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Abstract In this paper we consider the Bayesian inference of the unknown 
parameters of the progressively censored competing risks data, when the 
lifetime distributions are Weibull. It is assumed that the latent cause of failures 
have independent Weibull distributions with the common shape parameter, 
but different scale parameters. In this article, it is assumed that the shape 
parameter has a log-concave prior density function, and for the given shape pa­
rameter, the scale parameters have Beta-Dirichlet priors. When the common 
shape parameter is known, the Bayes estimates of the scale parameters have 
closed form expressions, but when the common shape parameter is unknown, 
the Bayes estimates do not have explicit expressions. In this case we propose 
to use MCMC samples to compute the Bayes estimates and highest posterior 
density (HPD) credible intervals. Monte Carlo simulations are performed to 
investigate the performances of the estimators. Two data sets are analyzed 
for illustration. Finally we provide a methodology to compare two different 
censoring schemes and thus find the optimum Bayesian censoring scheme.
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1 Introduction

In many life-testing studies, often the failure of items or individuals may be 
associated to more than one cause. These ‘risk factors’ in some sense compete 
with each other for the failure of the experimental unit. Due to this reason, in 
the statistical literature it is well known as the competing risks model. Several 
examples can be found, see for example Crowder (2001), where failure may 
occur due to more than one cause. In analyzing such data set, the investigator 
is naturally interested in the assessment of a specific risk in presence of other 
risk factors.

In analyzing the data for competing risks model, ideally the data consists 
of a failure time and the associated cause of failure. The causes of failure 
may be assumed to be independent or dependent. Although the assumption 
of dependence seems more reasonable, but there is some concern about the 
identifiability issue of the competing risks model. Several authors, see for 
example Kalbfleish and Prentice (1980), Crowder (2001), argued that without 
the information of covariates, it is not possible to test the assumption of the 
failure time distributions of the competing causes, just based on the observed 
data.

In this paper we use the latent failure time modeling of Cox (1959) for an­
alyzing competing risks data. In the latent failure time modeling, it is assumed 
that the competing causes of failures are independently distributed. Here it 
is further assumed that the lifetime distributions of the competing causes 
follow Weibull distributions with the same shape parameter, but different scale 
parameters. It may be mentioned that the assumption of the common shape 
parameter for the Weibull distribution in case of competing risks of model is 
not very unrealistic, see for example Rao et al. (1991), Mukhopadhyay and 
Basu (1997), Kundu and Basu (2000) and the references therein.

Therefore, if Tt denotes the lifetime of the ?'-th individual then

Tj =  min{X,i, • • • , X iM},

where X n ,- - ■ , X iM are the latent failure times of the M  different causes 
for the ?'-th individual. According to the latent failure time model assump­
tion, X n, ■ ■ • , XjM are independently distributed. Moreover, Xt], • • • , X iM are 
not observable, only is observable and the indicator / such that X,j =  
min{X,i, • • • , X iM} is observable. In this paper it is further assumed that X,j 
for j  =  1, • • • , M, follows a Weibull distribution with the probability density 
function (PDF)

[ aXje~klt“ta~l if t > 0  

f  ( t\a,Xj) =  I (1 )
' V ' [ 0  if t < 0 ,

here a  > 0, Xj > 0 are the shape and scale parameters of the Weibull distrib­
ution with the PDF (Eq. 1) and it will be denoted as W E(«, Xj). In this paper, 
from now on it is assumed that M =  2 for notational convenience, although all 
the results presented here are valid for general M.



Censoring is very common in most of the life-testing and reliability studies, 
because quite often the experimenter is unable to obtain complete informa­
tion on lifetimes of all the items/individuals. Although, Type-I and Type-
II censoring schemes are two most popular censoring schemes, but recently 
progressive censoring scheme has received considerable attention in the sta­
tistical literature due to its wide scale applicability, see for example Viveros 
and Balakrishnan (1994), Balasooriya et al. (2000), Ng et al. (2004), Kundu 
(2008), Pradhan and Kundu (2009), the review article by Balakrishnan (2007) 
and the references cited therein. Although, extensive work has been done on 
progressive censoring scheme, not much work has been done in the competing 
risk set up, see for example Kundu et al. (2004).

In this paper we consider the Bayesian analysis of the competing risks data, 
when the lifetime distributions are Weibull with the same shape but different 
scale parameters. For the Bayesian inference of the unknown parameters, we 
need to assume some priors on the unknown parameters. If the common shape 
parameter a  is known, the convenient but quite general conjugate priors on 
the scale parameters are the Beta-Gamma (for M > 2, it is Dirichlet-Gamma) 
priors, see Pena and Gupta (1990) in this respect. In this case, the explicit 
expressions of the Bayes estimates can be obtained under the squared error 
loss function. But when the common shape parameter is unknown, it is known 
that in this case the continuous conjugate priors do not exist, see for example 
Kaminskiy and Krivtsov (2005) in this connection. We use the same conjugate 
priors on the scale parameters, even when a  was unknown. We have not 
assumed any specific prior on a,  it is simply assumed that the support of the 
prior on a  is on (0, oo), and that it has a log-concave density function. Note 
that the assumption of log-concave density function of the prior distribution 
is quite common in Bayesian analysis, see Berger and Sun (1993), and many 
common distribution functions, for example normal, log-normal, gamma and 
Weibull may have log-concave density functions.

Based on the above prior distributions, we obtain the joint posterior 
distribution of the unknown parameters. As expected the Bayes estimates 
cannot be obtained in explicit forms. We propose to use Markov Chain Monte 
Carlo (MCMC) samples to compute Bayes estimates and approximate highest 
posterior density (HPD) credible intervals of the unknown parameters. One 
can also apply Lindley’s approximation to compute Bayes estimates. It is 
observed that our method can be easily extended even when some of the causes 
of failures are unknown. We compare the performances of Bayes estimates 
and HPD credible intervals with the classical maximum likelihood estimators 
(MLEs). It is observed that if we do not have any prior information, the 
performances of the MLEs and the Bayes estimators are quite comparable. 
But with informative priors, the Bayes estimates behave much better than 
the MLEs, as expected. Although we have derived the Bayes estimates of 
the unknown parameters based on progressively censored data, the proposed 
method is easily extendable for other censoring schemes. In survival analysis, 
data are mainly random censored. We have analyzed such a data set in 
Section 4.2 to illustrate our methodology.



The second aim of this manuscript is to provide the methodology to compare 
two different sampling schemes, and hence in turn to compute the optimal cen­
soring scheme in presence of competing risks. Finding the optimal progressive 
censoring scheme is an important problem, and it has received considerable 
attention in the recent statistical literature due to its practical applicability. 
In the progressive censoring scheme, an optimal censoring scheme means, 
for fixed n and m,  the choice of {R\, • • • , Rm], which provides the maximum 
information of the unknown parameters. Unfortunately, not much work has 
been done in this direction in presence of competing risks.

Using the idea of Zhang and Meeker (2005), we have proposed two infor­
mation measure of the unknown parameters for a given progressive censoring 
scheme, when the competing causes of failure are present. We have provided 
the optimal censoring schemes based on different criteria and compared the 
results with the traditional Type-II censoring also. It is observed that the 
relative efficiencies of the Type-II censoring schemes are quite close to one.

The rest of the paper is organized as follows. In Section 2 we provide the 
model formulation and prior assumptions. Posterior analysis and Bayesian 
inference of the unknown parameters are provided in Section 3. Numerical 
simulation results and the analysis of two data sets are presented in Section 4. 
In Section 5 we provide the optimal censoring plan, and finally we conclude 
the paper in Section 6 .

2 Model formulation and prior assumptions

In this section we introduce the model, and the available data. We also provide 
the necessary prior assumptions for further development.

2.1 Model formulation and available data

Suppose n identical items are put on a test at the time point zero, with the 
lifetime of the n-items are denoted by Y'i , - - - , Tn. It is assumed that for each 
/, Tj =  min{X;i, X i2}, where X a ~  W E(«, A.O, X i2 ~  WE(or, A.2) and they are 
independently distributed. Therefore, Tt ~  WE(or, a, +  X2), and moreover it 
is assumed that Tt, ■ ■ ■ , Tn are independently distributed. At the time of each 
failure, the failure time and the corresponding cause of failure is observed.

The integer m  < n ispre-fixed, and - ■■ , Rm are pre-fixed integers such 
that

R\ H------- 1- Rm =  n -  tn. (2)

At the time of the first failure, say tu R\ of the remaining units are randomly 
chosen and removed. Similarly, at the time of the second failure, say tn, Ri  of 
the remaining units are chosen and removed, and so on. Finally at the time of 
the m-th failure time, tm, the rest of the units, Rm =  n - m  -  R\--------- Rm-i



are removed and the experiment stops. Therefore, a progressively censored 
competing risk data will be as follows:

{ ( t u S u R i ) , - - -  Atm,Sm, R m)}. (3)

Here S i ,• • • , Sm denote the m  causes of failures at the time points tu ■ ■ ■ , tm 
respectively, and for each /, 5, takes a value either 1 and 2. Therefore, for a 
given i?i, • • • , Rm, we have the following m  observations;

{(*,-, 1); i e  Ii},  and {(?,-, 2); i e  /2}, (4)

here

h  =  {/'; 5/ =  1}, and I2 =  {/; 5,- =  2}.

2.2 Prior assumptions

When the common shape parameter a  is known, the scale parameters have 
conjugate priors. Using the idea of Pena and Gupta (1990), it is assumed that
X =  A.i +  X2 has a Gamma(ffo. bo) prior, say tt0(-| ao, bo-). Here the PDF of 
Gamma(ffo. b o) for X > 0 is;

b a°
7to(X\ao,bo) = (5) 

l (tfo)

and 0 otherwise. Given X, Xi/X has Beta(fli, an), say tti(-|<7 i, an) prior, i.e.

r  (<7i +  an) /  A.i \ fll 1 /  A.i x 1
^ l - T j  (6 )

for Xi/X > 0, and 0 otherwise. Here all the hyper-parameters ao > 0, bo > 
0, tfi > 0, an > 0. It will be shown that when the common shape parameter is 
known, the above priors are the conjugate priors. After simple transformation, 
the joint prior of A.i and X2 becomes;

=  r{C! ! l +  a 2 )  X  X
r(tfo) r(fli)

h a2
x — °—xV~1e~bok2. (7)

r ( t f 2 )  2  v  ;

This is the Beta-Dirichlet distribution, and it will be denoted by 
BD(bo,  ao, a i, an). Clearly, in general A.i and X2 will be dependent, but when 
ao =  ai +  an, they are independent. Therefore, independent priors can be 
obtained as a special case of Eq. 7. It may be easily observed that the 
covariance of A.i and X2 can be positive or negative depending on ao > a i +  a2 
or ao < ai +  a2. The following result will be useful for further development, 
whose proof can be easily obtained from Theorem 2 of Pena and Gupta (1990).



Result: If (A.i, X2) ~  BD(fr0< o0, «i, a2), then for / =  1,2,

77,. . a0(li , T, , f (ffi +  1 ) (ffo +  l) 1E  (Xt) =  ---------------- and V {Xj) =  —------------ x I ----------------- ---------------- } .
b o (d\ +  uq) b q +  U2) I # 1  +  # 2  +  1 # 1  + # 2  J

(8)

When the common shape parameter is known, the above priors are the 
conjugate priors. But when the shape parameter is not known, the conjugate 
priors do not exist. In this case it is assumed that A4  and X2 have the same Beta- 
Dirichlet prior as defined (Eq. 7) and the prior on a  is independent of ( /_i, a2 )■ 
No specific form of prior on a  has been assumed here. It is only assumed that 
the absolute continuous prior tv (a) on a  has a positive support on (0 , 0 0 ) and 
the PDF of 7t(a) is log-concave and it is independent of (/_ 1 , X2). Although, in 
general the choice of the hyper-parameters are very important in practice, it is 
not pursued here.

3 Posterior analysis and Bayes inference

In this section, we provide the Bayes estimates of the unknown parameters 
and the corresponding credible intervals, when the common shape parameter 
is known and when it is unknown, based on the priors assumed in the previous 
section. We mainly assume the squared error loss (SEL) function, although 
any other loss function can be easily considered, without much of a difficulty.

3.1 Common shape parameter known

Based on the observed sample {{t^ 5i, i?i), • • • , {tm, Sm, Rm)}, the likelihood 
function is;

m
l(data\ a ,Xu X2) a  x (9)

i= l

Here mi and m 2 denote the number of elements in the set I] and I2 respec­
tively. For known a,  when /_i and X2 have the joint priors as given in Section 2, 
it can be easily observed that the joint posterior distribution of M and X2, i.e.

I (Xi,X2\data, a)  a  BD ^b0 +  ^  (Ri +  Dtf ,  tfo +  wii +  >n2, tfi +  mi, a2 +

(10 )

Therefore, with respect to the squared error loss function, the Bayes estimates 
of A.i and X2 are



and

(a0 +  tiii +  m2) (a2 +  m2) (1 2 )
(^o +  ~Y1T= i ( ^  + 1 ) ?,a) (<?i +  <?2 +  tiii +  m2)

The corresponding posterior variances are

V (A.ib) =  Ai  x B i ,  and V (X2b) =  A 2 x B 2, (13)

respectively, where for j =  1 , 2 ,

_  (0 q +  m i  +  m 2 ) (<lj +  t l l j )
(14)

( ^ 0  +  1 (Ri +  1 ) t?) (a i +  a2 +  W I1 +  m2)

( a j  +  ti i j  +  1 )  ( t f 0 +  w i i  +  m 2 +  1 )  (<7; - +  t i i j )  ( tf o  +  w i i  +  m 2 )

(a i +  a2 +  wii +  wio +  1 ) (fli +  +  wii +  tn2)
(15)

Under the assumptions of non-informative priors, i.e. ao =  bo =  tfi =  a2 =  
0, the Bayes estimates of M and X2 become

and they can be easily seen to be the MLEs of A.i and X2 respectively.
Note that although the Bayes estimates can be obtained in explicit forms, 

the corresponding highest posterior density (HPD) credible intervals cannot 
be obtained explicitly. But it is possible to generate MCMC samples by direct 
sampling from the joint posterior density function, and they can be used to 
construct HPD credible intervals of A.i and The details will be explained 
later.

3.2 Common shape parameter unknown

In this subsection we consider the important case when the common shape 
parameter is unknown, which is most likely to happen in practice. In this case 
based on the priors on A.i, X2 and a,  as it has been assumed in the previous 
section, the joint density function of on A.i, X2, a  and data is

I (data | a,Xi ,X2)7ti(Xi,X2\ a o , b o , a i , b i ) j t 2 ( a ) . (17)



Based on Eq. 7, the joint posterior density of a,  A.i and X2 is

l ( a  X X\ d ata )—  ̂[data] a,  Xi, Xi) n\ (Xi, X2| ao, bo, a\, b 1 )  112(a)

fo °  fo °  fo °  I (data \ a,  X i ,  X i )  iz\ ( X i ,  X->| ao, bo.  <?i,  b 1 )  jn(a)dadX\dXi
(18)

Therefore, the Bayes estimate of any function of a,  A.i and X2, say g(a, Xi, X2) 
under the squared error loss function can be obtained as

gB { a , k i , k 2) =  E aXl _A2 (g(ff,X1,X2))

fo°  r  fo° S X i , X 2 )/ (data\a, X ^ , X 2 ) j t i  ( X i  , X21 ay, bo, ay, b 1 ) j t 2 (q '.)dadXidX2

f o °  /oK ' /oK '  ̂ (data\ a, Xi,  X2) jn  ( X x , X21 « q ,  bo,  « i , b 1 )  j t2( q')dctdX\dX2

Note that in most of the situation, it is not possible to compute Eq. 19 
explicitly. There are several methods available to approximate Eq. 19, but 
they do not provide the HPD credible intervals. We propose to use MCMC 
samples generated by direct sampling method to approximate Eq. 19 and 
also to compute the HPD credible intervals of the unknown parameters. The 
following results will be used for generating samples.

Theorem 1 The joint conditional distribution o f  X1 and X2 given a  is

6 . + I >  i +  1 )tf, a0 +  mi +  m 2, ai +  mu a2 +  m 2 I . (20)
r=i /

P ro o f  It is trivial and it has already been mentioned in the previous 
subsection. □

Theorem 2 The conditional density o f  a  given the data is log-concave.

P ro o f  Observe that

I (or| data) a  7tn(a)am FT tf 1 x -------------------------------  . (21)

Now the result follows using Theorem 2 of Kundu (2008).
Devroye (1984) has suggested to generate samples from a general log- 

concave density function. Therefore, using Theorem 1 and Theorem 2, it is



possible to generate MCMC samples from the joint posterior density function 
(Eq. 18). We use the following algorithm:

Algorithm

Step 1: Generate a  from Eq. 21 using the method suggested by Devroye 
(1984).

Step 2: For given a,  generate (A.i,A.t) from Eq. 20, as suggested in 
Appendix A.

Step 3: Repeat Step 1 and Step 2, M  times, and obtain (ori, A.n, A. 2 1 ), • • • , (a'm-
M- A.2 m )-

Step 4: The Bayes estimates a ,  X\ and '/.■< with respect to SEL function 
respectively as

j  M  ̂ M j  M

®B =  M  ^ 01 k ’ XlB =  ~ M ^ Xlk and k2B =  M ^ X2k' k= 1 k= 1 k= 1
Step 5: The corresponding posterior variances can be obtained respective­

ly as

j  M j  M 1 M
— - ^ J 2 ( Xik~ XibY and M J 2 ( k2k~ k2BY ■ 

k= 1 fc=l k= 1
Step 6 : To obtain credible interval of or, we order {or,-}, as orm < a i2) < • • • < 

a (M). Then 100(1-2/3)% credible intervals of a  become

<X{j+M-2Mp)) - for ;  =  1, • • • , 2M.fi.

Therefore, 100(1-2/3)% HPD credible interval of a  becomes
a {j>+M~2Mfi)), where f  is such that

Ot(j<+M-2M/3) ~ 0/(j<) < a(j+M-2Mfi) ~ 0/(j>

for all ;  =  1, • • • , 2M/3. Similarly, we obtain the FIPD credible inter­
vals for A.i and X2.

4 Numerical results and data analysis

In this section we conduct a simulation study to investigate the performance 
of the proposed Bayes estimators and analyze a data set for illustration. The 
simulation study is carried out when both the shape and scale parameters are 
unknown.

4.1 Simulation study

We use different sample sizes n, different effective sample sizes m  and the fol­
lowing sets of parameters {a =  1, A.i =  0.6, X2 =  0.4} and {a =  2, A.i =  0.6, X2 =  
0.4}. For the simulation study, it is assumed that a  has gamma prior with the



shape parameter a and scale parameter b.  We consider non-informative and 
informative priors both for the shape and scale parameters. In case of non- 
informative prior we take a =  b =  a0 =  b 0 =  «i = a2 =  0. We call it as prior 
0. The informative priors for the two sets of parameter values are given in 
Table 1. It may be noted that prior 1 and prior 3 are selected in such way 
that prior means are same as the original means. Hence prior 1 and prior 3 
may be considered as the calibrated priors. Whereas prior 2 and prior 4 are 
not calibrated and they have been selected arbitrarily. Performance of the 
estimators are studied in terms of their biases and the mean squared errors 
(MSEs). We also compute the average lengths and the coverage percentages 
of the 95% HPD credible intervals based on MCMC samples generated by 
direct sampling.

For both the parameter sets, we considered the following sampling schemes:

Scheme 1 (CS-1): n = 15, tn = 1 2 , R { =  ■ ■ =  Ru = 0 , i ? 1 2 =  3;
Scheme 2 (CS-2): n = 30, tn = 15, Ri =  ■■ = Ru = 0 , R 15 = 15;
Scheme 3 (CS-3): n = 40, tn = 15, Ri =  ■■ = Ru = 0 , R 15 = 25;
Scheme 4 (CS-4): n = 40, tn = 30, R{ =  • • = R29 = 0 , R 30 = 1 0 ;
Scheme 5 (CS-5): n = 40, tn = 30, R2 = - =  R 30 = 0 , Ri = 1 0 ;
Scheme 6  (CS-6 ): n = 40, tn = 30, R2 = - =  R29 = 0 , Ri = II >3 u> 0 II Uy

Scheme 7 (CS-7): n =  40, tn =  30, Ry = • • • =  Ru = Rn 0COIIII

0, i?i5 =  i?i6 =  5.

Note that the sampling schemes CS-1, CS-2, CS-3 and CS-4 are the usual 
Type-II censoring schemes, that is n -  tn items are removed at the time of 
the m-th failure. The sampling scheme CS-5 is just the opposite of the Type-II 
censoring scheme and in this case n -  tn items are removed at the time of the 
first failure itself. This particular progressive censoring scheme is known as first 
step-censoring and this is a particular case of one-step censoring introduced by 
Balakrishnan et al. (2008). It is well known that for fixed n and tn, the expected 
experimental time of the Type-II censoring scheme is less than the corre­
sponding first step-censoring scheme. In fact for fixed n and tn, the expected 
experimental time of any other censoring schemes are always between these 
two extremes. For example, the expected experimental time of the sampling 
scheme CS - 6  and CS-7 will be between the schemes CS-4 and CS-5.

For generating the progressively censored Weibull samples, we use the 
algorithm suggested in Balakrishnan and Sandhu (1995). For each data point 
we assigned the cause of failure as 1 or 2 with probability Xi/(Xi +  X2) and 
X2/{Xi +  a2 ), respectively. In each case we calculate Bayes estimates using

Table 1 Different informative priors for the two sets of parameters 

Parameters Prior
a  =  1, ki =  0.6, k 2 =  0.4 Prior 1: a  =  b  =  5, cio =  bo  =  2, fli =  0.6 and ci2 =  0.4

Prior 2: a =  2.5, b  =  1, ao =  1, bo =  1.5, a\ =  0.8 and ch =  0.9 
a  =  2, ki =  0.6, X2 =  0.4 Prior 3: a  =  5, b  =  2.5, ao =  bo =  2, ai =  0.6 and a2 =  0.4

Prior 4: a =  5, b =  1.5, ao =  2.5 bo  =  1, ai =  1.5 and ci2 =  0.6



10,000 MCMC samples and also the 95% HPD credible intervals. We also 
compute maximum likelihood estimate (MLE) and 95% confidence interval 
for the purpose of comparison with the Bayes estimates. We replicate the 
process for 1 0 0 0  times and compute average estimates, mean squared errors, 
average length of HPD credible intervals/confidence interval and coverage 
percentage. The results are reported in Tables 2 ,3 ,4 , and 5.

Now we compare the performance of the Bayes estimators under different 
scenarios and MLEs in terms of biases, MSEs and length of credible intervals. 
From the simulation results, it can be seen that the performance of the Bayes 
estimates with respect to non-informative priors and MLEs are quite close, 
as expected. So, if we have no prior information on the unknown parameters, 
it is better to use MLEs than Bayes estimators, because the Bayes estimators 
are computationally more expensive. The performance of the Bayes estimators 
under informative calibrated priors (prior 1 and prior 3) is better than the 
MLEs or the Bayes estimators under non-informative prior and informative 
uncalibrated priors (prior 2 and prior 4), as expected.

4.2 Data analysis

In this section, we analyze two data sets for illustrative purpose.

Example 1 We consider the competing risks data set of Nelson (1970), which 
consist of failure or censoring times for 139 appliances (36 in Group I, 51 
in Group II, and 52 in Group III) subjected to a manual lifetime test. This 
example has been used by several authors for illustration, see for example, 
Crowder (2001) and Park and Kulasekera (2004). Although there are three 
groups, we consider group II for illustration. There are 51 appliances in Group 
II. Fifteen failures are due to mode 11, six failures are due to other modes 
and remaining are censored observations. For illustrative purpose, we consider 
failure mode 1 1  as cause 1  and other failure failure modes are considered as 
cause 2. So there are 15 failures due to cause 1 and six failures due to cause 
2. We first analyze the data assuming that the latent cause of failures have 
independent Weibull distributions with the different shape (cyi and a 2) and 
scale parameters (M and '/.■<)■ The maximum likelihood estimate of the shape 
parameters are ai =  1.433398 and a 2 =  0.983995 with standard errors 0.29338 
and 0.35120, respectively. When we perform the following testing of hypothesis 
problem: H0 : cyi =  a 2, we cannot reject the null hypothesis, this justifies that 
shape parameters can be taken as equal.

Next we analyze the data by generating progressively type-II censored 
data from the original data set. We generate progressively type-II censored 
sample with m =  12 and censoring schemes Ri =  5, R2 =  2, i ? 3 =  2, R4 =  2, 
i ? 5  =  14, i ? 6  =  0, i ? 7  =  0, R% =  0, Rg =  3, Rio =  0, Ru  =  6  and R 12 =  5. The 
progressively type-II sample is (45, 2), (47,1), (73,1), (145,1), (281, 2), (311, 
1), (471, 2), (490,1), (569, 2), (575,1), (630,1), (838,1). Here we have tm =  8  

failure due to cause 1 and m 2 =  4 failures due to cause 2. The maximum



Table 2 The average values of the MLEs and Bayes estimates under different priors along with 
the M SE’s in parentheses when a  =  1, Xi =  0.6 and Xn =  0.4

Estimator CS-1 CS-2 CS-3 CS-4 CS-5 CS-6 CS-7
MLE a 1.1398 1.1400 1.1455 1.0598 1.0476 1.0534 1.0450

(0.1341) (0.1079) (0.1144) (0.0347) (0.0252) (0.0304) (0.0235)
Xi 0.6585 0.7289 0.7952 0.6227 0.6227 0.6172 0.6293

(0.0965) (0.1812) (0.3743) (0.0249) (0.0256) (0.0235) (0.0281)
Xi 0.4491 0.4919 0.5372 0.4243 0.4160 0.4204 0.4211

(0.0663) (0.1030) (0.2074) (0.0197) (0.0175) (0.0185) (0.0185)
Bayes a 1.1621 1.0986 1.1308 1.0556 1.0412 1.0455 1.0417

prior 0 (0.1431) (0.0919) (0.1053) (0.0339) (0.0255) (0.0307) (0.0273)
Xi 0.66735 0.6658 0.7893 0.6227 0.6133 0.6161 0.6102

(0.1281) (0.0980) (0.2062) (0.0228) (0.0212) (0.0236) (0.0253)
Xi 0.4568 0.4604 0.5318 0.4132 0.4127 0.4135 0.4099

(0.0625) (0.0422) (0.2442) (0.0163) (0.0164) (0.0147) (0.0154)
Bayes a 1.0778 1.0630 1.0587 1.0469 1.0359 1.0423 1.0300

prior 1 (0.0476) (0.0444) (0.0377) (0.0263) (0.0193) (0.0244) (0.0200)
Xi 0.6420 0.6541 0.6789 0.6232 0.6166 0.6139 0.6213

(0.0557) (0.0484) (0.0571) (0.0221) (0.0207) (0.0193) (0.0222)
Xi 0.4329 0.4358 0.4475 0.4103 0.4120 0.4119 0.4177

(0.0364) (0.0335) (0.0369) (0.0141) (0.0141) (0.0135) (0.0142)
Bayes a 1.1960 1.1627 1.1415 1.0814 1.0665 1.0924 1.0676

prior 2 (0.1231) (0.0944) (0.0768) (0.0408) (0.0333) (0.0403) (0.0330)
Xi 0.6155 0.6573 0.6703 0.6098 0.5937 0.5981 0.5995

(0.0580) (0.0640) (0.0644) (0.0237) (0.0211) (0.0207) (0.0205)
Xi 0.4498 0.4775 0.4817 0.4120 0.4057 0.4079 0.4194

(0.0452) (0.0445) (0.0463) (0.0143) (0.0136) (0.0133) (0.0150)

Table 3 The average confidence length/HPD credible length and coverage percentage in paren­
theses when a  =  1, Xi =  0.6 and Xn =  0.4

Estimator CS-1 CS-2 CS-3 CS-4 CS-5 CS-6 CS-7
MLE a 1.1146 1.0691 1.0984 0.6631 0.5807 0.6268 0.5735

Xi
(0.96)
0.9906

(0.96)
1.1384

(0.96)
1.4709

(0.96)
0.5832

(0.95)
0.5893

(0.95)
0.5769

(0.96)
0.5855

Xi
(0.94)
0.8038

(0.95)
0.8866

(0.96)
1.1093

(0.94)
0.4783

(0.94)
0.4762

(0.94)
0.4730

(0.94)
0.4759

Bayes a
(0.92)
1.1161

(0.95)
0.9982

(0.95)
1.0579

(0.93)
0.6549

(0.93)
0.5636

(0.93)
0.6148

(0.93)
0.5570

prior 0
Xi

(0.94)
0.9620

(0.96)
0.9576

(0.96)
1.3094

(0.96)
0.5668

(0.94)
0.5688

(0.95)
0.5623

(0.94)
0.5568

Xi
(0.93)
0.7579

(0.93)
0.7401

(0.97)
0.9942

(0.95)
0.4546

(0.95)
0.4572

(0.94)
0.4554

(0.93)
0.4493

Bayes a
(0.94)
0.9051

(0.95)
0.8468

(0.95)
0.8337

(0.94)
0.6118

(0.94)
0.5347

(0.93)
0.5836

(0.94)
0.5255

prior 1
Xi

(0.98)
0.8520

(0.97)
0.8365

(0.97)
0.6789

(0.96)
0.5517

(0.96)
0.5545

(0.96)
0.5449

(0.95)
0.5518

Xi
(0.95)
0.6805

(0.96)
0.6550

(0.97)
0.4475

(0.95)
0.4421

(0.95)
0.4464

(0.95)
0.4411

(0.94)
0.4476

Bayes a
(0.93)
1.0645

(0.94)
0.9778

(0.95)
0.9499

(0.94)
0.6598

(0.94)
0.5658

(0.94)
0.6273

(0.95)
0.5625

prior 2
Xi

(0.95)
0.8435

(0.95)
0.8839

(0.97)
0.9641

(0.90)
0.5464

(0.88)
0.5435

(0.89)
0.5364

(0.86)
0.5408

Xi
(0.91)
0.6999

(0.95)
0.7201

(0.96)
0.7681

(0.93)
0.4419

(0.93)
0.4400

(0.94)
0.4365

(0.93)
0.4455

(0.93) (0.96) (0.97) (0.94) (0.94) (0.94) (0.94)



Table 4 The average values of MLEs and the Bayes estimates under different priors along with 
the M SE’s in parentheses when a  =  2, Xi =  0.6 and Xn =  0.4

Estimator CS-1 CS-2 CS-3 CS-4 CS-5 CS-6 CS-7
MLE a 2.2799 2.2801 2.2910 2.1195 2.0923 2.1073 2.0876

(0.5364) (0.4314) (0.4575) (0.1388) (0.0988) (0.1214) (0.0928)
Xi 0.6585 0.7289 0.7952 0.6227 0.6230 0.6172 0.6296

(0.0965) (0.1811) (0.3743) (0.0249) (0.0257) (0.0235) (0.0278)
Xi 0.4491 0.4919 0.5372 0.4243 0.4177 0.4204 0.4207

(0.0663) (0.1030) (0.2074) (0.0972) (0.0179) (0.0185) (0.0182)
Bayes a 2.2754 2.2645 2.2465 2.1112 2.0824 2.0910 2.0835

prior 0 (0.4719) (0.4050) (0.4186) (0.1355) (0.1021) (0.1226) (0.1090)
Xi 0.6763 0.7351 0.8126 0.6226 0.6133 0.6161 0.6102

(0.1803) (0.1604) (0.3104) (0.0228) (0.0212) (0.0236) (0.0253)
Xi 0.4595 0.4991 0.5385 0.4132 0.4127 0.4135 0.4135

(0.0620) (0.1144) (0.1623) (0.0163) (0.0164) (0.0147) (0.0154)
Bayes a 2.1554 2.1261 2.1173 2.0937 2.0718 2.0847 2.0601

prior 3 (0.1905) (0.1774) (0.1508) (0.1051) (0.0771) (0.0976) (0.0799)
Xi 0.6420 0.6541 0.6789 0.6232 0.6166 0.6139 0.6113

(0.0557) (0.0484) (0.0571) (0.0221) (0.0207) (0.0193) (0.0222)
Xi 0.4329 0.4358 0.4475 0.4103 0.4120 0.4112 0.4177

(0.0364) (0.0335) (0.0369) (0.0141) (0.0141) (0.0135) (0.0142)
Bayes a 2.4204 2.4818 2.5274 2.1774 2.1108 2.1713 2.1427

prior 4 (0.4894) (0.5103) (0.5547) (0.1366) (0.0963) (0.1285) (0.1051)
Xi 0.7464 0.8423 0.9306 0.6617 0.6554 0.6499 0.6532

(0.1168) (0.1760) (0.2583) (0.0309) (0.0286) (0.0240) (0.6532)
Xi 0.4609 0.5220 0.5902 0.4331 0.4208 0.4262 0.4187

(0.0518) (0.0727) (0.1174) (0.0166) (0.0155) (0.0168) (0.0158)

Table 5 The average confidence length/HPD credible length and coverage percentage in paren­
theses when a  =  2, X\ =  0.6 and X2 =  0.4

Estimator CS-1 CS-2 CS-3 CS-4 CS-5 CS-6 CS-7
MLE a 2.2293 2.1383 2.1969 1.3263 1.1607 1.2536 1.1465

Xi
(0.96)
0.9906

(0.96)
1.1384

(0.96)
1.4709

(0.95)
0.5832

(0.96)
0.5900

(0.96)
0.5769

(0.96)
0.5856

Xi
(0.94)
0.8038

(0.95)
0.8866

(0.96)
1.1094

(0.94)
0.4783

(0.94)
0.4772

(0.94)
0.4730

(0.94)
0.4756

Bayes a
(0.92)
2.1871

(0.95)
2.0830

(0.95)
2.1110

(0.93)
1.3098

(0.93)
1.1272

(0.93)
1.2359

(0.93)
1.1139

prior 0
Xi

(0.95)
0.9763

(0.95)
1.0818

(0.95)
1.3769

(0.96)
0.5668

(0.94)
0.5688

(0.95)
0.5623

(0.94)
0.5568

Xi
(0.93)
0.7649

(0.95)
0.8371

(0.97)
1.0087

(0.95)
0.4546

(0.95)
0.4572

(0.94)
0.4539

(0.93)
0.4493

Bayes a
(0.93)
1.8102

(0.93)
1.6936

(0.94)
1.6673

(0.94)
1.2236

(0.94)
1.0694

(0.94)
1.1673

(0.94)
1.0512

prior 3
Xi

(0.98)
0.8520

(0.96)
0.8365

(0.97)
0.9267

(0.95)
0.5517

(0.96)
0.5545

(0.96)
0.5449

(0.95)
0.5518

Xi
(0.95)
0.6805

(0.96)
0.6555

(0.97)
0.7075

(0.95)
0.4421

(0.95)
0.4464

(0.95)
0.4411

(0.94)
0.4476

Bayes a
(0.93)
1.9970

(0.94)
1.9603

(0.95)
1.9687

(0.94)
1.2617

(0.94)
1.0749

(0.95)
1.2032

(0.94)
1.0785

prior 4
Xi

(0.93)
0.9589

(0.90)
1.0894

(0.89)
1.3283

(0.94)
0.5797

(0.94)
0.5807

(0.95)
0.5688

(0.94)
0.5695

Xi
(0.94)
0.7244

(0.95)
0.8037

(0.96)
0.9694

(0.94)
0.4623

(0.94)
0.4562

(0.96)
0.4546

(0.95)
0.4493

(0.92) (0.95) (0.97) (0.94) (0.95) (0.94) (0.94)



likelihood estimates of or, A.i and A2 with standard error in parentheses are 
1.34094 (0.31988), 0.000051 (0.00010) and 0.000025 (0.000052), respectively. 
The asymptotic 95% confidence intervals of a,  Xi and X2 based on observed 
information matrix are (0.71397, 1.96790), (-0.00015, 0.00028), (-0.00008, 
0.000128).

Next, we compute the Bayes estimate of a,  a, and X2. We compute Bayes 
estimate under non-informative priors, since we have no prior information 
about the unknown parameters. Based on data, the posterior density function 
of a  can be approximated by the gamma density function by equating the first 
two moments. The scale and shape parameters of the approximate gamma 
distribution are 17.3962 and 13.0559, respectively. Based on 10,000 MCMC 
samples, the Bayes estimates of a,  Ai and X2 are 1.33406 (0.32239), 0.00025 
(0.00061) and 0.00012 (0.00030). The 95% HPD credible intervals are (0.74162, 
1.97743), (7.587188e-010, 0.00105) and (3.793594e-010, 0.00052), respectively.

Example 2 Here we consider another set of data to illustrate our methodology. 
We analyze the data of a lung cancer clinical trial being conducted by the 
Eastern Cooperative Oncology Group, Lagakos (1978). There are 194 cases 
with 83 deaths from cause 1 (local spread of disease) and 44 from cause 2 
(metastatic spread), the remaining 67 times being right-censored. We analyze 
this data set how the proposed method can be applied for random censored 
data. The present data set is an example of competing risks data with exactly 
two causes of failure. The latent failure times independently Weibull distrib­
uted with same shape parameters but different scale parameters (see Crowder 
2001). The data set was analyzed with different shape parameters to check 
whether the shape parameters are equal or not. Let ori and a 2 be the shape 
parameters of two latent time distributions. The maximum likelihood estimate 
of ai  and a 2 are &i =  1.30374 and a 2 =  1.36784 with standard error 0.05731 
and 0.08895, respectively. It is clear that the there is no significant difference 
between the shape parameter values. In this case also the null hypothesis H0 : 
ori =  a 2 cannot be rejected. Hence the shape parameter for both the Weibull 
distribution can be taken as equal. The justification for Weibull distribution is 
given in Crowder (2001).

The maximum likelihood estimates of a, X\ and X2 with standard errors in 
parentheses are 1.32547 (0.08547), 0.00767 (0.00240) and 0.00407 (0.00134), 
respectively. The asymptotic 95% confidence intervals of or, A. 1 and X2 based 
on observed information matrix are (1.15795,1.49299), (0.00297, 0.01237) and 
(0.00144,0.0067). Next we compute Bayes estimates of a ,  Ai and X2 under non- 
informative priors. Based on data, the posterior density function of a  can be 
approximated by the gamma density function by equating the first two mo­
ments. The scale and shape parameters of the approximate gamma distribution 
are 240.0418 and 181.3844, respectively. Based on 10,000 MCMC samples, the 
Bayes estimates of a ,  Ai and X2 with standard errors in parentheses are 1.32493 
(0.08584), 0.00800 (0.00236) and 0.00424 (0.00125). The 95% HPD credible 
intervals are (1.16285,1.49920), (0.00397, 0.01277) and (0.00210, 0.00677).



5 Optimal censoring scheme

Till this point we have discussed the Bayesian inference of the unknown 
parameters for progressively censored competing risks data. It is assumed so 
far that the progressive censoring is pre-fixed, i.e. n, m  and ■ ■ ■ , Rm are 
known apriori. But in practice the natural question is, whether we should 
choose the progressive censoring scheme based on convenience or based on 
some scientific criterion.

In the last few years finding the “optimum" censoring scheme has received 
considerable attention in the recent statistical literature, see for example 
Balakrishnan and Aggarwala (2000, Chapter 10), Ng et al. (2004), Balasooriya 
et al. (2000), Burkschat (2008), Burkschat et al. (2007) and the references cited 
therein. Optimum censoring scheme means, among all the possible progressive 
censoring schemes, find the scheme which is “best", with respect to a certain 
criterion. Naturally we would like to choose that censoring scheme which 
provides maximum “information" of the unknown parameters. Intuitively, it is 
quite clear that if we do not have any restriction on n and m,  we should choose 
n =  m  and n should be as large as possible. In practice often we do not have 
any choice of n and m,  and hence from now onwards if nothing is mentioned it 
is assumed that n and m  are fixed.

Now all possible progressive censoring schemes, for fixed n and m,  means
all possible choices of ■ ■ ■ , Rm, such R] H------- 1- Rm =  n — m. Therefore,
in this section, if nothing is mentioned it is assumed that n and m  are fixed. 
There are two issues involved in dealing with the optimum censoring scheme, 
namely (i) find a proper criterion, (ii) with respect to that criterion find the best 
censoring scheme. Interestingly both are quite important and none of them is 
an trivial issue in this case.

5.1 Precision criterion

To find a proper criterion, one needs to define an “information measure" of 
a given sampling scheme R =  [Ri, ■ ■ ■ , Rm}. Once the information measure 
of a given sampling scheme is properly defined, it is possible to compare two 
different sampling schemes, and hence the “optimum" censoring scheme can 
be obtained. It is clear that “optimum" censoring scheme will depend on the 
“information" measure defined for a given scheme R.

First let us discuss how the “information" measure can be defined for a given 
R, and how it can be used to compare two different censoring schemes. In this 
respect, the Fisher information of the given censoring scheme seems to be a 
natural choice. If only one parameter is unknown, then comparison between 
the two Fisher information of two censoring schemes, simply boils down to 
compare two real numbers. But if more than one parameter is unknown, 
then comparison of two censoring schemes means to compare two Fisher 
information matrices, which may not be a trivial issue. Different methods have 
been proposed in the literature to compare two Fisher information matrices,



for example the trace or determinant of the Fisher information matrix. But 
unfortunately it is known that they are not scale invariant.

Alternatively, the variances of the 100p-th quantile estimator can be used 
as an information measure for a given censoring scheme, and hence can be 
used quite effectively to compare two different censoring schemes. Zhang 
and Meeker (2005) and Ng et al. (2004) used this criterion to find optimum 
censoring schemes in two different problems. It may be mentioned that the 
above criterion is scale invariant, but it may depend on p, and it may be chosen 
based on some practical consideration. Zhang and Meeker (2005) and Ng et al. 
(2004) used p  =  0.95 and 0.99, but other values of p  also can be chosen.

Recently, Pareek et al. (2009) proposed the following two information mea­
sures for a given progressive censoring scheme R, in the frequentist context 
and when the competing risks data are observed. Suppose the p-quantile points 
of the two latent lifetime distributions are

TP, i = - l l n ( l - p )
. Ai

and Tp n = - l l n ( i - p )  
. -

(22)

for cause 1 and cause 2 respectively. Then for fixed 0 < w < 1, the Criterion 1 
is defined as

Ci(R) =  wVar (in Tp^) +  (1 — w)Var (in Tp^) (23)

here Var (In Tp_i) and Var (In Tp n) are the asymptotic variance of the MLEs 
of In Tpj  and In Tp n respectively, and although they might depend on the 
censoring scheme R, but we are not making it explicit for brevity. The weight 
w should be chosen depending on the importance the practitioner wants to put 
on cause 1  or cause 2 .

Similarly, Criterion 2 has been proposed as

C2(R) =  w f  Var (In TpA) dWi(p)  +  (1 -  w) [  Var (in Tp n) dW2(p), (24) 
Jo Jo

here w, Var (In Tp J ) and Var (In Tpj )  are same as defined before. Moreover, 
the weight functions W\(p) > 0 , W 2(p) > 0  and they satisfy

f 1 dWiip)  =  f 1 dW2(p) =  1. (25)
Jo Jo

The two weight functions W"i( ) and W2{-) have to be decided before hand 
depending on the problem, see for example Pareek et al. (2009) for discussions.

Following the procedure of Kundu (2008), the natural modifications of 
Ci(R)  and C2(R) will be

Criterion 1 Let for any censoring scheme R 

Cf ( R)  =  w E data [Vposterior (in T^ j)] +  ( 1  -  w)Edata [Vposterior (in T ^ )]  . (26)



Here V p0Sterj0r (lnTpA) and V pn„ rnnr (In Y'/;2) denote the posterior variance 
of lnTp i and In Tpl  respectively. Moreover, E data(-) means unconditional 
expectation with respect to the data. If we have two censoring schemes say 
R l =  {i?}, • • • , and R2 =  {i?J, • • • , R2m}, we say R l (R2) is better than R2 
( R ^ i i C ^ R O  < ( > ) C ? ( R 2).

Criterion 2 If for any censoring scheme R

C°(R)  =  wE,data f  Vposterior (l^  \ (/?)
J  0

f  Vposterior (InTpn) dW2(p)
Jo

LJO

( 1  w)ELiata

then we say R l (R2) is better than R2 ( R l) if C2 (Ri)  < (>) C2 (R2).

(27)

It is clear that the computation of Eqs. 26 and 27 are not very easy. We 
have used Monte Carlo simulation technique to approximate Eqs. 26 and 
27, as proposed in Kundu (2008). For illustrative purposes, we present the

Table 6 The optimal censoring scheme for different objective functions when m =  5 and n =  10, 
15,20,25 and 30

OF n Ri r 2 R i i?4 Rs R E  (% ) RT (% )
1 10 1 4 0 0 0 96.1 53.6

15 1 9 0 0 0 96.8 46.0
20 0 15 0 0 0 98.7 35.1
25 0 20 0 0 0 98.9 33.5
30 0 0 25 0 0 99.5 32.8

2 10 4 1 0 0 0 92.9 52.1
15 1 9 0 0 0 95.1 46.0
20 0 15 0 0 0 96.8 35.1
25 0 0 20 0 0 98.1 37.8
30 0 0 25 0 0 98.8 34.5

3 10 0 0 0 0 5 100.0 100.0
15 0 0 0 0 10 100.0 100.0
20 0 0 0 0 15 100.0 100.0
25 0 0 0 0 20 100.0 100.0
30 0 0 0 1 24 99.9 55.4

4 10 5 0 0 0 0 89.4 54.9
15 10 0 0 0 0 90.0 43.0
20 15 0 0 0 0 91.3 36.7
25 20 0 0 0 0 92.5 32.5
30 25 0 0 0 0 93.4 29.5

5 10 5 0 0 0 0 98.0 54.9
15 10 0 0 0 0 98.0 43.0
20 15 0 0 0 0 98.4 36.7
25 20 0 0 0 0 98.7 32.5
30 25 0 0 0 0 98.9 29.5

The relative efficiency (R E) and the relative expected time (RT) of Type-II censoring scheme with 
respect to the optimum censoring scheme are reported



Table 7 The optimal censoring scheme for different objective functions when n =  15, and m  =  6, 
8 and 10

OF Ri r 2 Ri i?4 Rs Re Ri Rg r 9 *10 R E  (% ) RT (% )
m =  6

1 1 8 0 0 0 0 96.8 46.8
2 1 8 0 0 0 0 95.7 46.8
3 0 0 0 0 0 9 100.0 100.0
4 9 0 0 0 0 0 90.0 46.1
5 9 0 0 0 0 0 98.2 46.1

m  =  8
1 1 6 0 0 0 0 0 0 98.6 53.5
2 1 6 0 0 0 0 0 0 93.9 53.5
3 0 0 0 0 0 0 0 7 100.0 100.0
4 7 0 0 0 0 0 0 0 92.1 52.4
5 0 7 0 0 0 0 0 0 97.8 53.6

m  =  10
1 0 1 4 0 0 0 0 0 0 0 97.9 62.2
2 0 5 0 0 0 0 0 0 0 0 94.9 61.7
3 0 0 0 0 0 0 0 0 0 5 100.0 100.0
4 5 0 0 0 0 0 0 0 0 0 95.1 61.2
5 0 2 3 0 0 0 0 0 0 0 98.4 62.0

The relative efficiency (R E) and the relative expected time (RT) of Type-II censoring scheme with 
respect to the optimum censoring scheme are reported

optimal sampling scheme for different objective functions (OF) for selected 
combination of m  and n. Here it is assumed a\ =  a < =  b \ =  b 2 =  1.0, and 
ao =  bo =  2. We have used the minimum trace criterion (OF-1), minimum 
determinant criterion (OF-2), and the minimum sum of the variances of the 
p -th percentile estimators for different choices of p,  namely p =  0.1 (OF-3), 
p  =  0.99 (OF-4). Finally we have also computed the optimum scheme based on 
the minimum sum of the weighted variances (OF-5) under the assumption that 
Wi(p) =  Wn(p) =  1 for allO < p  < 1. Moreover in calculating OF-3, OF-4 and 
OF-5, it is assumed that w =  1/2.

Note that in all cases the optimization has to be performed numerically. 
They are discrete optimization problem. For a given n and m, the optimum 
censoring scheme with respect to to a given criterion can be found by ex­
haustive search for all possible values of i?,’s satisfying Eq. 2. The results are 
reported in Tables 6  and 7. Since Type-II censoring scheme is a particular 
choice of the general progressive censoring scheme, and it is one of the 
most used censoring scheme, we report the relative efficiency and also the 
relative expected experimental time of the Type-II censoring scheme with 
respect to the optimal censoring scheme. To compute relative efficiency, we 
need expected Fisher information matrix. The expression of expected Fisher 
information matrix is given in Appendix B. It is clear that the relative expected 
experimental time of the Type-II censoring scheme is significantly smaller than 
the optimal censoring scheme, but the relative efficiencies are quite high. That 
justifies the overwhelming popularity of the Type-II censoring scheme.



6 Concluding remarks

In this work, we have considered the Bayesian analysis of the competing 
risks data when they are Type-II progressively censored. Latent failure time 
modeling of Cox (1959) has been assumed in analyzing the competing risks 
data. The latent lifetime distributions are assumed to be Weibull with the same 
shape but different scale parameters. Although, in this paper we have mainly 
dealt with two causes of failure only, the work can be extended to more than 
two causes of failure. Prior selection has been suggested using the idea of Pena 
and Gupta (1990), which is a very flexible prior.

We have proposed different criteria for selecting optimal censoring schemes 
and presented some optimal censoring scheme for selected choice of n and m. 
We further compute the relative efficiency of the Type-II censoring schemes 
with the optimal censoring schemes. It is observed that the relative efficiency 
of the Type-II censoring schemes is quite high. It justifies the usefulness of the 
Type-II censoring scheme in practice.

Acknowledgement The authors would like to thank one anonymous referee for many construc­
tive suggestions.

Appendix A: Generation from Beta-Dirichlet distribution

In this appendix we will mention how to generate samples from Eq. 20. It has 
already been shown that

b o +  ^ 2  (Ri +  1 ) tf, a0 +  mi +  m2, tfi +  ni i , a2 +  m 2 I
r=i /

(A.i +  A.2) ~  Gamma ^70 +  mi +  m 2, b 0 +  ^ 2  ^  and 

Xi| (A.i +  A.t) ~  Beta (ai +  mi, a2 +  m 2) .

Therefore, first we generate from a gamma distribution with the shape and
m

scale parameters as ao +  mi + m 2 and , bo +  i +  1 )tf respectively, and
i=l

then we generate from a Beta distribution with the parameters as ai +  tri\ 
and a2 +  m2 respectively. Note that the generation from a Beta distribution 
can be easily performed using the acceptance-rejection principle, where the 
dominating function can be taken as the uniform (0 , 1 ).

(A.i, X2) ~  BD



Appendix B: Expected Fisher information matrix

For completeness purposes we have provided the expected Fisher information 
matrix. Let us use the following notation;

= m  -  j  +  1 + ̂ 2  R i ' c h i = FITi' flu = l ' Cli-i =
1

i= j i= 1 k=l,kj^i 

If the 3 x 3 expected Fisher information matrix is denoted by £ , then

Tk ~  ri

E  =
E a  E n  E n
E 21 E 22 £ 2 3
E 31  £ 3 2  E 33

where

3 2 In /  (o', A.i, A.2 ) 3 2 In /  (o', A i,  A2 ) 3 2 In /  (or, Ai,  A2 )

d a 2 dadXi dadXn
3 2 In /  (o', A.i, A.2 ) 3 2 In /  (o', A i,  A2 ) 3 2 In /  (or, Ai,  A2 )

Uj
d k i d a 3A2 dX[dX2

3 2 In /  (o', A i ,  A2 ) 3 2 In /  (or, A i,  A2 ) 3 2 In /  (or, Ai,  A2 )

8 X280/ 3A23A i 3A?

r  til  | ( > - l + ^ 2 ) \ - ^ , n  , 1 W  
En ~  ^2 +  ---- ^ 2 ---- U R J +  l )hi i

j= 1

(28)

E 22 =
1

Ai (Ai +  A2 ) 

£ 2 3  =  £ 3 2  =  0

£33 =
1

A 2 (Ai +  A2 )

and

£ l 2  =  £21 =  £ l 3  =  £31 =  — ^  ( R j  +  l )  /?2
;=1

h i j  =
C /-1 E Qi.j

rl1 =  1  1

7T
—----- 2 y  +  y “ — 2 ( 1  — y )  ln{r, (Ai +  A2 )}6

+  (ln{r,- (Ai +  -̂2 )})“

£  “f  I 1 -   ̂ - ln <r' <’■ ' + ■
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