ON SOME CHARACTERIZATIONS OF STATISTICS
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SUMMARY. A statistio T' is & mapping of & measurable space (X, A4) into another measurable
space (¥, B). Corresponding to each family P of probability measures on (X, A) the statistic T defincs
a family Q of probability measures on (¥, B). The classical problem of distribution theory is to find
Q for agiven P and T. In this paper the authors consider the reverse problem and try to charaoterize T
given P and Q. The general problem is unfortunately too complicated and the authors had to restrict
themselves to the family of normal measures. For instance, if P be a sufficiently large class of normal

on the p-di i space R? and @ be tho class of normal measures on R! then T'
is necessarily linear. A few similar problems are also considered.

1. INTRODUCTION

Given two measurable spaces (X, A4) and (¥, B), a statistic 7' is a measurable
mapping of the former into the latter. For each z¢ X, the statistic 7' maps z into an
element y = Tz in ¥ and the mapping is done in such a way that for each BeB,
the inverse image 7-'BeA. For each family P of probability measures on A, the
statistic 7' then generates, in a natural manner, a family Q of probability measures on
B. The classical problem of distribution theory is to determine the family Q, given the
other six elements of the problem, namely, X, A, P, ¥, B and the statistic 7. For
each PeP, the problem is to d ine the corresponding @ = PT-! defined by the
identity

Q(B) = P(T-B) for all BeB.

On the other hand one may raise question of the following types :

(i) Given two probability models (X, 4, P) and (¥, B, Q), one may enquire
about the totality of all mappings (statistics) of (X, A) into (¥, B), such that each
PeP is carried into some Qe Q.

(ii) Suppose each of the two families P == {P,} and Q = {Q,} is indexed by
a parameter . One may enquire about the family of statistics 7' such that, for
each 6

P,T1=Q,.
In particular, one may enquu'e about model-preoemng transformations (see
Basu, 1968), i.e. about to i (X, A) into itself
such that, for each PeP,

Pr-1=_P
(iii) Given (X, 4, P), one may enquire about the family of all ancillary sta-
tistics (see Basu, 1959), i.e. about measurable transformations of (X, A4) into some
(Y, B) such that the family Q of induced isa ) set.
We give below three simple examples of questions of the above three types.

1Now with University of New Mexico, U.8.A.
INow with University of Gujarat, India.
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Example 1 : Let x,, x, be two indey t normal v with equal
means g, —0 < g < o and equal variances 0%, 0 <o? <oo. Then, every linear
mapping of the real plane to the real line (ie. statistics of the type az,+bz,+c,
a, b and ¢ are real numbers) induces a normal distribution on the real line irrespective
of 2 and o?. Isthe converse true ? Thatis, given that the distribution of the real-valued
statistic g(x,, z,) is normal for all (x, o?), does it follow that the statistic g is linear ?
This question falls under type (1) discussed before and the answer is ‘no’. But, how-
ever, if the class of probability measures is widened, namely, the means of 2, and x,
are iy, fay —0 < ft, < 0, —00 < pt < 0, then, under certain conditions, the answer
is ‘yes'.

Example 2: Let z be a normal variable with zero mean and variance o*,
0 < o < w. For what statistics 7 mapping the real line into the real line, the pro-
bability distribution (for all o?) of 7% is the same as that of z ? It is shown that a
necessary and sufficient condition that 7' is model-preserving is that for almost all z

T = g(a) x|
where @(x) is a skew-symmetric function (i.c. ¢(—z) = —d¢(x)) taking only the two
values—1 and +1.

Example 3 :  Let x be distributed as in Example 2. What is the class of ancil-
lary statistics, i.c. statistics that induce distributions that are free of the parameter
a? 7 This question is closely connected with that in Example 2 and the answer is that
a necessary and sufficient condition in order that 7' is a non-trivial ancillary statistic
is that T partitions the real line into two scts A and B such that each of them is essen-
tially skew-symmetric about the origin.

(A set E is said to bo essentially skew-symmetric about the origin is for
almost all =z it is true that one and only one of the two numbers # and —z belongs
to E).

The above three are typical examples of the kind of questions we want to
answer. Two particular methods for solving some isolated questions are given in
this paper. In the next section we discuss the above three problems and in the last
section, we pose and solve some further problems.

2. SOLUTIONS OF THE EXAMPLES

We take the three examples, mentioned in Section 1, in the reverse order.

Let 2 be a normal variable with zero mean and variance 0% 0 <o? <o
and let A be an ancillary set i.e.
PlxeA|o?)
is equal to some constant  for all possible values of g2. First of all, we prove that
a=0 L 1 only

h o

and in case @ = -;—, the set 4 must be skew-symmetric about the origin.

*Excopting possibly for an oxcoptional set with Lobosguo moasure zoro.
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The argument runs as follows :
(i) Since, for all values of o, the distribution of x is symmetric about the
origin, the statistic |z| is sufficient.

(ii) It is casy to check that the family of distributions induced (on the positive
part of the real line) by the statistic |z| is complete.

(iii) Sinco A is an ancillary set, it follows (see Basu, 1959) that A is
independent of ||, i.e. the conditional probability

Pwed| |z, o
is equal to the unconditional probability « for almost all values of |z].
(iv) For a given value of |z|, say |2| = u, the conditional distribution of
2 is concentrated at the two points —u and +u with equal probabilities % and %
(v) Hence the conditional probability of the set 4 given |x| = u can take only

one of three values 0, % and 1, and since this conditional probability is equal to a for

almost all values of u, it follows that a = 0, % orl,

(vi) The two extreme values 0 and 1 for a are trivial in the sense that they
can be attained if and only if 4 is essentially equal to the null set or the whole set.

(vii) Thus, a non-trivial ancillary set A has its constant probability « = %
and, in this case, it is clear that, for almost all values , the set A must contain one and
only one of the two numbers —u and +u. That is, 4 must be skew-symmetric about
the origin,

viiii)  C ly, it is obvious that every skew-symmetric set is an ancillar;
y Yy y

set with constant probability %

The above chain of arguments apply equally well to a somewhat more general
set-up, thus leading to the following lemma.

Lemma 1: If the probabilily dislribution of the real random variable z in-
volves a parameler 0 in such a manner thal, for each value of 0, the distribution of z is
continuous and symmelric about the origin, and further, if the class of probability distri-
butions of || is boundedly complele, then, every non-Irivial ancillary set (similar regions)
that could be defined in terms of x must have probabilily —;— and every such set must be

essentially skew-symmelric aboul the origin.
(In case, the distribution of z is not continuous we have to add one more clause,
namely,
Pz =0|0)=0 for all 6).
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Now, let us turn our attention to the problem raised in E: le 2. Here,
z is distributed a8 normal with zero mean and variance 0%, 0 < 0! < o0, and suppose
that we have a statistic 7'(z) such that T'(x) and x ure identically distributed for all
values of 3.

Since z and —z have the same distribution for all values of 0%, it follows that
T(—x) has the same distribution as that of T'(z) and z. Consider the statistic
H(x) = T()+T(—z).

Clearly, H(z) is a symmetric function of z i.e. H(z) is a function of |z|, the mean value
of H(x) is zero for all % Since |x| is a complete sufficient statistic, it follows that
H(x) must be zero for almost all values of |z|. Thus,

T(x) = —T{—) for almost all .

In other words, 7' must be essentiully skew-symmetric about the origin. 1t follows
that | T(x)| is essentially a function of |z|.

Now, vonsider the stutistic
ux) = |T(«)| - |].

Since the mean value of u is identically zero for all values of o* and since u(z) is a
function of the complete sufficient statistic |x|, we have

u(x) =0 for almost all r.
That is, T(x) = ¢(x) | x|
where ¢(«) is essentially skew-symmetric and takes only the two values —1 and +1.

Conversely. if g(r) ix an essentially skew-symmetric function taking the two values
—1and + 1. then ¢{x) is an ancillary statistic taking the two values —1 and 41 with
equal probabilitics und @(r) is independent of the complete sufficient statistic|z|.
And then it follows at once that ¢(x) | x| has the same distribution as that of .

Let us observe, once again, that in the sbove argument we have nowhere
used the normality of the variable r. What we have used is the symmetry (about the
origin) of the distribution of x for each o* (which implied the sufficiency |z|) and the
completeness of the statistic |z|. As before, the same arguments, apply to the class
of distributions mentioned in Lemma 1.

Lemma 2: Let the condilions on the probabiliy distribution of a random
variable & be as mentioned in Lemma 1. Then T(z) = ¢(x) |z| and z have the same
ditributions and conversely, if x and T(x) have the same distribulions, then T(2) =
$a)lzl.

Now, we are in & position to consider Example 1. In this case, we have two
independent random variables z, and x, each with a normal distribution with mean
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# (—00 < p# < o0) and variance 0%, (0 < 0? < c0). We demonstrate below that there
are plenty of non-linear functions of z, and z,, which induce normal distributions on
real line.

We may note that y, = (2,—x,)/v2 and y, = (2,42,)/V/2 are both inde-
pendent normal variates with equal variances o and that the former has mean zero.
Let@be an arbitrary function on the real line such that it is essentially skew-symmetric
about the origin and takes the two values —1 and +1 only. Then,

¥i=¢w)|nl
has the same distribution as that of y, and is independent of y,. The statistic y}

is an ple of 1i function which has a normal distribution. Any linear
combination of y} and y, will also provide another such example. In this case an
le of a model-p: ving li f ion would be

=@—3IvE end 2= (p+id)lvE

In the next section, we prove a few isolated results on normality-preserving
transformations.

3. NORMALITY-PRESERVING TRANSFORMATIONS

Lemma 3: Lel &' = (zy, ..., %p) be distributed as mullivariale normal with
mean veclor p' = (py, ..., ftp) and covariance malrizx E = (0y4.), j, j' = 1, 2, ..., p which
is positive definite. Let T = T(w,, ..., 2p) be a real-valued function in z, ..., zp. Then
if E(T) and V(T) exist, E(T) and V(T) are infinilely differentiable with respect lo the
paramelers and

Ty 0y ',I‘, Eleap (vV—1 uT)]—LEa‘p(\/-—l wT) for j #j' and for all real u

=2 % Eexp(y/=1 uT) forj = j' and for all real .
§i

Proof : It is well known that if & follows an exponential class of distribu-
tions with parameters 8, and if Ef(x) exists, then Ef(z) is infinitely differentiable
with respect to 8. This proves the first part of Lemma 3. The second part will be
obvious, if we can establish

# s .
s f=a— f for j# 5 5 =12
T by = wy J#30g P

_2——f forj=4'=12,..,2

where f = f(, pt, E) is the density function of the normal variates .
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This can be proved directly by noting
BYBIZ| _ oot for j £ 4, i = 1,200
dayy
= o¥ forj=4'=12..,p
and
907 (oMot o atF) fart £, 55 0 =1,2, .. p
Soy:
= —(ootl) fort="0,j5,jt=12..p
Alternately, we may prove Lemma 3 by using the unicity property of Fourier
transforms, namely,

‘|‘..._|'e":1 W= gx)dx = 0 for all real u &= g(x) = 0,

1w & é G
[ofeY l"'[m‘;/—‘a E;f]d‘=° for all real p and ¢ = 1 if j #j

=2ifj=j.
The above expression can be established with the help of the following two relations
namely
v=Twaz & . Ele J=Tu' =,
[oede sy f ‘l‘ "I‘: e !
= —u,u,.E(e‘l:—l iy
and
é Ziw
¢ e 1u.za —d= E(e‘/ wr
= —uuy, El(e‘/h_—l v,

Theorem 1: Let z be normal with mean g, —0 < p'< o and variance one
and let T = T(z), a real-valued function, be normal with mean v = vu) and variance
¥ = ¥(u). If, moreover, T(z) sels up a one-to-one relalion belween the domain of z
and the range of T, then T must be linear in x.

Proof : By Lemma 3, y(p) and Y(u) are infinitely differentiable with respect
to #. Hence, taking differentiation under the integral sign, we get

dv d
o= s BT = 00 (=, T(@)
S = oovlla—t Tl -3 = cov s, By
and 'z“fn( ) = cov [([w—p)t, (T—v)Y] )
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Now, since T(x) and x are one-to-one functions, we have (writing y = T(z))

= T-\y).
Hence p= B = i T e () . @
v
and -7 = I —nre '(\/w) dy. w3
Differentiating (2) and (3) with respect to x and using (1), we get
2yt — dy
2yt =2y (d,;) + o ) )
and
dy [ dty | gdv vy _
du [W *2(4,})] ¢(d/z)(dﬁ‘)—o' - 8

Differentiating (4) with respect to & and using (5). we get

rl/z [ ‘H'(d/t) ] 9

ie. triiz =0 ie. ¥ = a, which is a constant. .. (8)
Using this in (4), we get
2
(:;_;") =¢y=a>0 and so v=cpu+b )]

where ¢ = a, and b is constant. Now
E(T(z)—cx—b] =0 forall p
and since z is a complete sufficient statistic for x, we get
T(x) = cx+b almost everywhere
The above proof is somewhat lengthy. We are thankful to the referee for
supplying us the following alternative shorter proof :

Let N stand for the distribution function of a dardised normal random
variable. Let T, v, § be as in Theorem 1 and assume without loss of generality that
#{0) =0 and §(0) = 1. Then, if B is the Borel field, we get

exp[ -5 (T(z)—v)’+ e rJate) = Ey[exp(——ﬂ’+;¢x lT"B]dN(z) ae.
= exp( —%}4'+,u::)dN(z) a.e. since T-'B=B.
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Moreover, we may note that if we delete the condition on 7'(z), in Theorem 3,
to be distributed as normal, we shall need the following assumptions :

(i) The first four moments of T'(z) exist and

(i) B(T—v)¥xy—py) =0 for j=1,2,...,p.

The authors have come to notice an unpublished work as an abstract of Leh-
mann and Stein (1953) in which they ider probl of a similar nature. For
instance, if in Theorem 1 we assume that the variance of 7' is constant in x, then the
linearity of 7' would follow from the result stated in the above abstract.

REFERENCES

Basu, D. (1959) : The family of ancillary statistics. Sankhya, 21, 247.256.
(1968): On ienoy and i i (To be li in Professor 8. N. Roy Memorial
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Equating the coefficient of u* in (8), we get

3y 3
= =0 forj=12,..,
s j P

i.e. ¢ is a function of 7y, ..., Tpp only. e (9)

Using this in (8) and equating the coefficient of u?, we get

.3

Fol j=12,..,p, are functions of 7y, ..., 0pp only. o (10)

ie.

Using (8) in (6), we get

o
— =0 forj=12..,9p. e (10
Iy J P (11)

i.e. v is a function of g, ..., p only.
Noting (10) and (11), we get

?
v=Z ayus+b . (12)
1=

where a,, ay, ..., ap and b are constants.
Hence, we get
?
E(T(@)— X ajxy—b) =0 forall g and oy, j=1,2,...,p
=

for p is plete, we get

and since the family of di
2

T(2) = I agx;+b, almost everywhere,
=1

Corollary : Let &' = (y, ..., xp) be distributed as multivariate normal with
mean veclor p' = (py, ..., pip), =00 < py < 0. i=12,....,p and covariance malriz
Z = (oyy), 0 < 0y < 0 which is posilive definite, and pyy = ayy[(oy; o992 for j # 7',
being given constant values. Let T\() be real-valued functions of @, t = 1,2, ..., k,. If
T = (T\(2), ..., Ti(z)) is distributed as mullivariale normal with mean vector v' =
(¥y, -, vi) and covariance malriz Y = (Yuw), 4, V' =1,2,..., k, then

T = Az+B almost everywhere
where A : kXp and B : kX 1 are malrices nol depending on py and o, s = 1, 2, ..., p.

Now, we remark that if in corrollary, we take k = p and make the assumption
that the transformations T'(x) and x are one-to-one, we can possibly narrow down
the probability measures of z by taking Z, a particular matrix for the class of positive
definite matrices. This result is similar to that of Theorem 1.
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Moreover, we may note that if we delete the condition on T'(z), in Theorem 3,
to be distributed as normal, we shall need the following assumptions :

(i) The first four moments of 7'(z) exist and

(i) E(T—v)¥ay—py) =0 forj=12 ..,p.

The authors have come to notice an unpublished work as an ab of Leh-
mann and Stein (1953) in which they consider problems of a similar nature. For
instance, if in Theorem 1 we assume that the variance of T'is constant in s, then the
linearity of T' would follow from the result stated in the above abstract.
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