Indian Statistical Institute

Mid-semsetral examination: (2011-12)

M. Math I year

Advanced Functional Analysis

Date: O1.19.11 Maximum marks: 40 Duration: 2 hours.

Answer ANY THREE questions. Each question carries 15 marks.

- (1)Let M,N be two bounded normal operators on a Hilbert space. Suppose that there is a bounded operator T which is invertible, i.e. has a bounded inverse, satisfying $M = TNT^{-1}$. Prove that there exists a unitary U such that $M = UNU^{-1}$ [Hint: Use the polar decomposition of T.] [15]
- (2) Let \mathcal{A} be a C^* algebra and a, b be positive elements of \mathcal{A} satisfying ab = ba. Prove that $ab \geq 0$. [15]
- (3) Prove that any finite dimensional C^* algebra is isometrically *-isomorphic with a *-subalgebra of $M_n(\mathcal{C})$ for some n. [15]
- (4) (i) Let X be a locally convex topological vector space. Prove that the convex hull of every bounded subset is again bounded.
- (ii) Give an example to show that local convexity is a necessary condition for the conclusion of (i). [8+7=15]

Probability Theory (M Math II): Mid Semestral Exam

Answer All Questions in Two Hours (maximum you can score 30)

- 1. When an estimator of θ is called maximum likelihood estimator (m.l.e.) for a family of probability functions $\{P_{\theta}\}_{\theta}$. Compute m.l.e. of Geo(p) based on $X \sim Geo(p)$. [7 pt]
- 2. Let $M, N \stackrel{iid}{\sim} Poi(\lambda)$. Compute $Ex(M^N)$. [7 pt]
- 3. Suppose a coin is tossed (independently) infinitely many times. What is the probability that either number of Head or Tail is finite? [6 pt]
- 4. We define a sequence of random variables $X_1 = n$ (with probability one), X_2, \ldots as follows: For each $i \geq 2$, $X_i | (X_1, \ldots, X_{i-1}) \sim \text{Unif}(\{1, 2, \ldots, X_{i-1}\})$. Compute $\text{Ex}(X_m)$ for all $m \geq 2$.
- 5. Consider a fair random walk $(S_n)_n$. Let n = a + b, b < a. Compute the following conditional probability $P(S_1 > 0, \ldots S_n > 0 \mid S_n = a b)$. [7 pt]
- 6. Write down the probability function on the output of the following random experiment: Choose an element X at random from a set A. If $X \notin B$ ($\subseteq A$) then choose Y at random from B, otherwise define Y = X.

INDIAN STATISTICAL INSTITUTE Mid-Semestral Examination: 2011-12 (First Semester)

M. MATH. II YEAR Commutative Algebra

Date: 05.09.11

Maximum Marks: 60

Duration: 3 Hours

Note: Answer any 7 questions from Groups A and any 2 from Group B. Clearly state the results that you use.

GROUP A

Prove ANY SEVEN of the following statements.

- 1. Let R be an integral domain with field of fractions K. Then R is the intersection of the local rings $R_m(\subset K)$, as m varies over the set of maximal ideals of R. [8]
- 2. Let I be an ideal of an integral domain R. If both I + (x) and (I : x) are principal ideals, then I is a principal ideal. [8]
- 3. Let I, P_1, P_2, \dots, P_n be ideals of a ring R such that P_i is prime $\forall i \geq 3$. If I is not contained in any of the P_i , then there exists an element $x \in I$ that is not contained in any P_i . [8]
- 4. R is a reduced ring if and only if R_P is a reduced ring for every prime ideal P of R. (A ring is called reduced if 0 is the only nilpotent element of the ring.)
- 5. Let M be an R-module. If P be an ideal of R that is maximal among all annihilators of non-zero elements of M then P is a prime ideal of R. [8]
- 6. If I is a finitely generated ideal of R satisfying $I^2 = I$ then there exists $f \in I$ for which $f^2 = f$ and I = (f).
- 7. Let $f = a_0 + a_1 X + \cdots + a_n X^n$ be an element of R[X] ($a_i \in R \, \forall i$). Then f is a unit in R[X] if and only if a_0 is a unit and a_i is nilpotent for each $i \geq 1$.
- 8. $\mathbb{C}[X,Y,Z,W]/(X^2+Y^2+Z^2+W^2-1)$ is a UFD. (\mathbb{C} : the field of complex numbers.) [8]

GROUP B

Give an example each for ANY TWO of the following.

- 1. A ring R, an ideal I and a countably infinite collection of prime ideals P_1, \dots, P_n, \dots of R such that $I \subseteq \bigcup_n P_n$ but $I \not\subseteq P_i$ for any i.
- 2. A reduced ring R such that R_P is an integral domain for every prime ideal P of R but R is not an integral domain. [5]
- 3. A ring R containing a multiplicatively closed set S and two ideals I, J of R such that $S^{-1}(I:J) \neq (S^{-1}I:S^{-1}J)$. [5]

Indian Statistical Institute

Mid-Semestral Examination: 2011-2012 Programme: Master of Mathematics Subject: Number Theory

Date: 07.09.2011

Duration: Two Hours and 30 Minutes

Maximum marks: 60

Answer all questions explaining and justifying each step.

p denotes a variable odd prime throughout.

- 1. If $p \mid (2^{2^n} + 1)$ for some positive integer n, then show that $p \equiv 1 \pmod{2^{n+1}}$. (6 marks)
- 2. Let h(n) denote the number of distinct solutions modulo n to the congruence $x^2 + 1 \equiv 0 \pmod{n}$. Evaluate h(39) and h(65). (6 marks)
- 3. Show that there is no integer solution to the equation $x^5 + y^5 = z^5$ with $1 \le |xyz| \le 10^5$. (6 marks)
- 4. Suppose a is a positive integer and $p \nmid a$. If $p \equiv \pm 1 \pmod{4a}$, then show that a is a quadratic residue of p. (12 marks)
- 5. Find all positive integers n such that $n \mid (10^n 1)$. (12 marks) Hint: infinite descent may be useful.
- 6. Let S(X) denote the number of pairs of coprime integers m and n; $1 \le m, n \le X$. Derive an asymptotic formula (with a main term and an error term) for S(X) as $X \longrightarrow \infty$. (12 marks) Hint: capture the coprimality condition by μ .
- 7. Suppose p is an odd prime. Show that there is a primitive root modulo p^3 . You can assume that U(p), the group of units of $\mathbb{Z}/p\mathbb{Z}$, is cyclic. (12 marks)

Hint: if g is a generator of U(p), consider g^{p-1} modulo p^2 .

Fourier Analysis: M. Math II: Mid Semester Examination September 9, 2011.

Maximum Marks 40

Maximum Time 2:30 hrs.

Answer all questions.

- 1. Give short answers to the following questions.
 - (a) Is $f(x) = e^{-\pi x^2} \sin(e^{\pi x^2})$ a Schwartz class function on \mathbb{R} ? Justify.
 - (b) Show that if $f \in L^{p_1}(\mathbb{R}) \cap L^{p_2}(\mathbb{R})$ then $||f||_p \le ||f||_{p_1}^{1-\theta} ||f||_{p_2}^{\theta}$ where $\frac{1}{p} = \frac{(1-\theta)}{p_1} + \frac{\theta}{p_2}$.
 - (c) Show that for any $f \in C_c^{\infty}(\mathbb{R}^n)$ and any $p \in [1, \infty)$, $||f||_{p,\infty} \leq ||f||_p$.
 - (d) For $1 , let <math>f \in L^p(\mathbb{R}^n)$ be once differentiable and $f' \in L^p(\mathbb{R}^n)$. Then show that f vanishes at infinity.

- 2. (a) Let $y \in \mathbb{R}^n$ be fixed. Let B(y,r) be the ball in \mathbb{R}^n of radius r > 0 with centre at y. Define $f(x) = |B(y,|x|)|^{-\delta}$ for some $\delta \in \mathbb{R}$. Give argument to show that for any δ , f is not an L^p -function for any $p \ge 1$.
 - (b) Find the range of $\delta \in \mathbb{R}$ so that the Fourier transform of the function f exists (as a measurable function) and determine its Fourier transform.
 - (c) Let ϕ be a Schwartz class function on \mathbb{R}^n . Find the range of δ for which $g(x) = \phi(x)|B(y,|x|)|^{-\delta}$ is in $L^1(\mathbb{R}^n)$ 7+5+5=17
- 3. For a point $x \in \mathbb{R}^n$ and for r > 0 let B(x,r) be the ball of radius r with centre at x. For a locally integrable function f define

$$Mf(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy.$$

(The supremum is taken over all balls with centre at x.)

If $||Mf||_q \leq C||f||_p$, the show that p = q.

What is your conclusion if $||Mf||_{q,\infty} \le C||f||_{p,\infty}$?

10+3=13

Mid-Semestral Examination 2011–2012

M.Math (Second year) Differential Topology

Maximum Marks: 60

Duration: 2 hours 30 minutes

Date: 42.09 111

Answer all questions.

State clearly any result that you use in your answer.

A manifold is assumed to be a subset of an Euclidean space.

- (1) Let M and N be manifolds such that $N \subset M \subset \mathbb{R}^q$. Prove the following:
 - (a) The inclusion map i of N into M is a smooth map.
 - (b) The tangent space of N at a point x is a subspace of the tangent space of M at x. 3 + 3
- (2) Show by an example that the image of a one-to-one immersion need not be a submanifold.
- (3) Show that a non-degenerate critical point of a function $f:\mathbb{R}^n\to\mathbb{R}$ is an 9 isolated critical point.
- (4) (a) Let S^n denote the *n*-sphere in \mathbb{R}^{n+1} . Prove that any smooth map $f: M \to S^n$ is homotopic to a constant map if $n > \dim M$.
 - (b) Give an example to show that this need not be true when $n \leq \dim M$. 6+6
- (5) For each $a = (a_1, a_2) \in \mathbb{R}^2$, define a function $f_a : \mathbb{R} \to \mathbb{R}^2$ by $f(t) = (t, t^2) + (a_1, a_2), t \in \mathbb{R}.$

Show that there exists an $\varepsilon > 0$ such that f_a is transversal to the submanifold $\Delta = \{(x, x) | x \in \mathbb{R}\}\$ of \mathbb{R}^2 whenever $\|(a_1, a_2)\| < \varepsilon$.

- (6) Let $f: M \to \mathbb{R}^n$ be an immersion. Suppose that $\bigcup_{x \in M} df_x(T_x M)$ is a proper subset of \mathbb{R}^n .
 - (a) Prove that there exists an immersion $g: M \to \mathbb{R}^{n-1}$.
 - (b) Apply (a) to show that the open upper hemisphere of a sphere S^n 9+5immerses in \mathbb{R}^n .

Semestral Examination 2011–2012

M.Math (Second year)

Differential Topology

Maximum Marks: 60

Date: 16 November, 2011

Duration: 2 hours 30 minutes

Answer all questions.

State clearly any result that you use in your answer.

(1) (a) Let V be a vector space of dimension k and $\phi_1, \phi_2, \ldots, \phi_k$ belong to V^* . If $A: V \to V$ a linear map then show that

$$A^*\phi_1 \wedge \cdots \wedge A^*\phi_k = (\det A)\phi_1 \wedge \cdots \wedge \phi_k.$$

- (b) Recall that a manifold M is oriented if each tangent space T_xM is oriented and M admits local parametrizations by orientation preserving diffeomorphisms. Prove that if M is an oriented manifold of dimension k in \mathbb{R}^N then there is a nowhere vanishing k-form on M.
- (2) Let $h: \mathbb{R} \to S^1$ be defined by $h(t) = (\cos t, \sin t), t \in \mathbb{R}$.
 - (a) Show that if ω is any 1-form on S^1 , then

$$\int_{S^1} \omega = \int_0^{2\pi} h^* \omega.$$

- (b) Let $\int_{S^1} \omega = 0$ for some 1-form ω . Prove that ω is exact. Hint: Define a function g on \mathbb{R} by $\int_0^t h^*\omega$. Use this g to define a primitive of ω .
- (c) Prove that the first de Rham cohomology group $H^1(S^1)$ is isomorphic to \mathbb{R} . 8+6+4
- (3) (a) Let M be an n-dimensional manifold in \mathbb{R}^{n+1} . Suppose that there is a smooth normal vector field on M. Show that M is orientable.
 - (b) Note that an n-sphere S^n is orientable. Consider the antipodal map $a: S^n \to S^n$. Given an n, determine whether a is orientation preserving or orientation reversing.
 - (c) Which of the real projective spaces $\mathbb{R}P^n$ are non-orientable? Justify your answer. 6+6+6
- (4) Let M be an oriented manifold of dimension n without boundary.
 - (a) Consider the product manifold $M \times [0, 1]$ with the product orientation. Describe the boundary orientation on $M \times \{0, 1\}$.

(b) Suppose that M is compact and without boundary. Let $f_0, f_1: M \to$ N be homotopic maps. Prove that

$$\int_M f_0^* \omega = \int_M f_1^* \omega$$
 for any closed $n\text{-form }\omega$ on
 $N.$

6 + 6

Indian Statistical Institute

Semsetral examination: (2011-12) M. Math II year

Advanced Functional Analysis

Date: 2/·///) Maximum marks: 60 Duration: 3 hours.

Answer ANY TWO questions from Group A and ANY ONE from Grup B. Marks are indicated in bracket.

Group A (Answer ANY TWO questions).

- (1) Let T be a bounded normal operator which has a one-sided inverse S such that ST = I. prove that T is invertible. [15]
- (2) Let \mathcal{A} be a unital separable C^* algebra such that any irreducible representation of \mathcal{A} is finite dimensional. Prove that there is a faithful tracial state τ on \mathcal{A} (tracial means $\tau(ab) = \tau(ba)$ for all a, b).
- (Hint: First argue that there is a countable family of pure states $\{\phi_n\}$ of \mathcal{A} which is separating for \mathcal{A} , i.e. for any nonzero a there is some ϕ_n with $\phi_n(a) \neq 0$.) [15]
- (3) Let X be a topological vector space with a dense subspace X_0 , Y Banach space and $T: X_0 \to Y$ be a continuous linear map. prove that T extends to a continuous linear map from X to Y.

Group B (Answer ANY ONE question)

- (4)(i) Let G be a finite abelian group with n elements and let α be the canonical G-action on the finite dimensional C^* algebra C(G) given by $\alpha_g(f)(h) = f(g^{-1}h)$. Prove that the crossed product C^* algebra $C(G) \times_{\alpha} G$ is isomorphic with $M_n(\mathbb{C})$.
- (Hint: Identify $M_n(\mathbb{C})$ with $\mathcal{B}(l^2(G))$ and try to construct a *-homomorphism π from $M_n(\mathbb{C})$ to the crossed product algebra by defining $\pi(|\chi_g><\chi_h|)$, where χ_g denotes the characteristic function of the singleton $\{g\}$.)
- (ii) Using (i) or otherwise, prove that any irreducible representation of the universal C^* algebra $\mathcal{A}_{\frac{1}{n}}$ generated by two unitaries U, V satisfying $UV = \exp(\frac{2\pi i}{n})VU$ must be n-dimensional. [15+15=30]

OR

- (5) (i) Let $\mathcal H$ be any separable infinite dimensional Hilbert space and let $\mathcal A$ denote the C^* -subalgebra of $C([0,1],\mathcal B(\mathcal H))$ (with $\|F\|:=\sup_{x\in[0,1]}\|F(x)\|$) consisting of those functions $F:[0,1]\to\mathcal B(\mathcal H)$ for which F(0) is a scalar multiple of I. prove that $\mathcal A$ does not have any projections except the trivial ones, i.e. 0 and 1.
- (ii) Prove that there is an injective C^* -homomorphism from $C^*(\mathbb{F}_2)$ to \mathcal{A} , and hence $C^*(\mathbb{F}_2)$ does not have any nontrivial projection.
- (Hint: Observe that $C^*(\mathbb{F}_2)$ admits a faithful representation in some separable Hilbert space.) [15+15=30]

INDIAN STATISTICAL INSTITUTE Semestral Examination: 2011-12 (First Semester)

M. MATH. II YEAR Commutative Algebra

Date: 23.11.2011 Maximum Marks: 70 Duration: $3\frac{1}{2}$ Hours

ANSWER ANY SIX QUESTIONS. Clearly state the results that you use.

- 1. Let $A = \mathbb{C}[X, Y]/(X^2 + Y^2 1)$.
 - (i) Prove that $A \cong \mathbb{C}[T, T^{-1}]$.
 - (ii) Deduce that A is a PID.
 - (iii) Explain why the relation $\bar{X}\bar{X}=(1-\bar{Y})(1+\bar{Y})$ does not contradict the fact that A is a UFD. [5+2+5=12]
- 2. (i) Prove that any finitely generated projective module over a local ring is free.
 - (ii) Let $B = \mathbb{R}[X,Y]/(X^2 + Y^2 1)$ and M the ideal (x,y-1)B where x and y denote respectively the images of X and Y in B. Prove that M is a projective B-module. [6+6=12]
- 3. (i) Compute $\mathbb{C}[X]/(X^5) \otimes_{\mathbb{C}} \mathbb{C}[X]/(X^7)$.
 - (ii) Let M and N be finitely generated R-modules such that $M \otimes_R N = 0$. Prove that $Ann_R M + Ann_R N = R$.
 - (iii) Prove that any flat module over an integral domain is torsion-free. [3+5+4=12]
- 4. (i) Let $R = R_0 \oplus R_1 \oplus \cdots \oplus R_n \oplus \cdots$ be a graded ring. Show that if R is Noetherian, then R is a finitely generated algebra over R_0 .
 - (ii) Let $R \subset A \subset B$ be rings such that R is Noetherian and B is a finitely generated R-algebra. Suppose that B is also finitely generated as an A-module. Show that B is integral over A and that A is finitely generated as an R-algebra. [6+6=12]
- 5. (i) Suppose that R is a subring of A and α is a unit in A. Show that $R[\alpha] \cap R[\alpha^{-1}]$ is integral over R.
 - (ii) Let B be a Noetherian local domain with field of fractions $K(\neq B)$ and maximal ideal m. Show that if $xm \subseteq m$ for some x in K, then x is integral over B. [7+5=12]
- 6. Let $R = \mathbb{C}[X, Y]/(Y^2 X^2 X^3)$. Show that
 - (i) R is not normal.
 - (ii) The normalisation of R is of the form $\mathbb{C}[t]$, a polynomial ring in one variable over \mathbb{C} .
 - (iii) Display an explicit integral equation over R satisfied by t.
 - (iv) Prove that $t \notin R$. [12]

[P.T.O.]

Fourier Analysis: M. Math II: Semester Examination November 25, 2011.

Maximum Marks 60

Maximum Time 3 hrs.

Answer all questions.

- (1) Let $f \in L^p(\mathbb{R})$, $1 . Find the Fourier transform of its dilation <math>\delta_r f$ at $\xi \in \mathbb{R}$.
- (2) Define the radial part of a function $f \in L^1(\mathbb{R}^n)$. Show that if its radial part is zero then the ideal generated by f is not dense in $L^1(\mathbb{R}^n)$. 5
- (3) Let $u, v \in L^1(\mathbb{R})$ and $||v||_1 < 1$. Show that $\widehat{u}/(1+\widehat{v}) = \widehat{f}$ for some $f \in L^1(\mathbb{R})$. 5
- (4) Let (X, μ) and (Y, ν) be two measure spaces and K(x, y) be a measurable function on the product space $X \times Y$. Assume that for some M > 0

$$\int_Y |K(x,y)| d\nu(y) \le M \text{ for a. e. } x \in X \text{ and } \int_X |K(x,y)| d\mu(x) \le M \text{ for a. e. } y \in Y.$$
Show that if $T(f) = \int_Y f(y) K(x,y) d\nu(y)$ then $||Tf||_p \le M ||f||_p$ for $1 \le p \le \infty$.

- (5) Define central and noncentral Hardy-Littlewood maximal functions of $f \in L^1_{loc}(\mathbb{R}^n)$ using balls and denote them by Mf and M_1f respectively. Show that $M_1f \leq CMf$. What property of the Lebesgue measure is crucial for this?
- (6) On \mathbb{R}^2 define a multiplier operator $mf(x_1,x_2) = \int_{\mathbb{R}} \int_0^\infty \widehat{f}(\xi_1,\xi_2) e^{i(x_1\xi_1+x_2\xi_2)} d\xi_1 d\xi_2$. Show that m is strong type (p, p) for p > 1. 10
- (7) Suppose E is a measurable subset of \mathbb{R}^n . Let B denotes the balls in \mathbb{R}^n . Show that $\lim_{|B|\to 0, x\in B} \frac{|B\cap E|}{|B|} = 1 \text{ for a.e. } x\in E \text{ and } \lim_{|B|\to 0, x\in B} \frac{|B\cap E|}{|B|} = 0 \text{ for a.e. } x\notin E.$ (Use Lebesgue Differentiation theorem for locally integrable functions) 10

(8) On
$$\mathbb R$$
 we define p. v. $\frac{1}{x}$ by
$$\text{p. v. } \frac{1}{x}(\phi) = \lim_{t \to 0} \int_{|x| > t} \frac{\phi(x)}{x} dx.$$

Show that p. v. $\frac{1}{x}$ is a tempered distribution.

7

First Semestral Examination: 2011-12

Course Name: M Math II Subject Name: Basic Probability

Date: 28th November 2011 Maximum Marks: 60 Duration: 3 Hours

Note: Attempt all questions. Marks are given in brackets. State the results you want to use.

Problem 1 (8). Let Ω be a sample space of a probability function P such that Ω is disjoint union of uncountable events A_{α} , $\alpha \in \mathcal{A}$ (uncountable). Then prove that at most countable many A_{α} 's have positive probability.

Problem 2 (8). Let A be a finite set and $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}(A)$. Prove that

$$\Pr[X_i = X_j \text{ for some } i \neq j] \ge \frac{\binom{n}{2}}{|A|} - \frac{\binom{n}{3}}{|A|^2}.$$

Problem 3 (8). Let $X_i \sim N(\mu_i, \sigma^2)$, i = 0, 1 and $B \sim \text{Unif}(\{0, 1\})$. Moreover, X_0, X_1 and B are mutually independent. Find the probability density function of X_B .

Problem 4 (10). Let X_0 , X_1 , R and B are mutually independent random variables where $B \sim \text{Unif}(\{0,1\})$. Prove that for any function f,

$$|\Pr[f(X_B) = B] - 1/2| \le \operatorname{dist}_{\mathsf{TV}}(X_0, X_1)$$

where $dist_{TV}$ is the total variation function.

Problem 5 (8). Let X be a random variable taking values from $\{0,1,2,\ldots\}$ such that for all non-negative integers s and t, $P(X \ge s + t | X \ge s) = P(X \ge t)$. What can you say about the random variable X?

Problem 6 (8). Define and compute the (differential) entropy of $\text{Exp}(\lambda): \lambda e^{-\lambda x}, x \geq 0$.

Problem 7 (8). Construct three pairwise independent random variables X_1, X_2 and X_3 which are not mutually independent.

Problem 8 (6 + 6 = 12).

1. Prove that

$$\Pr[X - \mu \ge k\sigma] \le \frac{1}{1 + k^2}$$

where μ and σ^2 are mean and variance of X. (Hint: use Cauchy-Schwarz inequality: $\mathbf{E}(Z^2)\mathbf{E}(W^2) \geq \mathbf{E}^2(ZW)$.

2. Prove that, if median m (i.e. $\Pr[X \leq m] = 1/2$) exists, then $|\mu - m| \leq \sigma$.

INDIAN STATISTICAL INSTITUTE Mid-Semestral Examination: 2011-12 (Second Semester)

M. MATH. II YEAR Commutative Algebra II.

Date: 20.2.2012 Maximum Marks: 30 Duration: $2\frac{1}{2}$ Hours

Answer ANY FOUR questions

- 1. Let k be a field, $A = k[X_1, \dots, X_n]$ and $m = (X_1 a_1, \dots, X_n a_n)$. Let $I = (f_1, \dots, f_m)$ be an ideal of A contained in m and $R = A_m/IA_m$. Let r be the rank of the corresponding Jacobian matrix :— the $m \times n$ -matrix whose (i, j)th entry is $(\frac{\partial f_i}{\partial X_i}|_{(a_1,\dots,a_n)})$.
 - (i) Show that R is a regular local ring if and only if dim R = n r.
 - (ii) Let $B = \mathbb{C}[X, Y, Z]/(XY Z^2)$. Describe all maximal ideals m of B for which B_m is a regular local ring. [6+2=8]
- 2. Let $B = \mathbb{C}[X, Y, Z]/(XY Z^2)$. Let $x = \overline{X}$, $y = \overline{Y}$, $z = \overline{Z}$. Let P = (x, z)B, $I_1 = P^2 + yB$ and $I_2 = (x, z^2)B$.
 - (i) Show that xB is P-primary.
 - (ii) Verify that $P^2 = I_1 \cap I_2$ is an irredundant primary decomposition of P^2 . Mention the associated prime ideals and identify the isolated and embedded components.

[3+5=8]

- 3. (i) Let K be a field. Compute the Krull dimension of the ring $K[X^2, Y^2, XY^2, X^3]$.
 - (ii) Let M be a nonzero finitely generated module over a Noetherian ring R and let I be an ideal of R. Show that either I contains a nonzerodivisor on M or I annihilates an element of M. [3+5=8]
- 4. Let R be a Noetherian domain.
 - (i) Show that, for every prime ideal P of R, the symbolic power $P^{(n)}(:=P^nR_P\cap R)$ is a P-primary ideal of R.
 - (ii) Prove that if x is a nonzero non-unit in R, then the height of xR is one. [2+6=8]
- 5. (i) Let R be a Noetherian domain. Prove that R is a UFD if and only if every prime ideal minimal over a principal ideal is itself principal.
 - (ii) Let $P \subsetneq Q$ be prime ideals in a Noetherian ring R. Show that if there exists one prime ideal P_1 in R with $P \subsetneq P_1 \subsetneq Q$, then there exist infinitely many prime ideals P_i in R such that $P \subsetneq P_i \subsetneq Q$. [3+5=8]
- 6. Let R be a Noetherian domain of dimension one. Prove that the normalisation of R is Noetherian. [8]

Indian Statistical Institute

Mid-semsetral examination: (2011-12)

M. Math II year

Special Topics (K theory of C^* algebras)

Date: 24.2.12 Maximum marks: 40 Duration: 2 hours.

Answer ANY TWO questions. Each question carries 20 marks.

- (1) Prove that $K_0(A)$ is countable for a separable C^* algebra A.
- (2) Let \mathcal{A} be a unital C^* algebra and a be an element of \mathcal{A} which is positive and $\|a\| \le 1$. Consider

$$p = \left(\begin{array}{cc} a & (a-a^2)^{\frac{1}{2}} \\ (a-a^2)^{\frac{1}{2}} & 1-a \end{array} \right).$$

Prove that p is a projection and $p \sim \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right)$ in $M_2(\mathcal{A}).$

(3) Let $X \subseteq [0,1]$ denote the Cantor set. Prove that $K_0(C(X)) \cong Z[\frac{1}{2}]$ as abelian group, where Z denotes the set of integers.

MID-SEMESTER EXAMINATION: (2011-2012)

M. MATH II

ALGEBRAIC NUMBER THEORY

FEBRUARY 24, 2012 MAXIMUM MARKS : 35 DURATION : $2\frac{1}{2}$ HOURS

(1)	Let $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ and $\mathbb{Z}[\omega] = \{a + b\omega a, b \in \mathbb{Z}\}.$ (a) Find all the units in $\mathbb{Z}[\omega]$.	[4]
	(b) Prove that $1-\omega$ is irreducible in $\mathbb{Z}[\omega]$ and that $3=u(1-\omega)^2$ for so	ome
	unit u in $\mathbb{Z}[\omega]$. Find the order of $\frac{\mathbb{Z}[\omega]}{(1-\omega)}$.	[3]
	(c) Let $K = \mathbb{Q}(\omega)$. Is $\mathcal{O}_K = \mathbb{Z}[\omega]$? Justify your answer.	[3]
(2)	Let A be an integral domain which is integrally closed in its field of B tions A . Let B be a separable extension of A of degree B . Let B be integral closure of A in B . Now answer the following questions. (a) Prove that $A \in B$ if and only if $A \in A$.	
	(b) If $\alpha_1, \dots, \alpha_n \in B$ form a basis of the K -vector space L , and if $\operatorname{disc}(\alpha_1, \dots, \alpha_n)$, then prove that $dB \subseteq A\alpha_1 + \dots + A\alpha_n$.	d = [4]
	(c) Assume further that A is a PID. Then prove that any finitely generation-zero B -submodule M of L is a free A -module of rank n .	ated [4]
	(d) Consider the case when $A=\mathbb{Z}$, $L=\mathbb{Q}(\sqrt{5})$. Find a \mathbb{Z} -basis of the \mathbb{Z} -module B .	free [5]
(3)	Let $K = \mathbb{Q}(\sqrt{-5})$ and $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$ the ring of algebraic integers in K (a) Prove that $\mathcal{P} = (2, 1 + \sqrt{-5})$ is a prime ideal of \mathcal{O}_K with norm 2.	
	(b) Show that \mathcal{P} is the only ideal with norm 2. Deduce that the class grant Cl_K is of order 2 (clearly state the result(s) you used).	oup
	(c) How many ideals are there of norm 3 in $\mathbb{Z}[\sqrt{-5}]$?	[3]
(4)	(a) Let K be a number field and \mathcal{O}_K be its ring of integers. Prove the group of units \mathcal{O}_K^* is finite if and only if either $K=\mathbb{Q}$ or K i imaginary quadratic extension of \mathbb{Q} . (State the results you used).	is an
	(b) Let $K = \mathbb{Q}(\sqrt{-d})$, where d is a square-free, positive integer. Gi complete description of the group of units \mathcal{O}_K^* , with justification.	
	(c) Find the fundamental units for the following number fields : (i) $\mathbb{Q}(0)$ (ii) $\mathbb{Q}(\sqrt{5})$.	
	1	

INDIAN STATISTICAL INSTITUTE Mid-Semesteral Examination: 2011-12

M. Math. - Second Year Mathematical Logic

<u>Date: 27. 02. 2012</u> <u>Maximum Score: 100</u> <u>Time: 3 Hours</u>

- 1. The paper carries 120 marks. You are free to answer all the questions. Maximum Score: 100
- 2. You are free to use any theorem proved in the class. However, you must state any theorem that you use at least once in the answer script.
 - (1) Show that if a set A of formulas of a language for propositional logic is finitely satisfiable, it is satisfiable. [15]
 - (2) Show that any two countably infinite models of *DLO* are isomorphic. [15]
 - (3) Show that two uncountable models of the theory of divisible, torsion-free, abelian groups are isomorphic if and only if they have the same cardinality. [15]
 - (4) Show that every countable consistent theory has a countable model. [15]
 - (5) Let M be the structure of a first order language L, α an automorphism of M and $A \subset M$ is such that for every $a \in A$, $\alpha(a) = a$. Show that if $B \subset M^n$ is A-definable, $\alpha(B) \subset B$. Use this to show that the set of all real numbers \mathbb{R} is not a definable subset of the ring \mathbb{C} of complex numbers. [20]
 - (6) Let T be a first order theory and A a sentence undecidable in T. Show that T[A] is consistent. [10]
 - (7) Show that every consistent theory has a complete simple extension. [10]
 - (8) Show that if T is a complete, Henkin theory, the canonical structure of the language of T is a model of T. [20]

Indian Statistical Institute, Kolkata

Midsemestral Examinations: M.Math.II year & M.Stat.II year

Ergodic Theory

Maximum marks: 30 February 29, 2012 Time: 3 hours

Answer all questions

- 1. Let T be a measure preserving invertible transformation of the probability space (X, \mathcal{B}, m) . Say that T has a countable Lebesgue spectrum if there exists $f_0, f_1, f_2, \dots \in L^2(X, \mathcal{B}, m)$ such that f_0 is the constant function 1 and the family $\{f_0, U_T^k f_j : k = 0, \mp 1, \mp 2, \dots, j = 1, 2, 3, \dots\}$ is an orthonormal basis of $L^2(X, \mathcal{B}, m)$.
 - (a) Let \mathcal{P} be the spectral measure corresponding to U_T . Show that if T has a countable Lebesgue spectrum then for any $f \in L^2(X, \mathcal{B}, m), \langle f, 1 \rangle = 0, \langle f, f \rangle = 1$, the measure $\langle \mathcal{P}(.)f, f \rangle$ is the Lebesgue measure on \mathbb{T} .
 - (b) If T has countable Lebesgue spectrum, show that T is mixing. [4]
- Let G be a compact, connected metric abelian group. Let Tx = aAx be an affine transformation of G (i.e. a ∈ G and A is a continuous homomorphism of G onto itself.) Suppose that for x₀ ∈ X, the orbit {Tⁿx₀, n ≥ 0} is dense in G. Show that if for some character γ of G, and positive integer k, γ ∘ A^k = γ, then γ ∘ A = γ.
- 3. Let T be a measurable transformation of the measurable space (X, \mathcal{B}) and \mathcal{M}_T the space of all probability measures μ on \mathcal{B} such that μ is T-invariant. \mathcal{M}_T is a convex subset of the space of probability measures on \mathcal{B} .

Show that

- (a) if $\mu, \nu \in \mathcal{M}_T, \nu \ll \mu$, then the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$ is a T-invariant function a.e.
- (b) if, in addition to the hypothesis in (a), μ is given to be ergodic, then $\nu = \mu$. [2]
- (c) $\mu \in \mathcal{M}_T$ is ergodic if and only if μ is an extreme point of \mathcal{M}_T . [3]
- 4. Let T be the transformation on [0,1) defined by $Tx=<\frac{1}{x}>$, if $x\neq 0$ and T0=0, called the continued fraction map and μ the measure given by $\mu(a,b)=\int_0^1\frac{1}{1+x}dx$, called the Gauss measure.
 - (a) Show that T preserves μ . [5]
 - (b) Assume the facts (i) and (ii):
 - (i) For $x \in (0,1)$ irrational, $x = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$ is the (simple) continued fraction representation of x where $a_1 = [\frac{1}{x}], a_2 = [\frac{1}{Tx}], a_3 = [\frac{1}{T^2x}], \cdots$

(ii) T is ergodic for μ .

Now Show that for a.e.x, the asymptotic proportion of 1's among the a_1, a_2, a_3, \ldots is a constant.

[5]

Mid-Semestral Examination: 2011-2012

M. Math. - II Year Topology-III

Date: 02. 03. 2012 Maximum Score: 40 Time: 3 Hours

Any result that you use should be stated clearly.

- (1) (a): State Eilenberg-Steenrod axioms for Singular Cohomolgy.
 - (b): Compute $H^q(S^n)$ for $q \ge 1$, $n \ge 1$.

[10+15=25]

- (2) (a): Define the notion of cochain homotopy between two cochain maps.
 - (b): Prove that if $f^*: C^* \longrightarrow D^*$ is a cochain homotopy equivalence, then the induced maps in cohomology groups are isomorphisms.

[5+10=15]

- (3) (a): Define reduced cohomology groups $\widetilde{H}^p(X)$, $p \ge 0$, of a topological space X.
 - (b): Prove that $H^p(X) \cong \tilde{H}^p(X) \oplus \mathbb{Z}$.
 - (c): Compute Cohomolgy groups of $S^1 \bigvee S^3$.

[5+5+5=15]

Semesteral Examination: 2011-12 M. Math. - Second Year Mathematical Logic

<u>Date: 23. 04. 2012</u> <u>Maximum Score: 100</u> <u>Time: 4 Hours</u>

- 1. Answer all the questions.
- 2. You are free to use any theorem proved in the class. However, you must state any theorem that you use at least once in the answer script.
 - (1) Answer the following questions giving only a brief justification.
 - (a) Is the class of all finite sets elementary?
 - (b) Let M be a model of Peano arithmetic. Is it true that M must be unbounded, i.e., for every $x \in M$ there is a $y \in M$ such that x < y?
 - (c) Let G_1 and G_2 be two ordered, divisible, torsion-free, abelian groups. Are G_1 and G_2 elementarily equivalent?
 - (d) Let R_1 , R_2 be real closed fields with R_1 a subfield of R_2 . Is R_1 elementarily embedded in R_2 ?
 - (e) Let \mathbb{F} be an algebraically closed field, $C \subset \mathbb{F}^n$ constructible and $f_i \in \mathbb{F}[X_1, \dots, X_n], 1 \leq i \leq m$. Is $f(C) \subset \mathbb{F}^m$ constructible, where $f = (f_1, \dots, f_m)$?

 $[5 \times 5 = 25]$

- (2) Let $\varphi[x, x_0, \dots, x_{n-1}]$ be an open formula of a theory T whose language contains a constant symbol, say c. Show that the following two statements are equivalent.
 - (a) There is an open formula $\psi[x_0, \dots, x_{n-1}]$ such that

$$T \vdash \forall x_0 \cdots \forall x_{n-1} (\exists x \varphi \leftrightarrow \psi).$$

(b) For any two models $M, N \models T$, for any common substructure $A \subset M, N$, for any $\overline{a} = (a_0, \dots, a_{n-1}) \in A^n$,

$$M \models \exists x \varphi[x, \overline{a}] \Leftrightarrow N \models \exists x \varphi[x, \overline{a}].$$

[20]

- (3) Let κ be an infinite cardinal and T a consistent κ -theory.
 - (a) Assuming that T has an infinite model, show that T has a model of cardinality κ .
 - (b) If all models of T are infinite and if T is κ -categorical, show that T is complete.

[10 + 10 = 20]

(4) Let R be a real field.

- (a) Show that the field of rational functionals $R(X_1, \dots, X_n)$ over R is real.
- (b) Assume, moreover, that R is real closed. Let $f \in R(X_1, \dots, X_n)$ be such that for no $\overline{a} \in R^n$, $f(\overline{a}) < 0$. Show that f is a sum of squares in $R(X_1, \dots, X_n)$.

[5 + 10 = 15]

- (5) (a) Show that there is no recursive set $U \subset \mathbb{N} \times \mathbb{N}$ universal for all recursive subsets of \mathbb{N} .
 - (b) Let $R \subset \mathbb{N}^k$ as well as $\mathbb{N}^k \setminus R$ be semi-recursive. Show that R is recursive.

[10 + 10 = 20]

- (6) (a) Show that every complete axiomatized theory is decidable.
 - (b) Show that no axiomatized consistent extension of the theory N is complete.

[10 + 10 = 20]

INDIAN STATISTICAL INSTITUTE Semestral Examination: 2011-12 (Second Semester)

M. MATH. II YEAR Commutative Algebra II

Date: 27.4.2012 Maximum Marks: 70 Duration: 4 Hours

Note: Answer two questions from Group A, four from Group B and four from Group C.

GROUP A

Answer any TWO questions. Each question carries 14 marks.

- 1. Let $A = \mathbb{C}[X, Y, Z]/(XY Z^2)$ and P = (x, z), the ideal of A generated by x and z, the images of X and Z respectively. Show that
 - (i) A is a Noetherian integral domain.
 - (ii) A_P is a discrete valuation ring with $PA_P = zA_P$.
 - (iii) xA is a P-primary ideal.
 - (iv) A_m is a regular local ring for all but one maximal ideals m of A. [2+4+4+4=14]
- 2. Let R be a Noetherian ring.
 - (i) Suppose that x is an element in R which is neither a unit nor a zerodivisor. Prove that $R/x^{n-1}R \cong xR/x^nR$ as R-modules for each $n \geq 1$; and hence construct a short exact sequence

$$0 \to R/x^{n-1}R \to R/x^nR \to R/xR \to 0.$$

Deduce that $Ass_R(R/x^nR) = Ass_R(R/xR) \ \forall n \geq 1$.

- (ii) Compute Ass_R (R/xR) and Ass_R (R/x^2R) when $R = \mathbb{C}[X,Y]/(XY)$ and x is the image of X in R. [8+6=14]
- 3. (i) Let P be a prime ideal of a Noetherian ring R of height r. Show that there exist $a_1, \dots, a_r \in P$ such that $\operatorname{ht}(a_1, \dots, a_r) = r$.
 - (ii) Let $R = \mathbb{C}[X^2, Y^2, XY^2, X^3]$. Show that the principal ideal X^3R has an associated prime ideal of height 2. [9+5=14]

P.T.O.

GROUP B

Answer ANY FOUR questions.

Each question carries 4 marks.

- 1. Let t be a nonzero non-unit element of a Noetherian domain R. Prove that $\bigcap_n t^n R = (0)$.
- 2. Examine whether $\mathbb{C}[[X]][Y]_{(Y)}$ is a discrete valuation ring.
- 3. Show that every radical ideal of a valuation ring is a prime ideal.
- 4. If R is a valuation ring of dimension one with field of fractions K, then show that there does not exist any ring A with $R \subsetneq A \subsetneq K$.
- 5. Examine whether every primary ideal of a Dedekind domain is irreducible.
- 6. Show that any nonzero ideal of any Dedekind domain R is a finitely presented projective R-module of rank one. $[4 \times 4 = 16]$

GROUP C

Answer ANY FOUR questions.

Each question carries 8 marks.

- 1. Define the concepts of "a (additive) valuation" and "a place" of a field K. Given a discrete valuation ring (R,t) with field of fractions K, describe (without proof) the valuation and the place of K defined by R.
 - If \mathcal{P} is the place and v the valuation of $\mathbb{Q}(X)$ defined by the valuation ring $\mathbb{Q}\left[\frac{1}{X}\right]_{\left(\frac{1}{X}\right)}$, compute $\mathcal{P}\left(\frac{1}{X-1}\right)$, $v\left(\frac{1}{X-1}\right)$, $\mathcal{P}\left(\frac{X}{2X^2+1}\right)$ and $v\left(\frac{X}{2X^2+1}\right)$. [8]
- 2. Let $A = \mathbb{C}[X,Y,Z,W]/(XY-ZW) = \mathbb{C}[x,y,z,w]$ (where x,y,z,w denote the images in A of X,Y,Z,W respectively). Find three elements a,b,c in A such that $B = \mathbb{C}[a,b,c]$ is isomorphic to the polynomial ring in three variables over \mathbb{C} and A is integral over B. Write down explicit integral equations satisfied by x,y,z,w over B.
- 3. Give an example of a ring R containing a maximal ideal M and an M-primary ideal I such that $M \neq (I:x)$ for any $x \in R$.
- 4. Show that if a Noetherian local ring A contains at least one principal prime ideal P of height one, then A must be an integral domain. [8]
- 5. Let R be a discrete valuation ring and t a uniformising parameter of R. Let A be an R-algebra such that $R \subset A \subset R[X]$. Show that A[1/t] is a Noetherian ring. [8]
- 6. Let R be a Noetherian normal domain and P a prime ideal of R such that the height of P is at least 2. Let $a \in P$. Show that P/aR contains a nonzerodivisor of R/aR.

[8]

Indian Statistical Institute semsetral examination : (2011-12) M. Math II year

Special Topics (K theory of C^* algebras)

Date: 02.05.12 Maximum marks: 60 Duration: 3 hours.

Answer all the questions. Marks are indicated in brackets. The maximum you can score is 60.

- (1) Let \mathcal{O}_2 be the universal unital C^* algebra generated by two isometries S_1, S_2 such that $S_1S_1^* + S_2S_2^* = 1$. Prove that $K_0(\mathcal{O}_2) = 0$. [25]
- (2) Let $\phi: M_6(\mathbb{C}) \to M_{12}(\mathbb{C})$, $\psi: M_4(\mathbb{C}) \to M_{12}(\mathbb{C})$ be the *-homomorphisms given by $\phi(a) := \operatorname{diag}(a,a)$, $\psi(b) := \operatorname{diag}(b,b,b)$. Consider the C^* algebra \mathcal{A} defined below:

$$\mathcal{A} := \{ F \in C([0,1], M_{12}(\mathbb{C})) : \exists a \in M_6(\mathbb{C}), b \in M_4(\mathbb{C}) \text{ s.t. } F(0) = \phi(a), F(1) = \psi(b) \}.$$

Compute $K_0(A)$ and $K_1(A)$ using the six-term exact sequence corresponding to a short exact sequence of the following form:

$$0 \to S(M_{12}(\mathbb{C})) \to \mathcal{A} \to M_6(\mathbb{C}) \oplus M_4(\mathbb{C}) \to 0.$$

[25]

(3) Let D be the open unit disc of \mathbb{R}^2 , \overline{D} be its closure (i.e. the closed unit disc) and S^1 be the unit circle. Consider the following short exact sequence:

$$0 \to C_0(D) \to C(\overline{D}) \to C(S^1) \to 0$$
,

where the homomorphism from $C_0(D)$ to $C(\overline{D})$ is the natural inclusion, and the homomorphism from C(D) to $C(S^1)$ is obtained by restriction, i.e. $f \mapsto f|_{S^1}$. Denote by $\delta_1: K_1(C(S^1)) \to K_0(C_0(D))$ the index map corresponding to the above short exact sequence. Let $u \in C(S^1)$ be given by u(z) = z. Prove that $\delta_1([u]_1) = [e]_0 - [f]_0$, where

$$e(z) = \left(egin{array}{cc} |z|^2 & z(1-|z|^2)^{rac{1}{2}} \ \overline{z}(1-|z|^2)^{rac{1}{2}} & 1-|z|^2 \end{array}
ight), \quad f(z) = \left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight).$$

[15]

SECOND SEMESTRAL EXAMINATION: (2011-2012)

M. MATH II

ALGEBRAIC NUMBER THEORY

DATE: MAY 2, 2012. MAXIMUM MARKS: 65 DURATION: 4 HOURS

- (1) Let $l \in \mathbb{Z}$ be a prime and $n = l^m$, $m \ge 1$. Let ζ be a primitive nth root of unity and write $K = \mathbb{Q}(\zeta)$. Let \mathcal{O}_K be the ring of integers of K. Prove that
 - (a) $l\mathcal{O}_K = (1-\zeta)^d \mathcal{O}_K$ where $d = \varphi(l^m) = [K:\mathbb{Q}];$ [6]
 - (b) $(1 \zeta)\mathcal{O}_K \in \operatorname{Spec}(\mathcal{O}_K)$ and inertia degree of $(1 \zeta)\mathcal{O}_K$ is 1; [3]
 - (c) the basis $1, \zeta, \dots, \zeta^{d-1}$ of the \mathbb{Q} -vector space K has discriminant $\pm l^s$, where $s = l^{m-1}(ml m 1)$. [5]
 - (d) $1, \zeta, \dots, \zeta^{d-1}$ is an integral basis of \mathcal{O}_K . [6]
- (2) Let R be a Dedekind domain and K its quotient field. Let L be a *Galois* extension of K of degree n and S be the integral closure of R in L.
 - (a) Prove that S is a Dedekind domain. [6]
 - (b) Let $\mathfrak{p} \in \operatorname{Spec}(R) \setminus (0)$. Prove that $P \mapsto \sigma(P)$ defines an action of $\operatorname{Gal}(L|K)$ on the set $T = \{P \in \operatorname{Spec}(S) | P \cap R = \mathfrak{p}\}$. Show that this action is transitive. [4]
 - (c) Let $P \in \operatorname{Spec}(S) \setminus (0)$. Define the *decomposition group* G_P of P over K. For $\sigma \in \operatorname{Gal}(L|K)$, show that $G_{\sigma(P)} = \sigma G_P \sigma^{-1}$.
 - (d) Let $\mathfrak{p} \in \operatorname{Spec}(R) \setminus (0)$. Prove that

$$\mathfrak{p}S = (\prod_{\sigma} \sigma(P))^e,$$

where $P \in \operatorname{Spec}(S)$ such that $P \cap R = \mathfrak{p}$ and σ varies over a system of representatives of $\operatorname{Gal}(L|K)/G_P$. [6] [P.T.O.]

- (3) (a) Consider the number field $K = \mathbb{Q}(2^{\frac{1}{3}})$. Assuming the fact that $\mathcal{O}_K = \mathbb{Z}[2^{\frac{1}{3}}]$, determine the prime ideal factorization of $7\mathcal{O}_K$ and $31\mathcal{O}_K$. [6]
 - (b) Let K be a quadratic number field with discriminant d and let p be an odd prime. Prove that $p\mathcal{O}_K = P^2$ for some $P \in \operatorname{Spec}\mathcal{O}_K$ if and only if p divides d. [5]
 - (c) Let ω be a complex cube root of unity and consider the ring $\mathbb{Z}[\omega]$. Let $p \in \mathbb{Z}$ be a prime. If $p \equiv 2 \pmod{3}$, then prove that p remains a prime in $\mathbb{Z}[\omega]$. [4]
- (4) (a) Let α be a unit in \mathbb{Z}_2 . Show that α is a square in \mathbb{Q}_2 if and only if $\alpha \equiv 1 \pmod{8}$.
 - (b) Prove directly that any sequence of \mathbb{Z}_p has a convergent subsequence.
 - (c) If p, q are distinct odd primes, prove that \mathbb{Q}_p is not isomorphic to \mathbb{Q}_q (as fields).
 - (d) Prove that a *p*-adic integer $\alpha = (x_n)_{n\geq 0}$ is a unit if and only if $x_0 \not\equiv 0 \pmod{p}$. [4 × 4]

Semestral Examination: 2011-2012

M. Math. - II Year Topology-III

Date :04-05-2012

Maximum Score: 60

Time: 3 Hours

Any result that you use should be stated clearly.

- (1) a: Define the notion of a CW-complex.
 - b: Describe a CW-complex structure for $\mathbb{R}P^n$, n > 0, indicating the cells and their characteristic maps explicitly.
 - **c:** Prove that for a CW-complex X, the inclusion $i: X^{p+1} \hookrightarrow X$ induces isomorphism $i_*: H_p(X^{p+1}) \longrightarrow H_p(X)$.
 - d: Prove that if A is a compact subspace of a CW-complex X, then A is contained in a finite subcomplex.

[6+5+8+6=25]

- (2) a: State Universal coefficient theorem for singular cohomology.
 - b: Suppose for a space X, $H_{n-1}(X)$ is free abelian. Prove that the nth cohomology of X is dual to its nth homology.

[4+6=10]

(3) a: Let M be a topological manifold of dimension n and $p \in M$. Prove that

$$H_n(M, M-p) \cong \mathbb{Z}.$$

b: Define orientation on a manifold.

[6+4=10]

- (4) a: State Mayer-Vietoris long exact sequence for singular homology.
 - **b:** Use Mayer-Vietoris long exact sequence to compute homology groups of $T^2 = S^1 \times S^1$.

[5+10=15]

a: Define Complex projective space \(\mathbb{C}P^n\) of dimension n.
b: Use cellular chain complex to compute homology groups of \(\mathbb{C}P^n\).

[4+6=10]

Semester Examination: 2011-2012, Second Semester M-Stat II (MSP)and M-Math II Ergodic Theory

Date: 67.05/2 Max. Marks 70 Duration: 3 Hours

Note: Answer all questions.

All the measures considered are probability measures unless otherwise stated.

- 1. a) Prove Poincaré's recurrence theorem.
 - b) Let (X, \mathcal{B}, m, T) be a measure-preserving dynamical system. Show that T is ergodic if and only if $m(\bigcup_{n=1}^{\infty} T^{-n}A) = 1$ for all $A \in \mathcal{B}$ with m(A) > 0.
- c) Let T be measure-preserving ergodic and invertible on (X, \mathcal{B}, m) . Let $A \in \mathcal{B}$ and m(A) > 0. Prove that $\int_A R_A dm = 1$ where

$$R_A(x) = \inf\{n \ge 1 : T^n(x) \in A\}.$$

[8+7+8]

- 2. Let $K = \{z \in \mathcal{C} : |z| = 1\}$ with Borel σ -field and Lebesgue measure. Let $T: K \to K$ be defined as Tz = az where a is not a root of unity. Show that
 - a) T is ergodic
 - b) $T \times T$ on $K \times K$ is not ergodic.

[5+5]

- 3. a) Let $T:(X,\mathcal{B},m)\to (X,\mathcal{B},m)$ be measure-preserving and ergodic. Suppose that f and g are eigenfunctions of T corresponding to the eigenvalue λ . Show that f=cg almost everywhere for some constant c.
 - b) If T_1 and T_2 are invertible measure-preserving transformation on (X, \mathcal{B}, m) such that $T_1T_2 = T_2T_1$, T_1 is ergodic, T_2 is weak mixing. Then show that T_1 is weak mixing.

[6+6]

- 4. a) If T is an invertible ergodic measure-preserving transformation with discrete spectrum then show that T and T^{-1} are conjugate.
 - b) Let $K = \{z \in \mathcal{C} : |z| = 1\}$ with Lebesgue measure. Let $Tz = z^2$. Does T have discrete spectrum? Justify your answer.

[6 + 6]

- 5. a) Let $(K, \mathcal{B}, \lambda, T)$ be the dynamical system as given in 4.(b). Find the value of h(T), the entropy of the system.
 - b) Let (X, \mathcal{B}, m, T) be a measure-preserving dynamical system. Let \mathcal{A} be a countable measurable partition with finite entropy. Let $I^*(x) = \sup_{n\geq 1} I_{\mathcal{A}|\bigvee_{i=1}^n T^{-i}\mathcal{A}}(x)$ where $I_{\cdot|\cdot}$ denotes the conditional information function. Show that for all $A\in\mathcal{A}$, $m(x\in A:I^*(x)>\gamma)$ converges to zero at exponential rate as $\gamma\to\infty$.

[5+10]