-
ample of many tests being conducted at the same time is a microarray data
on gene expression. We begin with a classical parametric formulation, see,
for example, Ghosh et al. (2006), Bogdan et al. (2008) for more details.

Formulation I

X;’s, i =1,2,...,m, are normally distributed, independent, with mean
; = 0 under the ith null Hy;, and u; # 0 under the ith alternative H 4;.
The variance of X; is o2 same for all i and assumed known. In the context
of microarrays, Ha; implies the ith gene is expressed, i.e., it has an effect,
for example on a particular kind of tumor which may grow because of this
gene. Hp; on the other hand asserts the ith gene has no effect on the tumor.
One may think of u; as the mean effect of the ith gene, while the observation
X, is a summary test statistic based on replicated observations which we do
not display.

The assumption of known o2 is often made, see, e.g., Abramovich et al.
(2006). We believe o will be sufficiently well estimated from the replicates
for most results to go through even if o2 is unknown. However, the proofs
of some major results may need nontrivial modification.

In typical microarrays m is a few thousands. This is what makes the
multiple testing of ;’s a complex, high dimensional problem. It also permits
“borrowing of strength” among the tests, as we see later. The earlier goal of
controlling the Family Wise Error rate (FWER) becomes very conservative
and hence unacceptable. For a definition of FWER see Ghosh et al. (2006).

A famous classical test is due to Benjamini and Hochberg (1995). Ac-
tually as mentioned in the last reference, this test as well as the idea of
controlling False Discovery Rate (FDR) goes back to Seeger (1968), Simes
(1986), Sori¢ (1989). But the test and controlling FDR seem to have become
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popular only after Benjamini and Hochberg (1995) proved a beautiful the-
orem on control of false discoveries (i.e., Type I errors in some sense). We
will refer to the test as BH test or rule.

We first define the test and FDR and then state the theorem of Benjamini
and Hochberg (1995).

Let P1y < Pgy < -+ < Pyy) be the ordered P-values. Fix 0 < a < 1.
Let

1
k = argmax {z () < ma} (2.1)

Reject the null hypotheses corresponding to Py, Fg), ..., ). The intuition
behind the test seems to be as follows. Each F;) is being compared with its
(approximate) expectation i/m and declared as significantly small if Py <
%a, where « is an indicator of how much smaller is P;). Note that from the
definition of Py,

k
P(k) < —w
but )
+1
P(k+1) > 704
which together suggest that
k
P(k) ~ EO(.

One then argues if this P-value is significantly small, then so must be all
smaller P-values. Benjamini and Hochberg (1995) show that regardless of
the values of (u1,...,un), the above test has

FDR <« (2.2)

where

FDR = E(%I(R > 0))
V= number of nulls falsely rejected
R = number of nulls rejected

E = expectation under (p1, ..., fiy,) and o2.
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There have been extensions of this theorem in more recent work by Benjamini
and Yekutieli (2001), Sarkar (2002) to mention a few from among many.
There has also been an explosion of papers from Stanford on different aspects
multiple tests, including alternative formulations, and alternative inference
procedures. We list a few of their papers; Abramovich et al. (2006), Donoho
and Jin (2004), Efron and Tibshirani (2002), Storey (2002, 2003, 2007),
Storey et al. (2004) and Johnstone and Silverman (2004).

The FDR of a multiple test is a useful summary that comes to us nat-
urally. For example the Food and Drug Agency (FDA) of a country can
be evaluated by its empirical FDR found from post approval follow up. An
increase in empirical FDR would suggest FDA isn’t being stringent enough
to handle multiplicity.

It is also worth pointing out that in these problems multiplicity caused by
the very large values of m, is further aggregated by the rather small number
of replicates. Replicates are few because replication is expensive.

Given the above, controlling the FDR is an attractive property of a test
as pointed out in Benjamini and Hochberg (1995). Many decision theorists,
specially Bayesian decision theorists, have pointed out control of FDR is not
easy to justify from a decision theoretic point of view. A decision theorist
minimizes the risk, which is an average loss, whereas FDR is an expectation
of a ratio under the parameters governing the distribution of the given data.
How can they be reconciled? To study this question, Bogdan et al. (2008)
introduced a Bayesian Oracle, i.e., a lower bound to a weighted average
of the misclassification probability, where the weights for Hy; and Hy; are
(1—p) and p. The lower bound applies to all multiple tests if we formalize the
previous description by introducing 0-1 losses, additivity of the losses for the
m tests and some more structure on the p;’s. (This oracle is quite different
from other oracles including Sun and Cai, 2007). Through simulations with
m = 200 and .05 < p < .2 it was shown that the BH does nearly as well
as the oracle. This same result has been shown theoretically in Bogdan
et al. (2010). To proceed further and describe the oracle as well as other
inference procedures, namely, parametric and nonparametric Bayes as well
as parametric and nonparametric empirical Bayes, we introduce our second
formulation of the multiple test problem as in Ghosh et al. (2006), and
examine the usual assumption of sparsity and suitably large “signals” as in
Donoho and Jin (2004). The other inference procedures will be studied and
compared with the BH test in the next subsection.
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Formulation II

A parametric mixture or EB (Empirical Bayes) model introduces the
following additional structure to reduce the number of parameters as well as
allow “borrowing of strength” in the context of multiple testing. (For more
details see Ghosh et al. 2006, Storey, 2007 and Efron, 2008).

Let 7;’s be i.id. B(l,p). If v; = 1, Hgu; is true. If 7, = 0, Hy; is
true. Moreover, given Ha;, p; ~ N(0,72) and given Ho;, p; = 0. The
oracle is obtained as follows. Treat the parameter p as known and use the
independence of X;’s and hence that of p;’s. Also assume the losses are
additive. Then the Bayes test is extremely simple, namely,

Reject Hy; if | X;| > B(o?,72,p)

Accept Hy; otherwise.

T2 o

o2 472)0? o247 _
Here, the threshold B(o2, 72, p) = 2o477)o" [% log < 4 2) 1 log <1Tp)}

A lower bound to the risks of any multiple test is provided by m (risk of
the above test, which is same for all 7).

The assumptions on m, p and 72 will clarify some common assumptions.
Of course m — oo and, formally, the replication is one per test because | Xj]
is the test statistic. Actually, the number of replications per test is a fixed
n which remains the same as m — oco. This is the sort of example that has
led to labeling these as “large p and small n problems”, where this “p” is
the same as m and is the number of unknown original parameters.

The original problem has been considerably simplified in Formulation
II, in that we now have only two parameters, p and 72. In microarrays,
and many other high dimensional examples, the proportion p of signals,
i.e., significantly non-zero parameters is supposed to be small. This is the
so called “sparsity” assumption. Given the fact that m is large and the
proportion of signals is small, the signals can be distinguished from the
merely noisy X;’s only if the signal magnitude is large in a manner relative
to the proportion p. For example if we take an extremely sparse case, i.e.,
mp = 1. (i.e.,, on an average only one out of m X;’s may be a signal),
the magnitude of the signal must be of the same order of magnitude as
maxi<;<m | X;| under the global null (i.e., all Hy;’s are true). The magnitude
of signals is controlled in Formulation II by 72. In Bogdan et al. (2008) for
very sparse p, 72 was taken to be of the order of v/2Iog m, which is the order
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of maxj<;<m, | X;| under the global null. Bogdan et al. (2010) suggest that
for general p, 7 should be of order o,/2log %. It seems plausible that the

above assumptions may have an interesting methodological significance. We
conjecture the following.

Conjecture : If p is small and 7 =, /21log %, then the optimal inference

procedures like PEB (Parametric Empirical Bayes) will have empirical
risk

= % {#Hy; : falsely rejected + #H 4 : falsely rejected }

approximately equal to Bayes risk of a single test.

An earlier paper where the magnitude of signal is related to its sparsity is
Donoho and Jin (2004). However, in their case, H 4; postulates X; ~ N (u;, 1)
and it is |p;| that is assumed to be large. See also Bogdan et al. (2010).

Under certain assumptions including Formulation II, p — 0 and 7 as
explained above, Bogdan et al. (2010) show BH attains the Bayes oracle
asymptotically if & — 0. In fact Bogdan et al. (2010) prove the following
theorem.

THEOREM 2.1. Suppose (logm)"/m < p < m™ and 7 = co\/2logp~!
where r < 1, 0 < B <1 and 0 < ¢ < oco. Suppose further a — 0 such
that log o/ logm — 0. Then the BH test with this « attains the oracle risk
asymptotically as m — oo.

(Note « is actually a,, here. We have usually suppressed the dependence
on m in the notations. We follow a similar convention about p and 72.)
Bogdan et al. (2010) conjecture on the basis of their earlier simulations
that similar optimality results should hold for PEB and Full Parametric
Bayes procedures. Such results also seem plausible for the Nonparametric
Empirical Bayes tests.

We end this section with a fully nonparametric formulation due to Efron
(2008). In Efron’s model, the null is not standard normal and the alternative
is nonparametric. Efron (2008) shows several data sets where the null is not
standard normal. Efron defines explicit algorithms for estimating them.

It appears there may be a problem of identifiability. An identifiable
version of this is due to Martin and Tokdar (2009). Our nonparametric
Bayes test in the next section retains a normal null with unknown o? for the
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density of X; but allows X; under the alternative to be nonparametric since
W;’s are assigned nonparametric mixing distribution.

2.2  Full Bayes and empirical Bayes. Under Formulation II, the Bayes
multiple test is a threshold test, i.e., one rejects Hy; iff

2 2 2\ 2 1 2 2 1—
XZ-2 > 7(0 +2T Jo [—log <U —ZT > + log (_p)]
T 2 o P

same for all 7.

The common threshold for all i is denoted by B(c?,72,p). A parametric
empirical Bayes (PEB) multiple test would estimate 72 and p, or only p if
72 is known as a function of p, plug in this estimate in B(o?,7%(p),p) and
then reject Ha; iff X2 > B(o?,72(p),p). Bogdan et al. (2008) point out that
the Type 2 MLE of p doesn’t seem satisfactory but alternative estimates
including a penalized MLE, do nearly as well as the oracle. The full Bayes
approach of Scott and Berger (2006) takes o2, 72 and p as unknown and
puts a prior on all of them. The full Bayes test rejects Hy; iff Pr{r; =
1/X1,...,Xm} > 3. Simulations of Bogdan et al. (2008) show this multiple
test also attains the oracle approximately.

Similar findings hold for a Nonparametric Empirical Bayes multiple test
based on a nonparametric normal mixture for p; under H4; instead of a
simple normal. The test is based on estimating the mixing distribution
of u;’s based on observed X;’s using a recursive algorithm of Newton the
convergence of which has been studied in a recent paper of Tokdar et al.
(2009).

This method also works very well in comparison with the oracle. More-
over, it seems to be similar to the nonparametric empirical Bayes rule of
Storey (2007) and Efron (2008) at least in spirit, but not in details. Bogdan
et al. (2008) also use the Full Bayes approach in which p; is assumed to be
distributed as a mixture of normals with mixing distribution P, which itself
is random and has a Dirichlet process distribution. To ensure P can have a
point mass at zero with positive probability, the prior mean for the Dirichlet
is a distribution that has a positive mass at zero.

Bogdan et al. (2008) were unable to do many simulations for this multiple
test. The success of the NPEB approach suggests the Full Bayes approach
would also do well.

Scott and Berger (2010) have drawn attention to subtle but important
differences between Full Bayes and EB even in the parametric case. Their
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findings are likely to be valid in the nonparametric case also. There are
challenging theoretical issues here of which the resolution would throw more
light on possible inadequacies of EB.

We finally return to the BH test. Storey (2003) and Genovese and
Wasserman (2004) have pointed out the similarity of the FDR control by
the BH test and the control by a suitable threshold test of the so called
BFDR (Bayesian FDR) or pFDR(positive FDR) defined as

Pr{ Hy; is true| X? > ¢} =

i.e.,
(1 _p)PHOi{Xiz > c} —a
(1 - p)PHOi{Xiz > C} +pPHA{Xi2 > C}
where c is the threshold of the BFDR control multiple test.

Genovese and Wasserman (2004), Storey (2003), Efron and Tibshirani
(2002) point out that in the numerator of the LHS of the previous equation,
one may drop the term (1 — p) which is nearly equal to one. Then we need
to solve

Py {X?>c}
P)mi:cture{—>(Z'2 > C} -«
For each given ¢, we can evaluate the numerator using standard approxima-

tions to the normal tail. Moreover we can estimate the denomination by the
empirical distribution

#{i: X2 > c}

—
Hence we can determine the threshold ¢ for the BFDR control test without
having to estimate. It appears heuristically that the multiple test based on
this threshold provides a good approximation to the BH test. This has been
proved for fixed p by Genovese and Wasserman (2004) and for p — 0 by
Bogdan et al. (2010). Thus the BH test seems to be a PEB test but doesn’t
have to estimate p. This seems to explain why it is optimal, adaptively in p.

2.8 Higher criticism, multiple estimates, estimate of p and beyond .
When m is extremely large, a few hundreds of thousands - a situation that
Donoho and Jin (2004) take as a plausible model for homeland security -
Donoho and Jin use a new principle, which they attribute to Tukey and
call Higher Criticism following Tukey. This is a very innovative paper with
a complete description of when one can test with both error probabilities
tending to zero and when one can also estimate unknown parameters well.
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The extremely large value of m is needed for the underlying asymptotic
theory, which requires loglogm is sufficiently large in practice. Given this,
Higher Criticism is shown to do better than the BH test in some cases and
is never worse than it.

An extension of this paper appears in Jeng (2009). In the same scenario
as that of multiple tests, with m a few thousands or even bigger or above,
one may wish to estimate the p;’s well. Johnstone and Silverman (2004)
show that an empirical Bayes approach and some thresholding leads to a
minimax estimate in the sparse case. The paper contains many new ideas
and insights. Even more stunning in the paper by Abramovich et al. (2006)
in the same subject. The authors consider three different kinds of sparsity,
the first of which is similar to that considered for multiple tests. They
also introduce several [,-losses and ask whether one can get asymptotically
minimax estimate of the u;’s, which are adaptive with respect to both the
different definitions of sparsity and the different [,-losses.

They show that the answer is yes and produce an extremely simple set
of estimates, based on a beautiful but long and difficult proof.

The estimates can be described as follows. Fix an a < % and choose k
as in the definition (2.1) of the BH test, i.e.,

k = argmax {z 1 Py < ia} .
m

Then estimate fi(1),..., k) by X(),-.., Xx) and set the remaining esti-
mates equal to zeros.

Finally, one may also wish to estimate p as well. Meinshausen and Rice
(2006) refer to an astronomical example where this is the main goal.

It is clear that the BH test provides an estimate = k/m, where k is as
defined above. But Meinshausen and Rice (2006) provide estimates that can
serve as confidence bounds. They provide several methods for getting such
estimates. Cai et al. (2007) explore the problem of providing asymptotically
minimax and adaptive estimates.

While many problems have been solved, which originated in microarrays
but are meaningful in the much wider context of general multiple tests, many
problems remain. A beautiful survey of what is known and a guide to new
problems is provided in Efron (2008).
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3 Classification in high dimension

Classification is one of the most typical problems in statistics with broad
applications to the various areas such as computer science and biological sci-
ence. One recent characteristic problem in classification is high dimension
and low sample size. For example, in the analysis of microarray, dimension-
ality is often thousands or more, but only tens of samples. In these large
p and and small n, there have been many attempts to improve classical
classification rules.

Suppose there are n; many p-dimensional observations Xg1,. .., Xgp, ~
Np(py, Zg) from Cy, k = 1,2 where py, = (pg1, k2, - - -5 ftkp)’- Let S be the
pooled version of sample covariance matrices and S~! be the inverse or Moor-
Penrose inverse if S is singular. In such a case, one classical classification
rule is Fisher’s rule which has the form of

51(X) = (%1 - a5~ (x - M)

2

where X}, is the mean vector of samples from Cj, k = 1,2. Fisher’s rule
classifies a new observation X to Cj if 6(X) > 0 otherwise Cs. Fisher’s rule
is a plug-in-rule for the Bayes rule under multivariate normal populations,
however, it has been widely used even for non-normal populations due to
its good performance in many practical problems. Despite its popularity,
Fisher’s rule has a drawback that it may not work well in high dimension
and small sample since S~! is a poor estimate of the inverse of population
covariance matrix, so finally leads to the poor prediction of Fisher’s rule.
To remedy this drawback, there are a couple of methods. One is regulariza-
tion of sample covariance matrix, for example, Friedman (1989) considered
regularized classifiers to avoid ill-posed or poorly-posed inverse problem in
S~1. However, the regularization seems to be useful in moderately large
dimension or the case when the sample size is nearly close to the dimen-
sion p. Thus the regularized classifier in Friedman (1989) may not directly
apply to the case of p >> n such as microarray data. Another approach
known as the independent rule (IR) ignores all of the off-diagonal terms in
S, equivalently all the variables are treated as if they are independent. So
S in Fisher’s rule is simply replaced by diagonal matrix of S, denoted by
D = diag(S) = diag(62, ..., p) which results in the IR

61(X) = (X3 — X,)'D! (X Xt X2> Z i)/62
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where &; = X1; — Xo; and fi; = (X1j + Xo;)/2. The IR is also called the
Naive Bayes rule or Idiot’s Bayes rule due to its too simplified form (Hand
and Yu, 2001), however its performance is not too bad or in many cases, it
achieves even better prediction than Fisher’s rule especially in high dimen-
sion. Although the good performance of the IR was recognized by many
practitioners, it had not been well understood theoretically until Bickel and
Levina (2004) provided theoretical studies on the performance of the IR.
The main result by Bickel and Levina (2004) shows that the IR outperforms
Fisher’s rule under broad conditions when the number of variables is large
compared to the sample size from the point of view of minimaxity. Fisher’s
rule may obtain 1/2 misclassification probability when p/n — oo, i.e., al-
most random guessing while the IR has the misclassification strictly less
than 1/2 when (logp)/n — 0. The IR seems to be successful in high di-
mension. However, for extremely high dimensional data such as microarray,
IR is not satisfactory. From numerical studies in many papers, the IR can
achieve as high misclassification error as random guessing even when the two
populations can be perfectly classified. The situation may occur when there
are too many noisy variables which do not contribute to classification. Fan
and Fan (2008) and Greenshtein et al. (2009) showed the poor performance
of the IR theoretically. To avoid this accumulation of noisy variables, it is
natural to remove such noisy variables and use only a subset of important
variables for the improvement of the IR. Tibshirani et al. (2002) proposed
nearest shrunken centroid (NSC) incorporating soft threshold to eliminate
many of the noisy genes in gene expression data. The number of selected
genes are determined through soft shrinkage parameter which is chosen by
cross validation in the paper. More recently, Fan and Fan (2008) provides
more delicate studies on feature selection in high dimensional classification
and proposed Feature Anneal Independence Rule (FAIR). FAIR selects vari-
ables by applying hard threshold to the IR, which is for some b > 0,

drarr(X

||rvj@

= /e (3.1

where T} is the two sample ¢-statistic and 6]2- is pooled sample variance of
jth variable. Under some regularity conditions with sparsity, they sorted
the features by the absolute values of T; in the decreasing order and then
provided a choice of the number of selected variables as follows; when 31 =
Y9 = I is known, for the sorted features by the absolute values of &; in
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decreasing order, the number of variables, mg, is estimated by

Sty a3 +m(ny — na)/(ning)?

nm/(nin2) + 370, d?

moy = argmaxlgmgp

When ¥; and Yo are unknown and different from the identity matrix, for the
sorted features by the absolute values of T} in decreasing order, the number
of variables, mq, is estimated by

. 1 35 67/6F +m(1/ng — 1/n)]?
my = argmaXISmSp =

Amax nm/(n1n2) + Zylzl d?/é‘?

where n = nq+ns and Xmax is the maximum eigenvalue of pooled correlation
matrix. The above criterion is purely data dependent procedure for choosing
the number of variables (or equivalently b in (3.1)). Since A; diverges with
m, My is usually smaller than mg. Greenshtein et al. (2009) reported the
simulation studies that mg selects too many features, thus FAIR with mg
does not improve the IR significantly.

More recently, Greenshtein et al. (2009) proposed an approach called
conditional MLE (CMLE) incorporating Stein’s unbiased risk estimator to
select a subset of variables and correct the selection bias. For two sample
t-test, T}, they estimate coefficient of linear classifier by CMLE conditioned
onT; > C or T; < —C, say dc(T};). The tuning parameter C' determines
the number of selected variables and degree of shrinkage. Greenshtein et al.
(2009) provides an criterion for selecting C' which maximizes

EQCE_ 0c(Th)ay)

O =51

where [|d¢| = 1;:1 dc(T;)?, ie., maximizes the distance between two

centroids of the linear classifier for two classes. However, since the numerator
in V(C) includes unknown «;’s, it is replaced by Stein’s risk unbiased estima-
tor such as E(3_F_, 0c(Ty)ay) = E(3F_, U;) where Uj = 6¢(T5)T; — 6¢(T5)
and 0 ds derivative of dc. Thus the following estimator of V(C)

p
- U
o 7=1"2
Ve = [6cl

is maximized in terms of C. Greenshtein et al. (2009) compared the perfor-
mances of the CMLE, FAIR and IR by numerical studies. The numerical
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study shows that FAIR may not work as well as the CMLE and sometimes
FAIR may select too many variables with g in (2.2).

These rules, namely, NSC, FAIR and CMLE incorporating variable se-
lection are really efficient especially in the case of sparsity when most are
noisy variables and only a small number of variables contributes to clas-
sification. On the other hand, Greensthein and Park (2009) and Efron
(2009) consider Bayesian perspective approach in high dimensional classi-
fication, particularly, NPEB estimates for coefficients a;’s in a linear clas-
sifier Z§=1 a; X + ap. Greenshtein and Park (2009) and Efron (2009) in-
troduced the same idea to high dimensional classification independently and
almost at the same time. To estimate coefficients in the linear classifier,
both considered standardized t-statistic for each variable, say Z; = (Xi; —

ng)/\/S%j/nl + s%j/ng, which is approximately normal ~ N (A}, 1) for some
Aj. As an estimate of a;, the posterior mean E(A;|Z; = z) = z+ f/(2)/ f(2)
where f(z) = [ ¢(A — 2)dG(A) is the marginal density of z;’s and f'(z) is
its derivative. To estimate f(z) and f’(z), Efron (2009) used density esti-
mation based on poisson regression while Greenshtein and Park (2009) uti-
lized the kernel density estimation with bandwidth selection h = 1/1/log p
which is not the optimal choice in standard density estimation problem.
Unlike the previous classifiers, NSC, FAIR and CMLE, the classifier from
NPEB estimates for a; does not select a subset of variables, however a;’s are
shrunken to 0 if the corresponding variables have little contribution in clas-
sification. Greenshtein and Park (2009) concentrated on classification while
Efron (2009) showed a variety of applications of NPEB as well as classifi-
cation. Greenshtein and Park (2009) demonstrated more carefully the case
in which NPEB based classifiers work better than threshold based classifiers
(FAIR and CMLE). Many classifiers in high dimensions emphasize the case
that o = p; — po has the property of sparsity. In Bayesian framework, this
sparsity may be expressed by a; ~ (1 — €)0(0) + eg(a) for small e, delta
function § and some density g. Additionally, Greenshtein and Park (2009)
demonstrated other situations such as non-sparse case as well as sparse case.
In the paper, three categories are presented depending on the structure of
a which are often encountered in high dimensional classification. They first
concentrate on the configuration of le-norm ||af| = o(p) as p — oo since,
otherwise, any reasonable procedure would achieve misclassification prob-
ability 0. Three categories are : (i) very few non-zero coordinates of a
large/moderate magnitude; (ii) very few coordinates of a large magnitude,
mixed with many very small coordinates (i.e., non-sparse case); (i) Many
coordinates of a very small magnitude (i.e., non-sparse vectors).
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They provided intensive numerical studies showing that the NPEB clas-
sifier outperforms CMLE, FAIR and IR especially for the case of (ii) and
(7i7). These results coincide with NPEB estimation of normal mean vector
in Brown and Greenshtein (2009).

Linear classifiers have played a major role in a variety of classification
problems. Although Fisher’s rule and the IR are linear classifiers possibly
used in non-normal populations, there is another typical example of linear
classifier for the case of multivariate binary data. Xj; are multivariate binary
data and each of variables is modeled as Bernoulli random variable, say
Bernoulli(py;). When all the variables are assumed to be independent, the

P X - P1j 1=p2; _
Bayes rule has the form ijl a; X;+ap where a; = log (pzj 1_p1j) and ag =
1-pu

1;’:1 10g(1——1m)' All parameters are estimated by MLE and they are plugged
into the Bayes rule. Park and Ghosh (2007) have studied the performance of
the plug-in rule with MLE for multivariate binary data and showed various
asymptotic results when the number of variables has the relationship p =
O(n") for 7 > 0. Under the sparsity condition, they showed that identifying
a subset of significant variables improves the performance of the plug-in rule.
This result is in the same line with most of the previous studies on FAIR
and CMLE for normal populations. This also justifies the numerical studies
by Wilbur et al. (2002) that variable selection in multivariate binary data
improves the IR in DNA fingerprinting data. Park (2009) also investigated
the performance of the IR in the aspect of convergence rate of the risk and
showed that the IR with a selected variable improves the convergence rate,
too.

4 Estimation in high dimension

Estimating simultaneous normal mean vector problem has been consid-
ered quite often with many related issues such as admissibility, adaptive
nonparametric regression, variable selection, multiple testing and many other
areas in statistics. So far, there seem to be three major categories of estima-
tors developed in this area. The first is the James-Stein estimator, shrunk
towards zero or mean value which is minimax on the entire space of the
unknown mean vector. Efron and Morris (1972, 1973) and Morris (1983)
interpreted the James-Stein estimator from the point of view of linear or
parametric EB estimator. The second approach is based on some struc-
tural assumption on mean vector such as high dimensional and sparse in
the sense that many of unknown means are zero or near zero. With the
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assumption on the sparse mean vectors, threshold methods (vide Section
2 of the paper) such as the universal (Donoho and Johnstone, 1994), soft
threshold (Donoho and Johnstone, 1995), FDR (Abramovich et al., 2006
and Benjamini and Hochberg, 1995), the parametric empirical Bayes pos-
terior median (Johnstone and Silverman, 2004) are now known to perform
much better than James-Stein type of estimators. The third approach is
nonparametric or generalized empirical Bayes estimator which has been in-
vestigated deeply by Zhang (1997), Brown and Greenshtein (2009) and Jiang
and Zhang (2009). NPEB approach was proposed the earliest among three
approaches by Robbins (1951). See Robbins (1956, 1964, 1983) and Zhang
(1997, 2003, 2005a). Here, we focus on the last approach since most re-
cent researches have focused on the last approach and it produces excellent
performance compared to the others. The oracle estimator under squared
loss is the Bayes estimator E(u|Z) = z + f'(2)/f(z). This estimator in-
cludes unknown f(z) and f’(z). Zhang (1997) estimates f and f’ based on a
Fourier infinite-order smoothing kernel and Brown and Greenshtein (2009)
uses kernel density estimation with normal kernel and provides the optimal
choice of bandwidth 1//Togn which is different from those in kernel density
estimation. On the other hand, Jiang and Zhang (2009) investigated a way
to estimate completely unknown prior G in f(z) = [ ¢(pu — 2)dG(u) for a
standard normal density ¢(y) only with observations and without smoothing
and then plug in the estimator G into fand f’. In other words, their estima-
tors are f(2) = [ ¢(u—a)dC(u) and f(z) = [ (11— 2)d(n— 2)dCG (). Brown
and Greenshtein (2009) and Jiang and Zhang (2009) presented simulation
studies showing that their estimators outperform all the other estimators
especially when the unknown parameters are not of sparse case type. How-
ever, Jiang and Zhang (2009) gave some comment at the end of the paper
that it is not clear if the kernel method by Brown and Greenshtein (2009)
works as well as Jiang and Zhang (2009) in moderate size of samples unless
additional theoretical properties are provided.

There is a special variant of the problem related to the above estima-
tion. Under sparsity condition, since most of the variables are noise, some-
times it is interesting to select a few of the variables for a further investiga-
tion. Without any further information, the large values of the observations
are selected and the total amount of signal for the selected lot, namely,
Sc = Z?:l puil(Z; > C) is of interest to investigate further. Here, for
simplicity, we assume y; > 0. Greenshtein et al. (2008) studied NPEB esti-
mation S = n( fcoo yf(y)dy — f (C)) where f is obtained from kernel density
estimation. Under sparsity condition, they showed some form of consistency
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of their estimator and applied the estimator to local false discovery rate. A
similar type of estimation of signals for selected observations goes back to
Robbins (1977) who used NPEB estimator for the case of Poisson random
variables, Z;|\; ~ Poisson(\;) and A\; ~ G for some prior G. These esti-
mation problems are a special case of the more general problem in Zhang
(2005b), namely estimating > 7, U(Z;,0;) for observed Z;, Z; ~ Fy, where
¢; is unknown, and a given function U.

5 Some new high dimensional multivariate analysis

The following discussion is based on a special issue of Ann. Statist. (2008)
devoted to High Dimensional Multivariate Analysis, edited by special editor
Peter Bickel. We first try to relate the finding there with some of our earlier
observations. In the earlier sections, we have argued that for high dimen-
sional problems with relatively small sample size, some form of sparsity and
relatively large signals as measured by signal to noise ratio, seem not only
to help but are probably also necessary. A comparison of the graphs of the
oracle risk and the risk of common inference procedures are no longer close
when the proportion of signals is away from zero (and one), vide Bogdan et
al. (2008). It is possible one needs a different oracle in such cases. Similarly,
the fact that even the oracle does poorly in the absence of good signal to
noise ratio is the major consideration in leaving out C' = oo in Assumption
A of Bogdan et al. (2010). That sparsity helps in variable selection was
shown earlier in Bogdan et al. (2004) where it is shown an extra penalty
for multiplicity of comparisons is needed for BIC to control FWER, (Family
Wise Error Rate). The modified BIC, which we call mBIC, achieves this.
Fan and Fan (2008) (see also our Section 3) discuss the above issue in great
generality in the context of classification. They also mention earlier work
on the break down of Fisher’s classical discriminant function in the high
dimensional case as pointed out by Bickel and Levina (2004) and Bai and
Saranadasa (1996). Fan and Fan (2008) argue that some form of prelim-
inary screening out of merely noisy variables is needed. The special issue
of the Ann. Statist. (2008) also features the problems of estimating a high
dimensional covariance matrix regularized by banding or thresholding the
empirical covariance matrix, vide Anderson and Zeitouni (2008) and Bickel
and Levina (2008). Banding means every element of the covariance ma-
trix which is more than a specified distance from the diagonal element in
the same row is set equal to zero, i.e., the matrix is being shrunk towards
a nearly diagonal matrix. A different kind of regularization is considered
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by Jeng (2009). In another important paper, Johnstone (2008) derives the
Tracy-Wildom limit law for the largest eigenvalue of (A + B)~!B where A
and B are central Wishart matrices in p variables with common covariance,
and m and n degrees of freedom. This is a well-known test criterion in several
problems of classical multivariate analysis based on multivariate normality.
This particular criterion was pioneered by S.N. Roy whose birth centenary
was celebrated in 2005 by I.S.I. and Calcutta University. The special issue
has other interesting papers, including one by Rajaratnam et al. (2008) on
Bayesian covariance estimates in graphical Gaussian models, which combines
both regularization and shrinkage. Some of the calculations are stunningly
beautiful. The other papers in the special issue are also deep and interesting
but do not seem as closely related to our problems as the papers discussed
above.
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