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Abstract Under certain conditions, the distribution of burr is shown to follow
an extreme value distribution. In this context, a result on extremal process
based on stationary sequence is proved. Some data sets are analyzed and
applications of the results indicated.
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1 Introduction

A burr refers to the raised edge on a job. This occurs when the edge of the job
after processing is not at the usual surface level. Burr may be of the form of
a fine hairline on the edge of a freshly sharpened tool, or it may be a raised
portion on a surface, after being punched by a heavy object.

Unwanted material remaining after a machining operation such as grinding,
drilling, milling, or turning form the burr. For example, after perforation of a
shaped metallic lametta by a punching machine, a small portion of the metal
is found along the rim of the hole on opposite side. Formation of burr in
machining causes a significant amount of machining costs.
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Burr affects engine performance, reliability, and durability. The cost and
time needed to remove burr by subsequent drilling and deburring operations
are substantial.

Such raised edge may also occur when the jobs are given a specified shape
by aluminum or iron casting, or while manufacturing objects by molding of
marble-dust paste, plaster of Paris etc. For example, in some brands of molded
tea cups, burr can be seen as a ridge on outer surface.

The maximum reading of surface displacements measured at some specified
points on the raised edge of the job from the surface level is a measurement
of burr. Thus it is a nonnegative quantity. High degree of burr may lead to
malfunction of the job.

In Section 2, we describe a piercing operation on metal sheets and present
two sets of observations on burr formed on the rim of pierced holes. The
data sets suggest a positively skew distribution of burr. We consider extreme
value theory of correlated normal random variables and it is seen that Type
1 extreme value distribution provide a reasonable fit to empirical distribution
of burr. In order to account for unequal hole sizes in two data sets on burr,
in Section 3 we further model the data by a continuous, strongly Markov,
strictly stationary and Gaussian stochastic process, viz., Ornstein-Uhlenbeck
Process. After suitably scaling the two data sets, efficiencies of two production
processes are compared and the parameters of the common extreme value
distribution, combined after scaling are obtained. We consider confidence-
ellipse of the parameters and discuss its utility to check stability of the
process. Semiparametric testing and data analysis are done to compare the
processes. The process stability is checked by bootstrapping the distribution
of coefficient of variation under extreme value model and also without this
assumption. Confidence intervals for coefficient of variation are obtained.
Estimated densities of coefficient of variation seem to be positively skew. In
Section 4, we consider the case when burr has a preferred direction. A result on
extremal process based on stationary sequence of random variables is proved
in Appendix. This may be of independent interest. As an application, we show
that an extreme value distribution may as well explain the distribution of burr
having a preferred direction.

2 Operation and empirical data

We consider a perforating operation on jobs made of iron sheet. The job is a
100 mm x 150 mm sized L-shaped rectangular sheet and in all, four holes are
made, two on each arm.

The operation is done on a 100 ton press, with 250 strokes per hour speed,
thus it is a fast operation.

The operation is called piercing. Two holes are made simultaneously at a
time. The job is a pierced L-shaped iron sheet, to be used in the chassis of light
commercial vehicles or mini-lorries.
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The burr is formed circularly surrounding the hole on the metal sheet at
the other side of piercing. The high pressure exerted while piercing the metal
sheet makes the contact surface unevenly displaced. On the opposite surface,
the granules of the metal are sharply and unevenly raised along the rim of the
circular hole forming the burr. The properties of metal grains and piercing
load affect the magnitude of burr. The grain structure & texture of metals
depend on composition, melting point as well as cooling rate, thermal and
constitutional under-cooling, and convection, see e.g. Skrotzki et al. (2005).

The burr is removed later by chamfering using a drill. The least count of the
instrument, a dial gauge, used to measure burr for the following data sets is 20
micron (um) or 0.02 mm.

For the first data set of 50 observations on burr (in the unit of millimeter),
the hole diameter is 12 mm and the sheet thickness is 3.15 mm. For the second
data set of 50 observations, hole diameter and sheet thickness are 9 mm and 2
mm respectively. Hole diameter readings are taken on jobs with respect to one
hole, selected and fixed as per a predetermined orientation. The two data sets
relate to two different machines under comparison.

Data Set 1

0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16,
0.08, 0.26, 0.32, 0.28, 0.14, 0.16, 0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16, 0.14,
0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18,
0.22,0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16.

Data Set 2

0.06, 0.12, 0.14, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.22, 0.16, 0.12, 0.24, 0.06,
0.02, 0.18, 0.22, 0.14, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.02,
0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.22, 0.14, 0.06, 0.04, 0.16, 0.24, 0.16, 0.32,
0.18,0.24,0.22, 0.04, 0.14, 0.26, 0.18, 0.16.

3 Some observations from empirical data and the model

The followings are the grouped frequency distribution of burr in mm for the
two data sets.

The two data sets relate to two different machines for similar operations
in the same site of a factory. The Kolmogorov-Smirnov test statistic based
on the maximum fluctuation of absolute difference between two empirical
distribution functions, for testing the null hypothesis that the two samples arise
from same population has the value 0.5. This value is insignificant at 5% level.

Table 1 Frequency distribution for Data Set 1

Burr .02 .04 06 .08 12 .14 .16 18 22 24 26 28 32
Freq." 2 3 3 4 4 6 7 4 4 6 3 1 3
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Table 2 Frequency distribution for Data Set 2

Burr .02 04 06 .08 12 14 .16 18 22 24 26 28 32
Freq." 3 4 5 1 3 8 6 5 7 4 2 0 2

The frequency distribution for the combined sample is given below.

The combined sample indicate the possibility of a heavy right tailed distrib-
ution for burr.

We now search for a suitable model based on the following consideration of
burr formation. On a particular point i on the circular rim, identified in polar
coordinates with suitable reference axis, the net amount of vertical displace-
ment of metal from the surface level is the sum of two positive displacements
X;1 and X, from two sides of the sheet towards the direction of vertical
pressure. Thus, total displacement equals to Xj; + X = X; , say. Typically
the displacement of metal on the side of exerting pressure for piercing is more
or less homogeneous and of lower order, compared to displacement of metal
granules on the other side, which mainly contributes to formation of burr.

For m observations are taken on the circumference of the circle then the
magnitude of burr is max;<;<,, X; = X, , say. Here the value of m is 100.

Datasets 1 and 2 and subsequent Tables 1, 2 and 3 refer to the observations
on burr X, = X*. Burr observations X* refer to different holes and are
assumed to be independent.

Under certain assumptions, the standardized maximum of a set of random
variables has an extreme value distribution in the limit, e.g., see Galambos
(1987). Therefore a candidate distribution for burr X} may be any of the
following three types.

Distribution 3.1 for X}; = max, <, X; occur when the tail behavior of the
individual random variables X; are similar to that of normal, lognormal or
exponential random variables, among others.

F(x) = exp(—e “M/%) —00 < x < 00, 4 € (—00,00),0 > 0. (3.1)

The following type of distributions are appropriate when the tail probability
of the random variable X; s are polynomially decaying, apart from a slowly
varying multiplicative factor; if any.

F(x) =0, X<
= exp(_(%)_a)a XMW, ne (—OO, OO), o, 0 > 0.

Burr being a nonnegative quantity, one may consider distributions starting
from p = 0; the above then reduces to

F(x) =0, x<0

=exp(—(3)™), x>0, @, 0 > 0. (32)

Table 3 Frequency distribution for combined data

Burr 02 04 06 08 12 14 16 18 22 24 26 28 .32
Freq." 5 7 8 5 7 14 13 9 11 10 5 1 5
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The following type of distributions may occur when the random variables
are bounded above.

F(x) =exp(—(55)), x <p, >0 (33)
=1, X>u, € (—o00,00), a o>0. ’

The last type of distributions are negatively skew and the other types are
positively skew. The type of distribution appropriate for a particular problem
may be found from the skewness of the observed frequency distribution and
the probability plot of empirical and theoretical distributions.

Distributions 3.3 are negatively skew and have an upper end point. The
magnitude of burr does not have an upper bound in general. The combined
sample suggests the possibility of a right tailed distribution for burr. Therefore
the model 3.3 is excluded from our consideration. For Eq. 3.1, we have

log(—log F(x)) = —(x — ) /o (3.4)

Thus if the model is appropriate then log(—log F,,(x)) should have an
approximate linear relationship with x, where F), is the sample c.d.f.

Estimation of the parameters of an extreme value distribution by the
method of maximum likelihood is computationally involved and requires
numerical iteration. One may initially estimate the parameters u and o from
the intercept and slope of the fitted line via the method of least squares. For
the model 3.2, the linear relationship is of the form

log(—log F(x)) = —alogx + alogo (3.5)

One may also check the adequacy of the model 3.2 and estimate the
parameters, replacing F by F, in Eq. 3.5. The type of the distribution
and the parameters appearing therein are the machine, operator and job
characteristics.

The mean displacement of the plane metal-surface towards the direction of
pressure, depends on the amount of pressure exerted, thickness of the sheet,
texture of the material etc. The actual displacement at a particular point is
therefore a random variable fluctuating around the mean displacement. The
individual displacements over different points on the rim are correlated in
general. Net displacement being sum total of displacements due to several
independent causes, the individual fluctuations may be assumed to be normal.
The extreme value distribution corresponding to normal random variables
may then explain the distribution of burr, which corresponds to maximum of
normally distributed fluctuations.

The fluctuations may be weakly correlated for extreme value distribution to
hold. From the extreme value theory of correlated normal random variables,
we state (without proof) a large sample result; see, e.g., Galambos (1987). Since
the autocorrelation function of Ornstein-Uhlenbeck process is exponentially
decaying, the limiting distribution stated below may be successfully applied to
the observations taken from this process at discrete points of time.
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Theorem 1 Let Z,(r) be the maximum of a Gaussian stationary sequence
X1, Xo, -+, X,, with zero expectation, unit variance, and correlations r, =

EXi Xy Leta, = - — 3b,(loglogn + log4n), b, = (2logn)~""2

Then (Z,(r)—a,)/b, 4 H(x) = exp(—e™),—00 <x <00 provided,
rmlogm — 0, as m — oo.

We next plot the cumulative distribution function for Data set 1 and 2 after
appropriate transformations to compare with theoretical distributions 3.1 and
3.2. The same procedure is repeated for combined data set as well. In all the
cases the distribution 3.1 provides a reasonable fit; see Figs. 1, 2, 3, 4, 5 and
6. The values of R? for linear regression are quite high; indicating that the
parameter of the distributions may be estimated graphically. The results are
summarized in Table 4.

One may compare the magnitude of burr over two data sets taking into
consideration the unequal hole sizes in two data sets. For the first data set holes
have 12 mm diameter, and for the second data set holes are of 9 mm diameter.
Thus the perimeter of hole in first and second sets are 127 mm and 97 mm
respectively. The displacements of metal over points on rim are assumed to
be normal and stationary. The overall displacements may then be modeled by
Ornstein-Uhlenbeck process V(s), a stationary continuous Gaussian process.

The Ornstein-Uhlenbeck (O — U) process is continuous, strongly Markov,
strictly stationary and Gaussian.

Apart from some pathological examples, the above properties characterize
O — U process.

In some operations metal-sheets are given a finer thickness by pressing
these through a series of rollers and then the sheets are given a regular shape
by trimming the edges; see Dasgupta (2006) where efficiencies of production
processes in terms of minimizing wastage due to trimming are compared by

Fig. 1 Extreme value fit
Eq. 3.1 of 50 chassis
components—data 1

log(-log(Fn(x)))
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Fig. 2 Extreme value fit
Eq. 3.2 of 50 chassis
components—data 1

Fig. 3 Extreme value fit
Eq. 3.1 of 50 chassis
components—data 2

Fig. 4 Extreme value fit
Eq. 3.2 of 50 chassis
components—data 2

log(-log(Fn(x)))

log(-log(Fn(x)))

log(-log(Fn(x)))
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log(x)
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Fig. 5 Extreme value fit
Eq. 3.1 of 100 chassis
components—data 1,2

log(-log(Fn(x)))

T T T T T

0.05 0.10 0.15 0.20 0.25

this stochastic process. Ornstein-Uhlenbeck process satisfies the following
differential equation.

dV(s) = —BV(s)ds + ydB(s), B >0, y >0 (3.6)

where B(s) is the standard Brownian motion, 8 is the drift parameter; BV (s) is
a restoring force directed towards origin proportional to the distance V(s).

Using the relationship V(s) = e7#* B[y?(e*#* — 1)/28], see e.g. Karlin and
Taylor (1981), one may write

> —-1/2
limy_, o [%(1 + o(1)) log ti| sup—,—, | V(s) =1, as. (3.7)

Thus, the value of (21log#)~"/? sup,_,., | V(s) | may be taken as an estimate of
y/(2B)"/?, which equals to the standard deviation of the Ornstein-Uhlenbeck
process. In the present case, ¢ represents the rim-perimeter of holes, on which
the burr is formed. Dissecting the formed hole at a point on the rim and

Fig. 6 Extreme value fit I
Eq. 3.2 of 100 chassis - S
components—data 1,2 °
o
o
o4
P o
)
f= o
L
D T4 o
S
g o
o
o
o
| o
T T T T T T
-4.0 3.5 3.0 25 2.0 -1.5

log(x)
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Table 4 Fitting the models 3.1 and 3.2 to burr

Data Model Parameter R? Residual No. of
standard distinct
error points

1, 3.1) (i, o) = (0.1101, 0.0690) 0.9684 0.2427 13

1, (3.2) (o, 0) = (1.4123, 0.0782) 0.8007 0.6098 13

2, 3.1) (i, o) = (0.0987, 0.0626) 0.9364 0.3609 12

2, 3.2) (o, 0) = (1.4309, 0.0700) 0.7414 0.7278 12

1& 2, 3.1) (i, o) = (0.1041, 0.0654) 0.9619 0.2821 13

1& 2, 3.2) (a, 0) = (1.4751, 0.0732) 0.7809 0.6763 13

Scaled 1& 2, 3.1) (i, o) = (0.0417, 0.0241) 0.9504 0.3248 25

Scaled 1& 2, 3.2) (a, 0) = (1.5303, 0.0294) 0.7586 0.7168 25

then by straightening the perimeter along the X-axis, one may visualize the
displacements along Y-axis.

The displacements, caused by high press stroke, over the rim of pierced
hole at different points s, 0 <s < t, are modeled by the Gaussian process
V(s). When the press is withdrawn, the lower boundary of the curve is pulled
back to the surface level of the plane sheet due to elasticity of the material.
Leveling the curve at one end does not however change the magnitude of
SUpy<s<; | V(s) |, measured at the other end. Each observation on burr may
then be identified with an independent realization of sup,_,_, | V'(s) | . The two
sets of process parameters (8, yi) and (B2, ) correspoﬁd_ing to two piercing
operations may then be compared by the ratio of average burrs b; and b,
computed from the two data sets. Thus from Eq. 3.7, one may write

)/2 —1/2 y2 =tz
[ﬂ—i(l+0(l))logt2:| /[ﬂ—'l(l—l—o(l))logtl} ~b,/b>. (3.8)

Hence,

/28" [logtz]'/2 b (3.9)

v/ Llogt by

The Lh.s. of Eq. 3.9 represents the ratio of standard deviations of two
Ornstein-Uhlenbeck processes associated with two piercing operations and
thus it is a measure of efficiency e 1) = e»/e; of Piercing operation 2 with
respect to Piercing operation 1.

For the two data sets under consideration, t; = 127 mm, # = 97 mm and
the estimated efficiency, 1) = 1.030 =~ 1.

Scaling factor (2log#)~"/2 of supy_,, | V(s) |, used to estimate the parameter
y/(2B)"/?, may lead one to consider the scaled version of two data sets using
the scale (2log#)~!/2. Observe that the computed efficiency é( 1, is near 1
for two scaled data sets. Also, the Kolmogorov-Smirnov test statistic, for
testing the null hypothesis that (after scaling) the two samples arise from same
population, has the value 0.6 (recall that the previous value of the statistic,
corresponding to the original data is 0.5). This value is insignificant at 5% level.
The above findings may lead one to estimate the parameters of the common
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extreme value distribution of burr (per unit length of 1 mm on rim-perimeter)
from combined observations; i.e., two samples combined together after scaling,
based on the information #; = 127 mm, t, = 97 mm; for the first and second
data sets respectively.

Extreme value distribution 3.1 and 3.2 probability-plots for scaled and com-
bined data sets with 100 observations are shown in Figs. 7 and 8 respectively.
Estimated parameters are shown in Table 4.

For model 3.2, the parameter o refers to the polynomial decay of tail
of the distribution of individual displacements X = X; i.e., P(X > x) ~
x~“L(x), x — oo, where L(x) is a slowly varying function.

In terms of higher value of R? and lower value of ‘residual standard error’
for straight-line fit in the probability plots of the data points, it is seen that
the distribution 3.1, i.e., Type 1 extreme value distribution provide a better fit
compared to extreme value distribution 3.2, corresponding to variables that
are bounded above; see Table 4. The same feature is revealed in Figs. 1-8.
Figures 1, 3, 5, 7 (corresponding to model 3.1), show better linear fit compared
to Figs. 2, 4, 6, 8 (corresponding to model 3.2), respectively. We, however,
ignore a very small but systematic bias present near the middle of the Figs. 1,
3,5, 7; (model 3.1). The bias is prominent in the other set of Figs. 2, 4, 6, 8;
(model 3.2). This indicates Eq. 3.1 is a better model than Eq. 3.2.

In all the above cases, distributions 3.1 provide a satisfactory fit to the data
compared to distributions 3.2, indicating that the individual displacements at
different points over the rim may possibly be modeled by (correlated) normal
random variables.

A kernel density estimate of burr for the combined data after scaling
indicates a right tailed distribution with more mass concentration for values
to the left of mode, see Fig. 9.

We did not modify the density estimate for burr towards lower tail, as —co <
x < oo in the proposed model 3.1; much like a normal model is considered
appropriate for nonnegative random variables like height or weight.

Fig. 7 Extreme value fit Eq.
3.1 of 100 -
components—scaled data 1,2

log(-log(Fn(x)))

T T T T T
0.02 0.04 0.06 0.08 0.10 0.12
X
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Fig. 8 Extreme value fit Eq. °
3.2 of 100 -4 © >
components—scaled data 1,2 ° o,
%o %
O A o
o
= o
= o
c o o
w o
e o
g o g
o
o
(") - o
< o
T T T T T T
-5.0 -4.5 -4.0 -3.5 -3.0 -2.5
log(x)

We shall further observe that fit to model 3.1 is better when the parameters
of the burr distribution are estimated via method of moments, vide Fig. 10.

Likelihood equations for model 3.1 do not admit explicit solutions and
hence require numerical iterative methods. The m.l.e. of x and o are given
below.

I ¢ 5 S, o
1= —6log 4 — e~ Xilo L o=X—— X.e~Ximiv/o
e Y Rk

One may estimate e (Xi7W/% appearing in the above expression by
—log F x(X;), where F is taken as empirical c.d.f. calculated from available
data. Based on the scaled data set 1 & 2 combined, consisting of 100 observa-
tions, the maximum likelihood estimates thus obtained are as follows.

A =0.051398, & =0.052583

Fig. 9 Kernel density of
scaled burr, combined data o
(width = .075)

T
-0.05 0.0 0.05 0.10 0.15
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Figure 10 describes the closeness of empirical distribution function of com-
bined data on scaled burr with proposed model 3.1 where the parameters are
estimated by

(i) method of regression: (ft, 6) = (0.0417, 0.0241)
(il) method of maximum likelihood: (&, 6) = (0.051398, 0.052583)
(iii) method of moments: (ft, 6) = (0.04614798, 0.02344912).

A robust procedure of estimating parameters by fitting a regression line via
minimising the L, distance provides the following estimates. L; distance
assigns less weight to the outliers compares to squared error loss.

(iv) method of L; regression (M-estimate) : (&,d) = (0.03991528,
0.0270572)

Distribution 3.1 has mean (u + yo) and variance m°02/6, where y =
.5772... is Euler’s constant; these were equated with observed mean (=
.05968281) and variance (= .000904485) of scaled burr with combined data of
100 observations to estimate of parameters via method of moments.

From Fig. 10 it is clear that the method of moments provides a better fit
of the model to the empirical distribution, amongst the four above mentioned
procedures.

For testing H, : F = F,, a robust nonparametric test viz., the Kolmogorov-
Smirnov test statistic D, = /nsup, |F,(x) — F,(x)| may be used. However,
note that we have estimated the parameters of the model from the data and one
needs to use adjusted KS statistic, adjustment obtained mainly via simulation,
e.g., see Marks (2007), where the leading term of approximations is D, in
various models F, under which the relevant parameters are estimated; the next
term of the approximation is O(n~'/?). In view of that we may use the critical
values of D, for the present purpose as a first approximation, n being 100 for
the combined burr data. D,, has the values 1.90, 2.66, 1.30 and 1.97 for cases (i),
(ii), (iii) and (iv) respectively. The third value is insignificant at 5% level (with

Fig. 10 Empirical and fitted e |
distributions of scaled burr, ——  Empirical DF =
3 -—-— Regression estimate » g
combined data © -== L1 Regression estimate L
S —=—= Moment estimate e
-+ ML estimate 227 _
© -
24
x
e
<
IS}
N
IS}
= =
=
T T

T T T T T
0.0 0.02 0.04 0.06 0.08 0.10 0.12
X
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critical value 1.36). Other three values are significant even at a much lower
level of 0.50% (with critical value 1.73).

Thus we accept the model 3.1 with estimated parameters given in (iii).

This incidentally reveals an interesting feature of the data. Sometimes the
method of moments provides a better fit in comparison to the method of
maximum likelihood, with initial estimate taken from probability plot.

It may be mentioned that Jureckova (2003), Beirlant et al. (2006) and
Koning and Peng(2007) studied nonparametric statistical methods for compar-
ing within a class of Gumbel type extreme value distribution: H, : F € D(G,),
where G, (x) = exp{—(1 + yx)~'/7} with y > 0; see Husler and Peng (2008) for
these and related references. Distributions 3.1 are of different class.

The extreme value distribution 3.1 may be used to monitor the stability of
the production process. From the long-term data collected at a steady state,
suppose the process parameters are found to be stable at (o, 0,). One may
also assign the specified target values for (u,, 0,).

To check the stability/meeting the specification of the current production,
one may estimate the parameters (i, o) on batches of sample sizes n and
compute the maximum likelihood estimator ({i, ). The asymptotic dispersion
matrix of the m.l.e. (&1, ) is given by

2 2
5 ] (1.108670 256960 ) (3.10)

256965% .607930

See e.g., (22.65) and (22.110) of Johnson et al. (1995).

Thus, (& — fo, & — o) E " (4 — o, & — 0,) is an approximate x> random
variable. One may then compute the confidence ellipse of (x4, o) with approx-
imate confidence coefficient « as

{(t,6) 1 (. — o, 0 — O’(,)ﬁ:*](,ll — o O — U()), =< X(f,n—_%} (311)

Here (ji,&) represents a particular element of confidence ellipse. 3 is
the estimated value of ¥ from Eq. 3.10 via estimated value of o2 from
samples. Values of ({1, 5) when plotted for several batches of samples on two
dimensional confidence-ellipse (Eq. 3.11) may indicate whether the process is
stable, or there is a systematic preferred direction present, as evident from the
possible cluster of plotted points.

Other robust nonparametric based procedures, like L; estimates may also
be used to check for process control. As already seen, in this particular data set
performance of L, estimates seems to be poor compared to moment estimates.

We may further analyze the data with less model assumptions. The
coefficient of variation (C.V.) is the ratio of standard deviation to mean, and
this is considered to be an index of process stability. Simple random sample
with replacement of size 100 were selected out of 100 data points observed
and the bootstrap sample C.V. calculated; and the whole procedure were
independently repeated 5,000 times (bootstrap simulation) to approximate
the distribution of C.V. The Empirical Distribution Function (EDF) of boot-
strapped C.V. is plotted in Fig. 11.
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Fig. 11 EDF of bootstrapped
CV (usual and extreme value)

1.0

— Usual CV
=== Extreme value CV

0.8

0.4 0.6

0.2

0.0

Also note that for a random variable X with extreme value distribution
31 E(X) =u+yo, V(X) =n252/6, where y &~ 0.5772. Thus the ratio of the
parameters o/ = C.Vey, say, after estimating o and p via the above relations
from data, may be considered as an alternative index of stability for the fitted
distribution 3.1. That is, take E(X) =X, V(X) = si; the sample mean and
variance calculated from data and obtain an estimate of o and u by solving
above two equations, then obtain an estimate of the ratio o/u = C.Vey. The
EDF of bootstrapped C.Vy; is also shown in Fig. 11.

The 95% bootstrapped confidence interval for C.V. and C.V turn out to
be (1.649, 2.408) and (1.736, 2.328) respectively.

In Fig. 12 the kernel density estimate of the bootstrapped C.V. and C.Vy
are shown. Figures are drawn by automatic bandwidth selection with selected
kernel as Gaussian using the software SPLUS. The densities are drawn on the
range of data and these indicate positively skew densities for C.V.s.

Fig. 12 Estimated density of
bootstrapped CV (usual and o |
extreme value)

— Usual CV
-=="  Extreme value CV
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4 Preferred direction and weak convergence

In some operations, the burr formed has a preferred direction. As a result,
the measurements taken around that location provide readings nearly the
maximum value of displacement. The operator or machine may exert more
force towards a particular region of the job and less force in the remaining
region. For example, while sharpening a knife the burr is formed near the edge;
the far end near the tip is processed last and force exerted at the tip may vary
compared to other regions. Such preferred direction of burr may also occur
when the material processed is of non-homogeneous texture. One may assume
the displacements at a point i on rim-surface from its original level of sheet,
to be a scaled amount ¢; X;; 0 < ¢; < 1, where ¢; 1 1, towards the preferred
direction of burr. The magnitude of burr Y is then max <<, ¢; X;. However,
due to randomly located non-homogeneous material texture on the job, there
may be intermittently full displacements X; at soft regions, in between the
scaled down displacements. One may then assume the displacements over a
point i is either (1) the full amount X;, or (2) a scaled down amount ¢; X;; ¢; 1
1,0 < ¢; < 1. In other words, we are considering a model where some of the
displacements are dampened by scale factors less than 1. Then the magnitude
of burr Y has the following bound.

max<j<m ¢; X; < Yy < maxj<j<m Xi. (4.1)

Let the random variables X; be stationary, although these may be depen-
dent. One may deduce the limit law of standardized Y,, to be an extreme
value distribution under certain conditions. Zeevi and Glynn (2004) consider
estimating tail decay along with characterization of dependence assumptions
required for almost-sure limit of normalized extreme values in stationary
sequences, see also the references therein.

The following theorem proved in Appendix provides an approximation
bound of the sequence Y, in terms of maximum of the stationary sequence
X;. This extends A3 of Dasgupta et al. (1981). The result holds irrespective of
weak limit existing for standardized maximum of the sequence Xj.

Theorem 2 Let (X;,i > 1) be a sequence of stationary random variables and
there exist constants a,,, b,, such that the standardized maximum,
Zm - b;,l(maxlgigm le - am) = Op(l)a (42)

i.e., the distribution of {Z,,,m > 1} is tight. Also let (¢c;; 0 <¢; <1, ¢; > 1),
be a sequence of non-decreasing constants and let i, = i,(n) be a sequence of
positive integers satisfying

nliy(n) — 0, c(iy) = cli,(n)) =1—o0( a,'byl); n>1. (4.3)

Then for any Y, satisfying Eq. 4.1, i.e., maxj<j<y ¢;X; < Y,, < maxj<j<, X;; one
has,

b1 (Y,, — max,<<, X;) — 0, in probability. (4.4)
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Further if,
f) =lab;"| (- o0) (4.5)
JA)

f@
condition 4.3 on c is implied by c(i) = 1 — 0(|ai_]bi|).

is non-decreasing in i and lim;_, < 00, for every fixed § > 0, then the

Remark 1 Variables {X;,i > 1} need not be continuous or independent for
Theorem 2 to hold. Since the distribution of standardized max,;<;<,, Xj, i.e.,
Z, is tight; it follows that the distribution of standardized Y/, is also tight, with
possibilities of weak limit(s) by Prokhorov’s theorem. However a unique weak
limit may not exist, when the variables are not continuous or independent.
Thus approximation 4.4 of Theorem 2 is not merely an extension of weak
convergence result, but provides useful bounds for burr Y in terms of X, even
in absence of a unique limit in a broad setup.

Condition 4.3 is weaker than Eq. 4.5. Theorem 2 is applicable even if Eq. 4.5
does not hold, e.g., if f(i) = | afbi_ll is bounded above; as for example, in the
case of normal random variables the (milder) assumption 4.3 requires c(i,) =
cli,(n) =1-o0(la,'b,)) =1—o0(1) > 1; n> 1, and one may consider i, =

io(n) = [log(e +n)] — oo, n~'iy(n) — 0.

Remark 2 Instead of a single sequence {c;} of dampening factor affecting
the burr, there may be a number of sequences of dampening factors
{ci),, -+, {cip}; where each sequence satisfies the conditions of Theorem 2.
These sequences of factors may be of different magnitudes, depending on
different types of soft regions located in the job. In such a situation, let the
displacement at a point i contributing to burr be either dampened by one of
the sequence of ¢’s depending on that particular point i, or let it be the full
displacement X;. The resultant burr Y then satisfies the following.

minj=1.....1J maxi<j<m cini <Y, < maxi<i<m X;. (4.6)

Towards the end of Appendix, a modified proof is outlined extending
Theorem 2 for Y, satisfying the bound Eq. 4.6.

Corollary 1 Let b, (max;<j<m X; — a,y) converge weakly to an extreme value
distribution. Then under the conditions of Theorem 2, the standardized Y,
of Eqs. 4.1 and 4.6 converge weakly to the above mentioned extreme value
distribution with same standardization.

Corollary 2 If the random variables X; satisfy the assumptions of Theorems 1
and 2, then the standardized Y,, of Eqs. 4.1 and 4.6 converge weakly to the
extreme value distribution 3.1.
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5 Concluding remarks

The distributions of burr in industrial products are investigated from empirical
and theoretical considerations. Extreme value distribution of type 1 is seen to
provide a reasonable fit to the distribution of burr. Individual displacements
on the raised edge over different points may be modeled by an Ornstein-
Uhlenbeck process V(s). Based on maximum fluctuation of |V (s)|, realized
as burr, the parameters of two different production processes and hence
efficiency of the productions are estimated. These reflect the characteristic
of the job-material, particular job production under consideration, and the
machine. Confidence interval and density estimates of coefficient of variation,
a measure of stability for production process are obtained by bootstrap. Some
general results on extremal process based on a stationary sequence of random
variables are obtained, which may be of independent interest.
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Appendix

Here we prove Theorem 2, extending A3 of Dasgupta et al. (1981). The earlier
proof of Dasgupta et al. (1981) has to be suitably modified so as to extend the
stated results from ‘iid continuous random variables’ to ‘stationary random
variables’. We provide a modified proof elaborated below.

Assume that the distribution of the stationary sequence X;’s are nondegen-
erate as the proof is trivial otherwise.

Consider a fixed sequence i, = i,(m) = o(m). If the value of max, <, X;is
attained at a single index of X, then from stationarity of the random variables,
P{UZ (X; = max <<, X))} = % since the index of X, attaining the maximum

=

value of X, is uniformly distributed on the set {1, - - - , m}.

In a similar fashion, if the maximum is attained for two distinct values of
the index, then the probability that both the indices are in the set {1, --- , iy},
is % < i? etc.

Thus, in general, the probability that at least one index with maximum value
of X will lie within the set {i, 4 1, - - - , m} is at least (1 — ;¢). In other words,

i
PUZ, (Xi = maXj<jem X))} > 1— 2 — 1, as m — o0.
=J= m

=1,

Now using the fact that {c;} is a nondecreasing sequence, one gets
i
P{U?;i')+1(Cini = maXi<j<m Cij)} >1- n—(; — 1.

On the intersection of above two sets, we have from Eq. 4.1

Cj, MaX1<j<m Xi =< Ym =< maxi<i<m le
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Thus it suffices to show that

(1) b,'(1 —¢;,)maxj<i<y X; — 0, in distribution.
Now from Eq. 4.2, Z,, = b,;‘ (max<j<m Xi — ap) i1s bounded in probabi-
lity. Write,

b;,l(l - ci,))maxlfl’sm Xi = (1 - Ci,))(amby_nl + Zm)'
Since ¢;, — 1, it is sufficient to show that,
(1 =ci)lamby'| = 0,

ie., c(i,(m)) =1—o0(| a,'b,,|). Hence the first part of the theorem.
To prove the second part, note that (1 — c(k)) f(k) = o(1), there exists a
sequence /(k) — oo such that
(2) (1 —ck) fhk) = o(1). (e.g., if (1 —c(k))f(k) <ex — 0, then one
may take h(k) = ek_'/z.)
Let n = n(k) be such that
(3) fnk) < fk— Dhtk—1) < f(ntk) + 1.
Such a choice of n = n(k) is possible as f(i) — oo, asi — oo.
(For a fixed k the middle term of the above is finite and as f(n(k)) — oo,
n(k) — oo; (3) is ensured.)
From the assumption lim,_,
that
4) k'nk) - occ.
To see this, suppose n(k) << k, divide the terms of (3) by f(k); then both
r.h.s. and Lh.s. terms of (3) are bounded above in view of ﬁ;_,oo% <
00, whereas the middle term — oo, leading to a contradiction.
Next, form =1, 2, --- define, k(m) = k if n(k) <m < n(k + 1). Then
5) fm) < f(ntk+ 1)) < f(k)h(k) see (3). Now from (2)

(6) (1 = cromy) f(m) — 0, where k(n’l’” < ”(kk((':l))) — 0, from (4).

1d)

< 00 for every fixed § > 0, it follows

Hence the second part.

We have a different bound for burr Y given in Eq. 4.6. Proof of Theorem
2 remains valid for every fixed j=1,---, p; as the sequence of constants
{c1j, -+, cmj} satisty the conditions therein. Theorem 2 therefore, holds for the
burr Y satisfying the bound of Eq. 4.6, as the minimum is taken over j, a finite
p number of terms.
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