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Abstract

In this paper, we study the strong consistency and rates of convergence
of the Lasso estimator. It is shown that when the error variables have a
finite mean, the Lasso estimator is strongly consistent, provided the penalty
parameter (say, λn) is of smaller order than the sample size (say n). We
also show that this condition on λn cannot be relaxed. More specifically,
we show that consistency of the Lasso estimators fail in the cases where
λn{nÑ a for some a P p0,8s. For error variables with a finite αth moment,
1   α   2, we also obtain convergence rates of the Lasso estimator to
the true parameter. It is noted that the convergence rates of the Lasso
estimators of the non-zero components of the regression parameter vector can
be worse than the corresponding least squares estimators. However, when the
design matrix satisfies some orthogonality conditions, the Lasso estimators
of the zero components are surprisingly accurate; The Lasso recovers the zero
components exactly, for large n, almost surely.
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1 Introduction

Consider the following regression model

yi � x1iβ � εi, i � 1, . . . , n, (1.1)

where, yi is the response, x1i � pxi,1, . . . , xi,pq is a p� 1 covariate vector,
β � pβ1, . . . , βpq1 is the regression parameter and tεiu are iid errors. We
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assume that p is fixed. The Lasso estimator of β is defined as the minimizer
of the l1-penalized least square criterion function,

pβn :� argmin
uPRp

ņ

i�1

�
yi � x1iu

�2 � λn

p̧

j�1

|uj |, (1.2)

where, λn is a penalty or regularization parameter. The Lasso estimate
was introduced by Tibshirani (1996) as an estimation and variable selection
method. Recently the Lasso has emerged as a very popular method for both
estimation as well as model selection. Two main benefits of the Lasso are:
(i) the nature of regularization used in the Lasso leads to sparse solutions,
which automatically leads to parsimonious model selection (see Zhao and
Yu (2006), Wainwright (2006), Zou (2006)) and (ii) it is computationally
feasible (see Efron et. al (2004), Osborne et al. (2000), Fu (1998)), even in
high dimensional settings.

The asymptotic properties of the Lasso was first studied by Knight and
Fu (2000) for the finite dimensional regression model (1.1). In addition to
finding the asymptotic distribution of the Lasso estimator, Knight and Fu
(2000) also showed that the Lasso was weakly consistent under some mild
regularity conditions. In this paper, we investigate the problem of strong
consistency of the Lasso estimator under different moment conditions on
the error variables εi’s in (1.1). It is shown that when E|ε1|   8 and the
regularization parameter λn � opnq as n Ñ 8, the Lasso estimator of the
regression parameter β is strongly consistent. However, if limnÑ8 λn{n Ñ
a P p0,8s, then the Lasso fails to be strongly consistent, and converges to
a different limiting quantity. Thus, when E|ε1|   8, one needs to choose
λn � opnq to guarantee consistency of the Lasso estimator.

Next we consider the rate of almost sure convergence of }pβn � β} when
the error variables have a finite αth absolute moment for some α P p1, 2q.
Theorem 2.3 below shows that for E|ε1|α   8, α P p1, 2q,

}pβn � β} � O
�
n�pα�1q{α

	
with probability 1.

Further, for the Lasso estimators of the non-zero components of β, we also
obtain a lower bound on the rate of convergence (cf. Theorem 2.4), which
shows that the exact convergence rate of the Lasso estimators of the non-zero
parameter components is n�pα�1q{α as nÑ8. This is an interesting finding
as it allows one to compare the relative performances of the Lasso estimator
and the ordinary least squares (OLS) estimator of β. It can be shown that
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under the regularity conditions of Theorem 2.4 on the design matrix, for
E|ε1|α   8, α P p1, 2q, the OLS estimator pβols

n of β satisfies

}pβols
n � β} � o

�
n�pα�1q{α

	
with probability 1.

Thus, the penalization used in the definition of the Lasso estimator results
in a loss of accuracy for the non-zero components of β compared to the OLS
estimator, which uses no penalty. For the zero-components of β, however,
this is not necessarily true. When the design matrix satisfies an orthogonality
condition and E|ε1|α   8, α P p1, 2q, Theorem 2.5 shows that the Lasso
estimator of the zero-components of β recovers the true values exactly for
large n, almost surely. Thus, in this case, the rate of convergence of the Lasso
estimator of the zero-components is Opbnq for any bn Ñ 0, with probability
(w.p.) 1. On the other hand, when the orthogonality condition on the
design matrix fails, the convergence rate of the Lasso estimator of the zero-
components also can be n�pα�1q{α exactly (like the non-zero components),
making it worse than the OLS.

Finally, we also consider the case where E|ε1|α   8 for some α P p0, 1q.
In this case, the mean of the error variables may not even exist. Theorem 2.6
shows that under suitable regularity conditions, pβn converges to the zero-
vector, almost surely. Hence, it follows that for the (strong) consistency of
the Lasso estimator, finiteness of E|ε1| cannot be dispensed with.

We now conclude this section with a brief literature review. For the case
of ordinary least squares estimators, results on strong consistency were stud-
ied by Lai et al. (1978) and Drygas (1976), Knight and Fu (2000) proved
consistency of the Lasso estimator and derived its asymptotic distribution
under the moment condition E

�
ε21
�   8, in the finite dimensional case.

Recently, Lounici (2008) showed that the `8 distance }pβn � β}8 converges
weakly to zero, and also derived the rate of convergence. There has been
a large amount work on asymptotic properties of the Lasso in high dimen-
sional settings in the context of model-selection. For further details, see
the works of Huang et al. (2008), Meinshausen and Yu (2009), Zhang and
Huang (2008), Meinshausen and Bühhnann (2006), Bickel et al. (2009) and
references therein.

The rest of the paper is organized as follows. The main results on strong
consistency and rates of convergence are stated in Section 2. The proofs of
our results are given in Section 3.
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2 Main Results

2.1. Strong Consistency. Consider the regression model (1.1) with iid
error variables εi’s where E|ε1|   8 and E pε1q � 0. Although the Lasso
criterion function is used mainly for the case where the second moment of
ε1 is finite, the Lasso estimators (and also the least squares estimators) are
well-defined even when the second moment of ε1 does not exist. Here we
consider the problem of strong consistency of the Lasso estimator assuming
only finiteness of the first moment, and some mild regularity conditions on
the design vectors xi’s. The first result asserts strong consistency of the
Lasso estimator when the penalty λn is opnq as nÑ8.

Theorem 2.1. Let tεiu be iid random variables with E|ε1|   8 and
E pε1q � 0. Suppose that there exists a nonsingular matrix C such that

1
n

ņ

i�1

xix1i Ñ C, as nÑ8. (2.1)

If λn
n Ñ 0, then pβn Ñ β, w.p. 1.

Theorem 2.1 extends the weak consistency results of Knight and Fu
(2000) who established the convergence in probability of pβn, under the as-
sumption that E

�
ε21
�   8. It also shows that strong consistency of the

Lasso estimator holds merely under the finiteness of the first moment of ε1,
provided λn

n Ñ 0. When the regularization parameter λn grows at a faster
rate, the strong consistency of pβn may fail, as shown by the following result.

Theorem 2.2. Let tεiu be iid random variables with E|ε1|   8 and
E pε1q � 0. Assume that (2.1) holds as nÑ8.

(a) If λn
n Ñ a P p0,8q, then

pβn � β ÝÑ argmin
u

V8 pu, aq ,

where V8 pu, aq � u1Cu� a
°p
i�1

�|βi � ui| � |βi|
�
.

(b) If λn
n Ñ8, then pβn Ñ 0, w.p. 1.

Theorem 2.2 shows that, in general, the Lasso estimator is inconsistent
whenever λn grows precisely at the rate n or faster. Under part (a), con-
sider the special case where all βj � 0. In this case, it is easy to check
that argminu V8 pu, aq � 0 and therefore, pβn is consistent for the zero
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components of β. Part (b) says that for λn " n, the Lasso estimators are
consistent for the zero components, but not for the non-zero components.
Thus, to ensure strong consistency of the Lasso estimators for all compo-
nents, the regularization parameter λn should be chosen in a such way that
it grows at a rate slower than the sample size n.

2.2. Rates of convergence. In this section, we consider the rate of almost
sure convergence of the Lasso estimator under a stronger moment condition
on the error variables, where we assume that E|ε1|α   8 for some 1   α   2.
In this case, we have the following rate bound:

Theorem 2.3. Suppose that E|ε1|α   8 for some 1   α   2 and Epε1q �
0. Also suppose that (2.1) holds and that

max
!
}xi} : 1 ¤ i ¤ n

)
� O p1q , as nÑ8. (2.2)

If, in addition, λn{n1{α Ñ a P p0,8q as nÑ8, then

}pβn � β} � O
�
n�pα�1q{α

	
, w.p. 1

Thus for 1   α   2, pβn converges to β at the rate of O
�
npα�1q{α

�
, w.p. 1.

For α ¥ 2, the results in Knight and Fu (2000) shows that n1{2ppβn�βq has a
non-degenerate limit distribution and therefore, an almost sure bound on the
difference }pβn � β} similar to that in Theorem 2.3 for values of α P r2,8q
is, in general, not possible. Also, note that in Theorem 2.3, we set the
regularization parameter λn to grow at the rate n1{α which, in particular,
satisfies the requirement of Theorem 2.1.

In general, the rate bound given in Theorem 2.3 cannot be improved upon
for the Lasso estimators of the non-zero components of β. The next theorem
gives a lower bound on the almost sure rate of convergence for the non-zero
components of β which shows that under some additional conditions, the
rate n�pα�1q{α is optimal. To state the result, let γ0 denote the smallest
eigen-value of the matrix C (cf. (2.1)) and let γ� denote the largest eigen-
value of the submatrix of C corresponding to the non-zero components of
β. Also, define

y0 �
�
1� p�1

0

�
, (2.3)

where p0 is the number of nonzero components of β, i.e., p0 � |tj : 1 ¤ j ¤
p, βj � 0u|. Note that y0 P r0, 1q for p0 ¥ 1. Without loss of generality, for
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the rest of the paper, we will suppose that βj � 0 for all j � 1, . . . , p0 (if
p0 ¡ 0) and βj � 0 for j � p0 � 1, . . . , p. With this notation, we are now
ready to state the lower bound result.

Theorem 2.4. Suppose that E|ε1|α   8 for some 1   α   2, Epε1q � 0,
and λn{n1{α Ñ a P p0,8q as nÑ8. Also, suppose that (2.1) and (2.2) hold,
and that p0 ¡ 0 and γ0{γ� ¡ y0. Then, there exists a constant K1 P p0,8q,
such that for all 1 ¤ j ¤ p0,

lim inf
nÑ8

���pβn,j � βj

���npα�1q{α ¡ K1 ¡ 0, w.p. 1 (2.4)

Thus, for nonzero components of β, its Lasso estimator pβn,j has an almost
sure convergence rate that is precisely npα�1q{α when the conditions of The-
orem 2.4 are satisfied. Note that for p0 � 1, y0 � 0 and hence, γ0{γ� ¡ y0.
That is, if β has a single non-zero component, then the corresponding Lasso
estimator cannot converge at an almost sure rate faster than npα�1q{α. More
generally, the condition γ0{γ� ¡ y0 holds in the case of ‘balanced’ designs
where the eigen-values of C are equal. In particular, when the covariates
xi’s are given by realizations of a collection of normalized iid random vectors
with the identity covariance matrix, (2.1) holds with C � Ip, the identity
matrix of order p. In this case, γ0{γ� � 1, which is greater than y0, and the
Lasso estimator of the non-zero components of β has the exact rate npα�1q{α

of almost sure convergence.

The convergence rate of the Lasso estimator from Theorems 2.3, 2.4, may
be compared with the corresponding rate for the (ordinary) least squares
estimator pβols

n of β. For iid, zero-mean error variables ε1, ε2, . . ., with
E|ε1|α   8, 1   α   2 in (1.1), by a weighted version of the Marcinkiewz-
Zygmund strong law of large numbers (SLLN) (cf. Lemma 3.2 below), it
follows that

}pβols
n � β} � o

�
npα�1q{α

	
, w.p. 1. (2.5)

Hence, under the conditions of Theorem 2.4, the Lasso estimator of the
nonzero components of β has a slower rate of convergence than the OLS
estimator of β. The penalization leads to a loss of accuracy of the Lasso
estimator of nonzero components, compared to the ordinary least squares
estimation with no penalty.

Next consider the zero components of β. It turns out that the scenario
can be drastically different for the Lasso estimators of the zero-components
of β. Under some structural conditions on the design matrix C, the Lasso
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estimators of the zero component can capture the true parameter value ex-
actly, as shown in Theorem 2.5 below :

Theorem 2.5. Suppose that the conditions of Theorem 2.4 hold. Let
C12 � tppci,jqq , 1 ¤ i ¤ p0, pp0 � 1q ¤ j ¤ pu, denote the upper right sub-
matrix of C of order p0 � p1, where p1 � p � p0. Suppose that C12 � O.
Then, pβn,j � 0, eventually w.p. 1 for all j � pp0 � 1q , . . . , p,
i.e., there exists a set A with PpAq � 1 such that for all ω P A, there exists
nω ¥ 1 such that pβn,jpωq � 0 for all j � pp0 � 1q , . . . , p, whenever n ¥ nω.

The condition ‘C12 � O’ can be thought of as some sort of an orthog-
onality condition and can be achieved by suitably choosing the matrix Xn

in applications that allow design of experiments. Thus, unlike the Lasso
estimators of the non-zero components of β, the Lasso estimator is more
accurate than the OLS of the zero components, and reproduce the exact
true value of the unknown parameter when this orthogonality condition is
satisfied.

It is worth pointing out that the remarkable property of the Lasso estima-
tors of the zero components may fail for a general C matrix when C12 � O,
as shown by the following example.

Example 2.1. Let tεiui¥1 be iid with E|ε1|α   8 for some α P p1, 2q,
E pε1q � 0. Suppose that limnÑ8 λnn

�1{α � a P p0,8q, and that βj ¡ 0 for
all j � 1, . . . , p0 and βp � 0, where p � pp0 � 1q. Also, suppose that (2.1)
and (2.2) hold and C is of the form

C �
�
MIp0 γ1
γ11 m

�
,

where Ip0 is the identity matrix of order p0, 1 P Rp0 is a vector of 1’s,
and m,M, γ P R. Then, there exists a choice of m, γ and M satisfying
0   m   γ ¤ 1 and M ¡ γp0 and a constant K0 � K0 pm, γ,M, p0q P p0,8q
such that

lim inf
nÑ8

np2�αq{α
���pβn,j � βj

��� ¥ K0 ¡ 0, for all j � 1, . . . , p. (2.6)

A proof of (2.6) is given in Section 3. This example shows that in general,
the Lasso estimators of the zero components also cannot converge at a rate
faster than n�p2�αq{α.

Thus, for a general design matrix C, the rate bound given in Theorem
2.3 is optimal.
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2.3. The infinite mean case. For the sake of completeness, we also in-
vestigate almost sure behavior of pβn when the error variables have a finite
αth absolute moment for some 0   α   1. Note that in this case, the mean
of the εi’s is not necessarily well defined. As a result, for the regression
model (1.1) to make sense, some symmetry conditions ( such as the median
of ε1 is zero) on the distribution of ε1 is needed. The next result, is however,
valid without such symmetry assumptions.

Theorem 2.6. Suppose that E|ε1|α   8 for some α P p0, 1q and that
(2.1) hold. Suppose λn{n1{α Ñ a P p0,8s. Then,pβn Ñ 0, w.p. 1.

Theorem 2.6 shows that even for such heavy-tailed error distributions,
the Lasso estimators of the zero components of β are strongly consistent,
but those for the non-zero components are not.

3 Proofs

Let Cn � n�1
°n
i�1 xix1i, n ¥ 1. Let γ0,n � the smallest eigenvalue of

Cn and γ�n � the largest eigenvalue of the the p0 � p0 submatrix of Cn

consisting of the first p0 rows and p0 columns. In the proofs below, we write
C,Cp�q to denote generic constants that depends on its arguments, but not
on n. Let i.o. stand for ‘infinitely often’. Also, let sgnp�q denote the sign
function, i.e., sgnpxq � �1, 0, 1 according as x   0, x � 0, x ¡ 0. Let 11p�q
denotes the indicator function. Unless otherwise specified, the limits in the
order symbols and elsewhere are taken by letting n tend to infinity.

Lemma 3.1. Suppose E|ε1|   8 and E pε1q � 0. Also, suppose that

1
n

ņ

i�1

}xi}2 � O p1q . (3.1)

Then, 1
n

°n
i�1 xiεi ÝÑ 0 as nÑ8, w.p. 1.

Proof of Lemma 3.1. Since it is enough prove the almost sure
convergence componentwise, for notational simplicity, w.l.g., we assume that
the xi’s are scalars. Let

ε̆i � εi11 p|εi| ¤ iq , i ¥ 1.

Since, E|ε1|   8,

P pεi � ε̆i, i .o.q � P p|εi| ¡ i, i .o.q � 0.
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Note that E
�
ε111 p|ε1| ¤ iq �Ñ E pε1q � 0 as iÑ8. Hence,

1
n

ņ

i�1

xiE pε̆iq � 1
n

ņ

i�1

xiE
!
εi11 p|εi| ¤ iq

)

¤
�

1
n

ņ

i�1

x2
i

�1{2�
1
n

ņ

i�1

�
E
!
ε111 p|ε1| ¤ iq

)
2
�1{2

Ñ 0, as nÑ8.

By Kronecker’s Lemma, it is now enough to show that

8̧

i�1

xi
i

�
ε̆i �E pε̆iq

�
converges w.p. 1. (3.2)

To that end, write s2n �
°n
j�1 x

2
j , n ¥ 1. By condition (3.1), s2n ¤ Cn for all

n ¥ 1. Hence, for any m ¥ 1, j ¥ 1,

j�m̧

i�j

x2
i i
�2 �

j�m̧

i�j

s2i i
�2 �

j�m�1¸
i�j�1

s2i pi� 1q�2

�
j�m̧

i�j

s2i

�
i�2 � pi� 1q�2

	
� s2j�mpj �m� 1q�2 � s2j�1j

�2

¤ C

j�m̧

i�j

i p2i� 1q �i pi� 1q ��2 � C pj �mq pj �m� 1q�2

¤ c
8̧

i�j

i�2 � cpj �mq�1 ¤ Cj�1. (3.3)

Using (3.3) we can write

8̧

i�1

Var
�
i�1xipε̆iq2

	
¤

8̧

i�1

i�2x2
iE

!
ε2111 p|ε1| ¤ iq

)
�

8̧

j�1

E
!
ε2111

� pj � 1q   |ε1| ¤ j
�) 8̧

i�j

i�2x2
i

¤ C
8̧

j�1

E
!
|ε1|11

� pj � 1q   |ε1| ¤ j
�) � C �E|ε1|   8.

Hence, by Theorem 8.34 of Athreya and Lahiri (2006), (3.2) follows. l
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Lemma 3.2. Suppose that εi’s are iid with E|ε1|α   8 for some α P p0, 2q,
and E pε1q � 0, if α ¥ 1. Suppose that (2.1) and (2.2) hold. Then,

n�1{α
ņ

i�1

xiεi Ñ 0, w.p. 1. (3.4)

Proof of Lemma 3.2. Under (2.2), one can easily modify the steps
in the proof of Theorem 8.44 of Athreya and Lahiri (2006) (Marcinkiewicz-
Zygmund SLLN) to prove (3.4). We omit the details. l

Proof of Theorem 2.1. Note that

pβn � argmin
t

ņ

i�1

�
yi � x1it

�2 � λn

p̧

i�1

|ti|

� argmin
t

ņ

i�1

�
εi � x1i pt� βq

�2
� λn

p̧

i�1

|βi � ti � βi|

ñ
�pβn � β	 � argmin

u

ņ

i�1

�
εi � x1iu

�2 � λn

p̧

i�1

|βi � ui|.

Recall that Cn � n�1
°n
i�1 xix1i, γ0,n � is the smalles eigenvalue of Cn and

γ0 � the smallest eigenvalue of C. Let W n � n�1
°n
i�1 xiεi. Since

°n
i�1 ε

2
i

does not involve u, discarding this term from the criterion function above
and dividing the resulting expression by u, we have�pβn � β	 � argmin

u

!
u1Cnu� 2W 1

nu�
λn
n

p̧

i�1

�
|βi � ui| � |βi|

�)
� argmin

u
Vn puq , (say). (3.5)

Note that for any u P Rp,

Vn puq ¥ γ0,n}u}2 � 2}W n}}u} � λn
n

p̧

i�1

|ui|

¥ γ0,n}u}2 � 2}W n}}u} � λn
n

?
p}u}. (3.6)

Next fix η P p0, 1q. Since λn{n � op1q, there exists a n0 P p0,8q such that
λn{n ¤ η and γ0,n ¡ γ0{2 for all n ¥ n0. On the set

 }W n} ¤ η
(
, by (3.6),

for any u P Rp, with }u} ¡ η
�
4� 2

?
p
� {γ0,n,

Vn puq ¥ }u}
�
γ0,n}u} � 2η �?

pη
	
¥ γ0,n

}u}2
2

¡ 0.
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Since Vn p0q � 0, it follows that for n ¥ n0, the minimum of Vn puq cannot
be attained in the set

!
u : }u} ¡ η

�
4� 2

?
p
� {γ0,n

)
, whenever

 }W n} ¤ η
(
.

Hence, it follows that for n ¥ n0,
 }W n} ¤ η

(
implies

�pβn � β	 � argmin
u

Vn puq P
#

u : }u} ¤ η
�
4� 2

?
p
�

γ0,n

+
.

In particular,

P

�
}pβn � β} ¡ 2η

�
4� 2

?
p
�

γ0
, i .o.

�
¤ P

�
}pβn � β} ¡ η

�
4� 2

?
p
�

γ0,n
, i .o.

�
¤ P

�}W n} ¡ η, i .o.
� � 0,

which follows from Lemma 3.1. Since η P p0,8q is arbitrary, this completes
the proof. l

Proof of Theorem 2.2. First, consider part (a). Let Vnp�q be as in
(3.5). Note that for each i,���|βi � ui| � |βi|

��� ¤ |ui|.

Since λn
n Ñ a P p0,8q, for any compact set K � Rp,

sup
uPK

|Vn puq � V8 pu, aq|

¤ sup
uPK

�
}u}2}Cn �C} � 2}W n}}u} �

��n�1λn � a
�� p̧

i�1

|ui|
�

� op1q as nÑ8, w.p. 1. (3.7)

Let n0 ¥ 1 be such that for all n ¥ n0, λn{n   2a and γ0,n ¡ γ0{2. From

(3.6), for all n ¥ n0, on the set
!
}W n} ¤ a

)
, we have

Vn puq ¥ }u}
�
γ0,n}u} � 2}W n} � λn

n

?
p

�
¥ }u}

�γ0

2
}u} � 2a� 2a

?
p
�
¥ }u}

2
,

for all }u} ¡ �
1� 4a

�
1�?

p
��{γ0 � c0. Since, Vnp0q � 0, this implies

}pβn � β} ¤ c0, whenever n ¥ n0 and
!
}W n} ¤ a

)
. Thus, the minimizer
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of Vnpuq lies in a compact set for all n ¥ n0, provided
!
}W n} ¤ a

)
. Since

V8p�; aq is a convex function, by (3.7) and Lemma 3.1, part (a) follows.

Next consider part (b). Let a2
n � λn{n. Then, an Ñ 8. Also, let

Bn �
!
u : }u} ¤ an, |βi � ui| ¥ a�1

n for atleast one i � 1, . . . , p
)

. By
Lemma 3.1,

inf
uPBn

�
u1Cnu� 2W 1

nu� a2
n

p̧

i�1

|βi � ui|
�

¥ inf
uPBn

�
a2
n

p̧

i�1

|βi � ui| � 2}W n}}u}
�

¥ inf
uPBn

�
a2
n

p̧

i�1

|βi � ui| � 2}W n} sup
 }u} : u P Bn

(�
� inf

uPBn

�
a2
n

p̧

i�1

|βi � ui| � 2}W n}an
�

¥ an

�
1� 2}W n}

�
Ñ 8, as nÑ8, w.p. 1. (3.8)

Also, by Lemma 3.1,

inf
}u}¡an

�
u1Cnu� 2W 1

nu� a2
n

p̧

i�1

|βi � ui|
�

¥ inf
}u}¡an

�
u1Cnu� 2}W n}}u}

�
¥ inf
}u}¡an

�
γ0,n}u}2 � 2}W n}}u}

�
� inf
}u}¡an

}u}
�
γ0,n}u} � 2}W n}

�
¥ an

�
anγ0,n � 2}W n}

�
Ñ8, as nÑ8, w.p. 1. (3.9)

Finally, with B1,n �
!
u : |βi � ui| ¤ a�1

n , for all i � 1, . . . , p
)

,

inf
uPB1,n

�
u1Cnu� 2W 1

nu� a2
n

p̧

i�1

|βi � ui|
�

¤ u10Cnu0 � 2W 1
nu0 � a2

n

p̧

i�1

|βi � u0,i| ,
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� u10Cnu0 � 2W 1
nu0 (where, u0 � pu0,1, . . . , u0,pq1 � �β P B1,n),

Ñ β1Cβ P r0,8q, as nÑ8, w.p. 1. (3.10)

Note that for any sequence tunun¥1, with un P Bn, }un�β} ¤ a�1
n
?
p Ñ 0,

as nÑ8. Hence, from (3.8)- (3.10) and (3.5), it follows that there exists a
set A with P pAq � 1 and for all ω P A, there exists a nω ¥ 1 such that for
all n ¥ nω,

�pβn � β	 � argmin
u

Vn puq

� argmin
u

�
u1Cnu� 2W 1

nu� a2
n

p̧

i�1

|βi � ui|
�

� argmin
uPB1,n

�
u1Cnu� 2W 1

nu� a2
n

p̧

i�1

|βi � ui|
�

Ñ �β, as nÑ8,

This completes the proof of part (b). l

Proof of Theorem 2.3. Since

pβn � argmin
t

ņ

i�1

�
εi � x1i pt� βq

�2
� λn

p̧

i�1

|βi � ti � βi|,

it follows that

n1{α
�pβn � β	

� argmin
u

ņ

i�1

�
εi � n�1{αx1iu

	2
� λn

p̧

i�1

���βi � n�1{αui

���
� argmin

u

�
n�2{αu1

�
ņ

i�1

xix1i

�
u� 2n�1{αu1

ņ

i�1

xiεi

� λn

p̧

i�1

����βi � n�1{αui

���� |βi|
	�

� argmin
u

qVn puq , (say).
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Write |W n � n�1{α
°n
i�1 xiεi. Then, by Lemma 3.2, }|W n} � op1q, almost

surely. Define the sets

B1,n �
!
u : }u} ¡ K1n

p3�αq{2α
)

B2,n �
"
u : u P Bc

1,n, max
1¤i¤p

|ui| ¡ K2n
p2�αq{α

*
B3,n �

!
u : K3n

p2�αq{α   |ui| ¤ K2n
p2�αq{α @ i � 1, . . . , p0;

|ui| ¤ K2n
p2�αq{α @ i � pp0 � 1q , . . . , p

)
and,

B4,n �
!
u : |ui| ¤ K3n

p2�αq{α for some i � 1, . . . , p0;

|uj | ¤ K2n
p2�αq{α for all j � 1, . . . , p

)
,

(3.11)

where,

K1 �
�

8a

�
p̧

i�1

|βi| � 1

�
γ�1

0

�1{2

and K2, K3 are any given real numbers (not depending on n) satisfying

K2 P
�
4a pp� 1q γ�1

0 ,8



and K3 P
�

0, 1�
d
p0

�
1� γ0

γ�



a

2γ0



.

The sets B3,n and B4,n would be used in the proof of the next result. Let

A �  }|W n} Ñ 0 as nÑ8(
.

Then for all ω P A, there exists nω ¥ 1 such that for all n ¥ nω,

inf
uPB1,n

qVn puq
¥ inf

uPB1,n

�
np1�2{αqγ0,n}u}2 � 2}|W n}}u} � λn

p̧

i�1

�
n�1{α|ui| � 2|βi|

	�

¥ inf
uPB1,n

}u}
�
np1�2{αqγ0,n}u} � 2}|W n} � λnn

�1{α

�
� 2λn

p̧

i�1

|βi|

¥ inf
uPB1,n

}u}
�
np1�2{αqγ0,n}u} � a

2

�
� 2λn

p̧

i�1

|βi|
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¥ inf
uPB1,n

�
np1�2{αq}u}2γ0

2

�
� 2λn

p̧

i�1

|βi|

�
�
γ0{2

�
K2

1n
p1�2{αqnp3�αq{α � 2λn

p̧

i�1

|βi|

¥ Cn1{α. (3.12)

Note that for α ¡ 1, p3� αq {r2αs   α�1, and therefore

sup
!
}u}n�1{α : u P Bc

1,n

)
� op1q.

Hence for u P Bc
1,n,

qVn puq � np1�2{αqu1Cnu� 2u1|W n � λn

n1{α

� p0̧

j�1

sgn pβjquj �
p̧

j�p0�1

|uj |
�

� np1�2{αqu1Cnu�
p0̧

j�1

uj

�
sgnpβjqn�1{αλn � 2|Wj,n




�
p̧

j�p0�1

|uj |
�
n�1{αλn � 2|Wj,nsgnpujq



. (3.13)

It is easy to check that for any ω P A, there exists nω ¥ 1, such that for all
n ¥ nω,

inf
uPB2,n

qVn puq
¥ inf

uPB2,n

�
np1�2{αqγ0,n}u}2 �

p̧

j�1

|uj |
�
n�1{αλn � 2

��|Wj,n

��	 �
¥ inf

uPB2,n

�
np1�2{αqγ0,n}u}2 � n�1{αλn}u}pp� 1q1{2

�
� inf

}u}PB2,n

}u}
�
np1�2{αqγ0,n}u} � n�1{αλnpp� 1q1{2

�
¥ K2n

p2�αq{α

�
np1�2{αqγ0,nK2n

p2�αq{α � n�1{αλnpp� 1q1{2
�

¥ Cnp2�αq{α. (3.14)

Since, by (3.13), qVn p0q � 0,

inf
uPBc

2,n

qVn puq ¤ qVn p0q � 0   min
!
Cnp2�αq{α, Cn1{a

)
.
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Hence by (3.12) and (3.14), infu qVn puq � infuPBc
2,n

qVn puq for n ¥ nω for all
ω P A. This completes the proof. l

Proof of Theorem 2.4. Next consider Theorem 2.4 and let A be
defined as before, i.e.

A �
!
}|W n} Ñ 0 as nÑ8

)
.

Then, for each ω P A, there exists nω ¥ 1, such that for all n ¥ nω, by
(3.11),

inf
uPB4,n

qVn puq ¥ inf
uPB4,n

�
n1�2{αγ0,n}u}2 �

p0̧

j�1

|uj |
�
n�1{αλn � 2

��|Wj,n

��	
�

p̧

j�p0�1

|uj |
�
λn?
n
� 2|Wj,n


�

¥ inf
uPB4,n

�
n1�2{αγ0,n

p0̧

j�1

u2
j �

p0̧

j�1

|uj |
�
n�1{αλn � 2}|W n}

	�

¥ inf
uPB4,n

p0̧

j�1

!
n1�2{αγ0,nu

2
j � |uj |

�
n�1{αλn � 2}|W n}

	)
.

Now, consider the function fpxq � c1x
2 � c2x, x ¥ 0, c1, c2 ¥ 0. This func-

tion is strictly decreasing on
�

0, c22c1

	
, strictly increasing on

�
c2
2c1
,8

	
, and

attains its minimum at x � c2
2c1

. The minimum value of fp�q is given by

f
�
c2
2c1

	
� � c22

4c1
, and min0¤x¤x0 fpxq � fpx0q for all x0 P

�
0, c22c1

�
.

Now, apply this to each of the p0 terms and use the definition of B4,n to
conclude that for all ω P A and η P p0, 1q, there exists nω ¥ 1 such that for
all n ¥ nω,

inf
uPB4,n

qVn puq ¥ pp0 � 1q

����
�
n�1{αλn � 2}|W n}

	2

4γ0,nn1�2{α

���
�
�
n1�2{αγ0,nK

2
3n

2p2�αq{α �K3n
p2�αq{α

�
λn

n1{α
� 2}|W n}


�
� np2�αq{α

�
γ0,nK

2
3 �K3

�
λn

n1{α
� 2}|W n}
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� pp0 � 1q

�
n�1{αλn � 2}|W n}

	2

4γ0,n

���
¥ � np2�αq{α

�
�γ0K

2
3 �K3a� pp0 � 1q a

2

4γ0

�
p1� ηq ; (3.15)

Finally, consider qVn puq for u P B3,n. Let,

u0 �
�
� sgnpβ1q, . . . ,�sgnpβp0q, 0, . . . , 0

	1
K4n

p2�αq{α,

with K4 � a{2γ�.

Then, for all ω P A and η P p0, 1q, there exists nω ¥ 1 such that for all
n ¥ nω,

inf
uPB3,n

qVn puq ¤ qVn pu0q (as u0 P B3,n)

¤ np1�2{αqγ�n}u0}2 �
p0̧

j�1

uj,0

�
sgnpβjqn�1{αλn � 2|Wj,n

	
¤ n1�2{αγ�np0K

2
4n

2p2�αq{α � p0n
�1{αλnK4n

p2�αq{α � 2K4n
p2�αq{α

p0̧

j�1

||Wj,n|

� � np2�αq{α

�
K4p0n

�1{αλn �K2
4p0γ

�
n � 2K4

p0̧

j�1

||Wj,n|
�

¤ � n�p2�αq{α
�
K4p0a�K2

4p0γ
�
� p1� ηq (3.16)

Now check that by the condition, γ0 ¡ γ�
�
1� p�1

0

�
, we have

�
K4p0a�K2

4p0γ
�
� ¡ �

�γ0K
2
3 �K3a� pp0 � 1q a2

4γ0

�
.

Hence, there exists η0 P p0, 1 such that for all η P p0, η0q,�
K4p0a�K2

4p0γ
�
� p1� ηq ¡

�
�γ0K

2
3 �K3a� pp0 � 1q a2

4γ0

�
p1� ηq .

(3.17)
By choosing η   η0, and using (3.12)-(3.17), it follows that for all ω P A,
there exists nω ¥ 1 such that for all n ¥ nω,

inf
u

qVn puq � inf
uPB3,n

qVn puq . (3.18)
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Theorem 2.4 follows from this. l

Proof of Theorem 2.5. Write

C �
�
C11 C12

C21 C22



,

where C11 is p0 � p0. From the proof of Theorem 2.4 (cf. (3.18)), it follows
that

n1{α
�pβn � β	 � argmin

u

qVn puq � argmin
uPB3,n

qVn puq ,
where qVn puq has the representation (3.13), and

B3,n �
!
u : K3n

p2�αq{α   |ui| @ i � 1, . . . , p0;

|uj | ¤ K2n
p2�αq{α @ j � 1, . . . , p

)
with K2 and K3 as defined in (3.11). Fix

up1q � pu1, . . . , up0q1 P
�
K3n

p2�αq{α,K2n
p2�αq{α

�
,

and let

Bp1q
3,n �

!
up2q : |uj | ¤ K2n

p2�αq{α, pp0 � 1q ¤ j ¤ p
)
.

Note that, as C12 � 0,

argmin
up2qPB

p1q
2,n

qVn �up1q,up2q	
� argmin

up2qPB
p1q
2,n

np1�2{αq

"�
up2q

	1
C22up2q � 2

�
up1q

	1
C12up2q

*

�
p̧

j�p0�1

|uj |
�
n�1{αλn � 2|Wj,nsgnpujq

�
� argmin

up2qPB
p1q
2,n

np1�2{αq
�
up2q

	1
C22up2q �

p̧

j�p0�1

|uj |
�
n�1{αλn � 2|Wj,nsgnpujq

�
.

Since }|W n} � op1q w.p. 1, for every ω P A �
!
}|W n} � op1q

)
, there exists

nω ¥ 1, such that for all n ¥ nω,

n�1{αλn � 2||Wj,n| ¡ a

2
¡ 0, for all j � pp0 � 1q , . . . , p.
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Hence, by the positive definiteness of C22, the minimizer of the expression
above is up2q � 0. This proves the theorem. l

Proof of Example 2.1. Let y � n�p2�αq{αu, i.e., u � np2�αq{αy,
and,

B3 � n�p2�αq{αB3,n

� ty : K3   |yi| ¤ K2, for i � 1, . . . , p0, and
|yi| ¤ K2 for i � pp0 � 1q , . . . , pu .

Note that

qVn puq � qVn �np2�αq{αy	
� np2�αq{α

�
y1Cny �

p0̧

j�1

yj

!
n�1{αλnsgn pβjq � 2|Wj,n

)
�

p̧

j�p0�1

|yj |
!
n�1{αλn � 2|Wj,nsgnpyjq

)�
,

and u � np2�αq{αy P B3,n ô y P B3.

Hence,

argmin
u

qVn puq � argmin
uPB3,n

qVn puq � argmin
uPB3,n

n�p2�αq{α qVn puq
� np2�αq{α argmin

yPB3

�
y1Cny �

p0̧

j�1

yj

!
n�1{αλnsgn pβjq � 2|Wj,n

)
�

p̧

j�p0�1

|yj |
!
n�1{αλn � 2|Wj,nsgnpyjq

)�
� np2�αq{α

�
1� o p1q �

� argmin
yPB3

�
y1Cy � a

#
p0̧

j�1

sgn pβjq yj �
p̧

j¡p0

|yj |
+�

, w.p. 1. (3.19)

Since sgn pβjq � 1 for 1 ¤ j ¤ p0, for any y P Rp, we have

Qpyq � y1Cy � a

�
p0̧

j�1

yj �
p̧

j�p0�1

|yj |
�
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�
p̧

i�1

ci,iy
2
i � 2

p0̧

i�1

p̧

j�p0�1

ci,jyiyj � a

�
p0̧

j�1

yj �
p̧

j�p0�1

|yj |
�

¥
p̧

i�1

ci,iy
2
i � 2

p0̧

i�1

p̧

j�p0�1

ci,j |yi||yj | � a

p0̧

j�1

|yj | � a

p̧

j�p0�1

|yj |

� Q pg pyqq ,
where, gj pyq � �|yj |, 1 ¤ j ¤ p0 and gj pyq � |yj |, pp0 � 1q ¤ j ¤ p. Hence,
it follows that

argmin
yPB3

y1Cy � a

�
p0̧

j�1

yj �
p̧

j�p0�1

|yj |
�

� argmin
K3¤yi¤K2, i�1,...,p0
0¤yj¤K2, j�p0�1,...,p

p̧

i�1

ci,iy
2
i � 2

p0̧

i�1

p̧

j�p0�1

ci,jyiyj � a

p0̧

i�1

yi � a

p̧

j�p0�1

yj .

Next consider the quadratic form

Q1 pyq �
p̧

i�1

ci,iy
2
i � 2

p0̧

i�1

p̧

j�p0�1

ci,jyiyj � a

p0̧

i�1

yi � a

p̧

j�p0�1

yj

� y1Ay � 2b1y,

where

A �
�
C11 �C12

�C 1
12 C22

�
and b �

�
�a, . . . ,�alooooomooooon

p0

, a, . . . , alooomooon
pp�p0q


1
.

It is easy to check that Q1 pyq attains it minimum (over Rp) at y0 � A�1b.
Now from Rao (1973) (pp. 33),

A�1 �
�
C�1

11 � FE�1F 1 �FE�1

�E�1F 1 �E�1

�
,

where,

F � �C�1
11 C12 � � γ

M
1, and,

E � C22 �C 1
12C

�1
11 C12 � m� γ2

M
111 �

�
m� p0γ

M

	
ùñ A�1 �

�
M�1Ip0 �

�
γ
M

�2 111

E
γ
ME1

γ
ME11 E�1

�
.
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Thus for all 1 ¤ i ¤ p0,

�
A�1b

�
i
� the i-th coordinate of A�1b � �a

�
M�1 � γ2p0

M2E

�
� aγ

ME

� a

ME

�
γ � p0γ

M
�m� γ2p0

M

�
� a

ME

�
γ �m� p0γ

M
p1� γq

�
.

and for i � p0 � 1, �
A�1b

�
p0�1

� a

E

�
1� γp0

M

�
.

Clearly
m   γ ¤ 1 and M ¡ γp0, (3.20)

makes all co-ordinates of A�1b positive. Also, note that the eigenvalues of
C are given by (cf. pp. 32, Rao (1973) ):

det pC � λIq � 0

ñ
∣∣∣∣pM � λq I γ1

γ11 pm� λq
∣∣∣∣ � 0

ñ pM � λqp0�1 �pm� λq pM � λq � γ2p0

� � 0
ñ λi �M, for pp0 � 1q many i’s and

λ � 1
2

�
pm�Mq �

!
pM �mq2 � 4γ2p0

)1{2
�
.

Note that for M large, pM �mq ¡
�
pM �mq2 � 4γ2p0

�1{2
, and hence,

γ0 � 1
2

�
pM �mq �

!
pM �mq2 � 4γ2p0

)1{2
�

and,

γp � 1
2

�
pM �mq �

!
pM �mq2 � 4γ2p0

)1{2
�
,

where γp is the largest eigenvalue of C. Since K�1
2 and K3 can be chosen

arbitrarily small, it is easy to find a set of m, γ,M such that (3.20) holds,
γ0 ¡ 0 and y0 � A�1b P B3. For any such choice of m, γ0,M , y0,p0�1 ��
A�1b

�
p0�1

P p0,8q, and therefore, by (3.19), (2.6) holds. l
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Proof of Theorem 2.6. Note that,

pβn � argmin
t

1
n1{α

ņ

i�1

�
yi � x1it

�2 � λn

n1{α

ņ

i�1

|ti|

ñ
�pβn � β	 � argmin

u
n�1{α

�
u1X 1

nXnu
	
� 2�W 1

nu� n�1{αλn

p̧

i�1

|βi � ui|

� argmin
u

rVn puq (say).

Fix η P p0,maxt1, δuq, where δ � max t|βi| : 1 ¤ i ¤ p0u. (Set δ � 0 if
p0 � 0). Let

D1 � tu : }u} ¡ p4pδ � 1qu ,
D2 �

!
u : |βi � ui| ¡ η, for some i, 1 ¤ i ¤ p ; u P Dc

1

)
,

D3 �
!
u : |βi � ui| ¤ η, for all i � 1, . . . , p

)
.

Then, there exists a set A with P pAq � 1 such that for all ω P A, there
exists a nω ¥ 1 such that for all n ¥ nω, the following inequalities hold:

inf
uPD1

rVn puq ¥ inf
u

�
� 2�W 1

nu� n�1{αλn

p̧

i�1

|βi � ui|
�

¥ inf
u

�
� 2}�W n}}u} � n�1{αλn

�
}u} �

p̧

i�1

|βi|
	�

¥ inf
u

�
}u}

�
� 2}�W n} � n�1{αλn

	
� n�1{αλn

p̧

i�1

|βi|
�

� p4pδ � 1q a
2
� 2a

p̧

i�1

|βi| ¥ a

2
;

Similarly,

inf
uPD2

rVn puq ¥ inf
uPD2

�
� 2}�W n}}u} � n�1{αλn

p̧

i�1

|βi � ui|
�

¥ � 2}�W n} p4pδ � 1q � n�1{αλnη

¥ aη

2
, w.p. 1. ;
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and, using the fact that 0   α   1,

inf
uPD3

rVn puq ¤ Vn p�βq ¤ np1�1{αqβ1Cnβ � 2�W 1

nβ ¤
aη

4
.

Hence, for all ω P A (where P pAq � 1), there exists nω ¥ 1 and that for all
n ¥ nω,

argmin
u

rVn puq � argmin
uPD3

rVn puq ñ �pβn � β	 P D3

Hence, it follows that
�pβn � β	Ñ �β almost surely, which implies pβn Ñ 0

almost surely. l
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