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SUMMARY. A varioty of rosults aro prosonted in thia paper. Sume results aro catablislud
how tho iour of & istio function (c.f.) in the noighbourhuod of the origin affocts
tho oxistonco of momonts of the corresponding distribution function (d.f.); it is shown, inter alia, that
if two o.f."s coincido at & soquonce of points tending to the origin and ono of them corresponds to a dLf. having
momonts of all ordors and uniquoly detormined by its moments, then the twe e.f.'s coincido. Thoso rusults,
which find application in the lator sections, aro prosonted in Soction 2.
Wo introduce and study a class of distributions which wo call “gunorulizad stablo (GS) laws”, in
Soction 3. Theso provide a natural gonoralization of tho stablo laws and includo tho class of smi-stuble
laws considered by P. Levy.

Our main results concern (through ion) of tho Normul and the GS Liws ;
thoso are stated in Section 1 and proved in Soction 4.

1. MAIN THEOREMS AND CHARACTERIZATIONS OF THE NORMAL AND GS LAWS

In Rao (1967), it was proved that if X, and X, aro independent and identi-
cully distributed (i.i.d.) random variables (r.v’s) with EX; =0, and 0 < var X; < oo,
then the relation

E(a,X,+0,X,|0,X,+b,X;) = 0 almost surely (a.s.) w (L)

implies the Normality of X;. Pathak and Pillai (1968)* have shown that the weaker
condition : a,b,+a,b; = 0, involving only the coeflicients in (1.1), implies that var X,
< o0 and hence that X, is either Normal or degenerate.  In Section 4, we undertake
o fuller investigation of (1.1) and show that, if it holds, then, depending on the coefli-
cients ay, a;, by and by, X, follows a law which is arbitrary, degenerate, Normal or
(non-Normal) ‘semi-stable’ in the senso of Levy (1937). If a, b, = Oandfora, b, =0,
the distribution of X, is cither arbitrary or degenerate. Wo shall ignore theso cascs
in what follows. Wo may also assumo without loss of gencrality that [b,] < [].
Wo then have the fullowing thoorem.

*Publisliod in this issuo, svo pp. 141-144.
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SANKHNYA : THE INDIAN JOURNAL OF STATISTICS : Serizs A
‘Theorem 1.1:  Let X, and Xy be .4.d.r.v."s with EXy = 0 satisfying the relation
(L.1), with all the cocfficients non-zero. Lel @ = —agfu; and fi = byfb, with 18] < 1.
(i) If af <0, then X, =0a.s.
(i) If ap > 0 and |B] = 1, then X, = 0 a.a. if |a| # 1, and can be arbitrary
real-valuedfarbitrary if |a| = 1.
(iii) If af > 0and |B| <1, lct A be the unique real solution of the equation
|| | B]*t = 1; then (f is the c.f. of X,)
@) X;=0as ifAglorif A>2;
(b) X, is Normal (possibly degenerate) if A = 2; and
(c) if 1 <A <2, then [ is an infinitely divisible law, with its d.f. absolulely
continuous, having moments of all orders <A bul not of orders 3 A. (f is a ‘semi-stable’
law in the scnse of Levy (1937); for the propertics of the Levy rep ion of such u law,
ace the proof in Section 4). A will be called the exponent of the law concerned.

Wo also cstablish a related result placing conditions on the two regressions
which restrict the distribution of .X,; to ouly two possibilitics, viz., Normal or degencrate.
Theorem 1.2: Let X, and X, be idd.rv’s with EX,=0. If
Bla, X +a,X5]0,X,40,X,) = 0 = EO X +0,X; |0, X +a,Xy) as .. (12)
where none of the cocflicients is zero, then X, is Normal (possibly degenerate) iff a b+
ashy = 0 and otherwise degenerate.
Pussing from the caso of two r.v.'s to more, Rao (1967) also proved that if
X, ..y X, aro iiid,, and 0 < var X, < o0, then the condition
EX aqXj|SyX)) =0 aus, e (LY)
implies the Normality of X, provided the further conditions below are satisfied :
(i) a pair of corresponding cocflicients, say a, and b,, have the propertics :
[0a] > max{|4], .0y |bpegl} s @a#0 e (L4)
and (i) (adylab,) <O for 1 <j < n—1.
Here again, Pathak and Pillai (1068) have shown that the weaker condition

Sagy = 0 (which depends on the coeflicients alone), together with the conditions (i)
and (ji) above, implics that var X, < 00 and henco that X, is Normal or degenerate.
In this paper, we undertake a more exhaustive investigation of tho solutions
of (1.3). Theorems 1.3 and 1.4 concern such solutions in the presence of certain
restrictions on the coeflicients including condition (1.4), and Theorems 1.5 to 1.7 con-
cern more general situations, Let us defino (for a, # 0, b, #0) for 1 {j < n—1:
alfy i p#0
ay= —ajja,, f=1byb,, 9= v (1.5)
0 it gj=o.
Suppose k of the /'s are distinet, und without loss of generality let theso bo
P oo B (k S n—=1). Lot
n=X0h=A) 1<i<k v (18)
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CHARACTERIZING NORMAL AND GENERALIZED STABLE LAWS
Agnin suppose a of the | 3]s are distinet, so that 8 < k, and without loss of generality
let theso bo | Ay, <oy |A,]. Let

a=3@| 1Al = 1AL 1<i< v (L)
Wo are now in a position to enunciate our results.

Theorem 1.3: Let Xy, ..., Xy be idd.r.v.'s with EXy = 0 salisfying the rela-
tion (1.3) with the coefficients subject lo the restrictions (1.4) and ¢ > 0 for all § for which
i # 0,1 < § < a(with strict inequalily for al least one i), Let A be the unique real root
of the equation Z¢q |fi|* = 1. Then, f being the c.f. of X,,

(i) X, is Normal (possibly degenerale) if A = 2;

(i) X, is degenerate if A < 1 or A > 2; and

(i) fl<a<ef sponds lo an absolulel; i distribution having
momenls of all orders < A but not having moments of orders > A(|f|? is an i.d. law).

Theorem 1.4: Let X, ..., Xy be id.d.rv.’s with EX, = 0, satisfying the rela-
tion (1.3) with the coefficients subject to the restrictions (1.4) and y; > 0 for all § for which
Pi#0, 1 <3 Kk with at least one such y; > 0. Let A be the unique real rool of the
equation Ty |fy|> =1. Then

(i) X, is degenerate if A< 1 or A>2;

(i) X, ia Normal (possibly degenerale) if A = 2; and

(iii) if 1 <A <2, X, follows an infinitely divisible law and the assertions of
Theorem 1.3 (iii) hold verbatim in this case.

We pass on to the consideration of the more general situation where not all the
7's are non-negative, with special reference to characterizations of the Normal law.
We find that Linnik's remarkablo investigation of y andfor sufficient condi-
tions in order that the identical distribution of two linear forms in i.i.d.r.v.'s be equi-
valent to the Normality of those r.v.’s as presented in Linnik (1953a; 1953b), can
bo applied mutatis mutandis to our problem. In fact, let

¢y =ayfby if by # 0 and ¢; = 0 if by = 0, and G(A) = S¢j]b;|*.

If all the ¢ are of the same sign, then X, is necessarily degenerate.  In whal follows,
we shall ignore (his case. We then have the following results.

Theorem 1.6: Let X,, ..., Xy be iid.rv's with EX, =0, salisfying (1.3)
and let further (noling thal the cy are laken lo be nol all of the same sign)
maz (|b] :¢,> 0) # max (|4 :¢; <0). w (1.8)
Then the following aet of condilions is necessary and sufficient for X, to be Normal (pos-
8ibly degenerale) :

(i) all the positive zeros of Q(A) which are divisible by 4 are simple zeros;

(ii) all the positive zeros of G(A) which are even integers nol divisible by 4 are
2eros of order 2 at most; if auch a zero of order 2 exisls, it is unique and the maximum
of all the positive zeros of G(A); and
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SANKHYA : THE INDIAN JOURNAL OF STATISTICS : SErtes A
(iii) if G(A) has a posilive zero 'y which is not an even integer, then it is unique,
simple and the maximum of all the positive zeros of G(A); and further [y/[2) is odd—where
as usual, [x] denoles the largest inleger < z.

Theorem 1.6: Let X, ..., X, be i.i.d.rv.'s with EX, = 0 satisfying (1.3) and
(1.8) and let y be the largest real zero of G(A). (Such a y exists and is necessarily posi-
tive). If X, has finite moment of order 2m, where m = [(y+2)[2), then X, is Normal
(possibly degenerate); in particular, this conclusion holds if X has moments of all orders.

The following theorem concerns the situation where the condition (1.8) is not
imposed on the cocfficients appearing in the relation (1.3).

Theorem 1.7: Let X, ..., Xy besd.d.rv’s with EX, = 0 salisfying (1.3) but
not necessarily (1.8). Suppose G(A) W 0 and let o be the supremum of the real parls of
the zeros of G(A). If X, has finite moment of order 2m where m = [(042)[2], then X,
is Normal (possibly degenerale). In particular, if G(A) ¥ 0, and X, has moments of
all orders, then X, is Normal (possibly degenerale).

In conncction with the last two theorems above, we may remark that it is
possible to choose the coefficients ay and by and the distribution of X such that
G(A) W 0, X, has moment of given even integer order 2m but not of order 2m+-4
(so that X, is not Normal), while (1.3) is satisfied.

We also establish in Section 4 the following two results concerning the impli-
cation of a linear form in n i.i.d.r.v.’s having the same distribution as any of them,
Theorem 1.8 is not new and is in fact a special case of Linnik (1953a, Theorem 1), as
well as of Lukacs-Laha, vide Lukacs (1968, Theorem 6.2.1). Our principal interest in
it is that it is a special case, corresponding to A = 2, of Theorem 1.9 which is (believed
to be) new.

Theorem 1.8: Let X, ..., Xu be non-degenerate i.i.d.r.v.'s and let L = Za,X;
be a linear form in them with at least two coefficients non-zero. Then the condition :
L and X, have the same disiribution, implies that X, is Normal if and only if
Zaf=1

Theorem 1.9: Let Xy, ..., X, be non-degenerate ii.d.rv.'s and let L = Za;X;
be a linear form in them, with at leas! two of the coefficients non-zero. Then (i) the condi-
tion : L and X, have the same distribution implies that X, follows a (generalized stable)
law of the type described in Theorem 3.2 below with A as exponent (0 < A < 2) if and
only if Z|a|* = 1; (ii) if further the coefficients are all non-negative, then the condi-
tion above implies that X, follows a (generalized stable) law of the 1y jpe described in
Theorem 3.1 below with A as exponent (0 < A < 2) if and only if Za} =

We conclude this scction by remarking that the results of mek (1933a,
Theorems V and VI) make it possible to into repr i
in general valid in a suitablo neighbourhood of the origin, for | f]2 if the & nppcnrmg
in (1.3) aro not all of the same sign and for f itself if tho by are all of the same rign;
also cf, the last paragraph of Soction 3 bolow.
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CHARACTERIZING NORMAL AND GENERALIZED STABLE LAWS
2, SOME RESULTS ON OHARACTERISTIO FUNCTIONS
In this section, wo establish a few results on characteristic functions which aro
of independent interest, and some of which wo shall need later.  We use the notation ;
d.f. for a distribution function on the real line; c.f. for the characteristic function of
adf.; F, G, cte., will denote d.f.’s and f,g, ctc., the corresponding c.f.’s.

The following theorem is essentially contained in the discussion of ‘a-decom-
position of probability laws' by Linnik (sce, for instance, Ramachandran (1966,
pp. 133 fT.).

Theorem 2.1, Let g be the c.f. of a d.f. G which has moments of all orders and is
further uniquely determined by its moments (in particular g may be any analytic c.f.).
If f be a c.f. such that f(t) = g(t) at @ sequence {1,} of values of t lending lo zero as n— w,
then [ coincides with g.

Corollary 2.1: Let f(t) = exp(—c(®) at a sequence {1,} of values t lending lo
zero, twhere ¢(3> 0) is a conslant. Then f(t) = exp(—ct?).

Proof: Let F be the d.f. corresponding to f. Since G has moments of all
orders, g has derivatives of all orders. In particular, by Fatou's lemma,

§ #4F(@) & lim inf 2—‘&1;““—" = —g0)

50 that the sccond moment of F exists, and so the first and second order derivatives
of f exist for all . Rolle’s theorem successively implies that f* = ¢’ at a sequence of
points tending to the origin, and that consequently the same assertion is true of f*
and g°; let then f(n,) = g*(«,) where #,—> 0 as #—> 0. We then have by Fatou's
lemma that

 2F(@) < lim, :nrf—‘l’_"'f_‘;"':)"_zfﬂ = g(0),

80 that the fourth moment of F exists, and so the third and fourth order derivatives
of f exist for all . Then, by Rolle's theorem, it follows that f**) and g'¥ coincide at
a sequence of points tending to the origin, and again the same assertion is truo of f
and g, Thus proceeding, we establish by repeatedly applying Fatou's lemma and
Rolle’s theorem that F has moments of all even orders and so of all orders, f has
derivatives of all orders, and in particular ft¥)(0) = g'*)(0) for all positive integers £,
so that F and G have the same moments, Sinco by assumption, @ is uniquely deter-
mined by its moments, F = G.

Theorem 2.2 : Let f be a c.f. such thal f2n=1(t) is defined for all t (n a positive
inleger). If further [fn=2(t)—f127-1(0)] [t is bounded in-the deleted neighbourhood of the
origin, then the 2n-th moment of F exists, and conversely.

Proof : Wo shall prove the theorem for the case n = 1; tho general caso fol-

2n-2),
lows from the fact that if f8n=1)1) exists, f:,:;”((% is a c.f. with its fist derivative
defined for all ¢,
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SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Sertes A
Let (1) =[/'()—S(O))t, s0 that |§()] < ¢ for 0 <[¢| <9, where ¢ and 9
are positivo constants. By the mean value theorem of the differential ealculus,
JOH=0—20(0) = 0] [—10(—1)
whero 0 < (+0) <1, and s0
= [0S0} +0(—t)${—10(— 1))
’!ﬁ&f}:“'):_?!,@_ < %

so that ifo< |t <o.

It then follows from Fatou's lemma that [ 2% F(x) cxists.

The converse is trivial, sinco [f'(t)—f'(0))/(-» f°(0) if the sccond moment of F
cxists.

Theorem 2.3: Let {1} denole some sequence of values of t, lending lo zero as
n—» 0; the sequence is nol necessarily one and the same throughout in what follows.

(a) Iflog |f(t.)|/1.]|* is bounded away from zero for some A<2, then F has no
(absolute) moments of order > A.*

(b) If log |f(t)]]]ta]* is bounded for a sequence {t.}— O such thal

(i) Z|t.]* < oo for any ¢ > 0, and

(ii) {ta-alts) 72 a bounded sequence,
then F has (absolute) momenls of all orders < A. In particular, if log |f(1)|[|¢]* is
bounded in the deleted neighbourhood of the origin then F has momenls of all orders < A.

(¢) Iflog|f(t,)] J1%is bounded, then the second moment of F exists, and conversely.

(d) If log |f(t.)| /13— O as n—» oo, then F is degenerale, and conversely.

Proof : (a) Forsomec > 0, |f(t,)|* < exp (—c|t,|*). Letd <3< 2. Then,
if F* denotes the convolution of F with its conjugate F, so that the c.f. of F* is

/(]2 lct us assume that the moment of order & exists and set %, =¢,/2. Then

> 2 [ |14 dF(e) = 2 flimoup| T2 fapte) > 2 imoup [0

by Fatou's lemma (noting that |(sin n,:)[u. |1* & |z|® assumed integrable),
> 2lim sup [ dF*(z) since & < 2,
L X
— 1—-|fea) |
= timsup 2 [ =131
i 1=exp(—c|ta|®) _ 5 o
> 2'.1:’m. —-I‘_-]TL_L 0, since @ > A,¢> 0.

Tlence F*, and so F, has no moments of order > A.

8in® u,z
|'lu ¥

® In much 8 casc, the moment of order A dos not exist oither, For tho proof, se Rumachandran,
B. “On charactoriatic fuuctions and moments,” to appoar in Sankhyd, Serics A,
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CHARACTERIZING NORMAL AND GENERALIZED $TABLE LAWS

(b) Assume without loss of gencrality that 1 3 4,y > 1, > 0 for all u 3 2,
Then, for somo ¢; > 0,

A
-l Q1= < el
for all sufliciently lurge n.  Let as beforo u, =¢,/2, and ¢y, ¢y ... denoto positivo
constants. Then we have

[ sin¥u,2)dF*(x) < equl.
Sinco sin?0 > 0sin®l if 0 < 0 < 1, wo have, setting z, = ul'
n

;" MO
z z

) aP) < ol
-1 n-1

so that
z
I. 2. dF0) < "aﬁ’:— nt=c, (u—-:‘),'z-. < cdt
2, Zam1 L
since, by assumption, {!;:-'} is a bounded sequence.  Further, wo havo also assumed
n
that S uf < oo for any ¢ > 0, s0 that [|z]|® dF*(x) < o for any d < A, so that F*,
and so F, has moments of all orders < A.
If, in particular, log|f(t)|/|¢]* is bounded in the deleted neighbourhood of the
origin, tho sequenco {1,} may be chosen as (4"} where 0 < £ < 1.
(¢) For some ¢> 0, |f(t,)|* > exp(—c.), so that

§ 2 (e) = 2f lim i Hﬁﬁ) dF(),
Ada n
<2 li:ml’ i-nf I (l—_a;-:(l_,z)) dF*(z), by Fatou's lemma,
=2 lim inf 1ZU01*
= 'n

.o l—exp(—c?)
<2 h;n_.x::f——[:— =2,

Hence F°, and so F, has tho sccond moment. Tho converso is trivial.

(d) In this case, by (c), [ 2% F*(z) oxists and is < ¢ for any ¢ > 0, and so is
zero.  Thus F*, and go F, is degenerate. The converso is trivial, sinco log |f(1)] is
identically zero if F' is degenerate.

3. GENERALIZED STABLE LAWS

Definition : A r.v. X will bo said to follow a generalized stuble (GS) law if f,
its c.f., is non-vanishing and satisfics an equation of the form

ity = i g™ - (3)
=1 =41

for ull ¢, whero 5 > 0 and (without loss of genorality) 0 < || < 1 for 1 € < a+k.
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We first study two specinl clusses of GS laws, namely thoso which satisfy
for ull ¢ an equation of the form

J0) =T, with ;> 0and 0 <[] <1 forallj ... (3.20)
=
and those which satisfy for all t an equation of the form
S0 =T fE" with >0 and 0< fy<1  forallj. ... (3.2b)
=1

The particular caso r = 1 of (3.2b) has been considered by Levy (1937) ; tho solutions
for this case have been called ‘semi-stable’ by him.

Theorem 3.1: If a c.f. f satisfies (3.2b), it is infinitely divisible. If A be the
unique real solution of the equation Yy} =1, then

(@) f=1ifAL0 ord>2;

(b) if A =2, either fis a Normalc.f.,or f=1; and

(c) if 0<A<2, then cither f=1 or F is non-degenerule excepl possibly
when A = 1 (if A = 1, f can e the c.f. of any degenerale law). The cases 0 <A < 1,
1 <A < 2 and the non-degenerate solutions for A = 1 all correspond to absolutely conti-
nuous distributions having moments of all orders < A but not having moments of orders
> A (In the non-deg te cases, the corresponding QS law will be said lo have
ezponent A).

(d) If La, 0% M, N) be the Levy representation of the logarithm of f, then we
have :

(i) a=0if A1
(i) o=0ifA#2
(i) a=0, U=N=0ifA=2;
(iv)] 0=0,M=N=0ifA>20rif A0, 80 thal {=1; and
(v) if Mu) = wN(x) and ku) = |u|* M(u)
where A is the exponent of the law concerned, then b and k sulisfy the functional relations,
In) = Sy BthCulpy); Ku) = Ly B kiulfy).
Proof : [ is infinitely divisible. Let ¢ denote that branch of the logarithm
of f which is continuous and which vanishes ut tho origin. Then wo havo for all ¢
&) = 7i9Bib) + .. + 1iS(Bet). e (3.3)

On ‘iterating’ this relution % times, wo obtain

o | L} "y
ﬂ‘)=}'7|,Tn‘:‘lTn:l AT, ¢(p,‘.../t, c)
=Tyt (Bux 1), s0y v (34)
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CHARACTERIZING NORMAL AND GENERALIZED STABLE LAWS
where the summation runs over all distinet r-vectors (ny, ny, ..., #7) with non-negative

v
integer clements such that X ny =n. If, us we may assume without loss of generality,
=1

M <Py <..<pfr then ,0,"' ,B:' < A7 0 a8 n—> , 80 that f(flux ()= 1 uniformly
in & and in any finite interval. [If |1=f(f7 )| < ¢ uniformly for all ¢in [¢] < bif
n > N(b, ), then | 1—f(Bar t)| < ¢ for all k, for all such ¢ and n also).

Let F,, be the d.f. corresponding to fur. Then as in the proof of the Central
Limit Theorem (cf. Locve, 1960, pp. 303fT.), we choose and fix a 7 > 0 and let
ane = f  adFur () Fule) = Faletann), Jue = of. of Fae (35)
n'<r

50 that Jux(f) = fur(t)exp (—it ape). Since f(furx t)—> 1 uniformly in k as n— oo in any
finite t-interval, we havo that (cf. Loeve, 1960, p. 303) for any b > 0, there exists an
N(b) such that

(Tak)=1] < -+ for [¢] b if n > NQ).
It then follows from the clementary relation : |logz4+1—z2| < [1—z[2if [z—=1]| < —%,
that for all # > N(b), [¢]| < b, and uniformly in £,
| log Jurt)+1=Turl)| < | Jarit)—1]% . (3.6)
Again (cf. Loeve, 1960, pp. 304-306, ‘Central Incqualitics’), for a fixed b > 0, there

exists a constant ¢ = ¢(r, b) > 0 such that for all sufficiently large », # > N(7,0),

[
max 1Jus)=11 < —e J log |/l

(U]
o that

b
EYM[]-E(')—II < —5‘! [Z vax log | fux(t) |1 dt

=—c nlu log |f(0)] dt < oo. . (37)

Hence wo have for |{] < b and » > max [N(b), N(r, )]
12 yue {(log fur)+1=TarO} | < = yas|Jar(t)—1]* by (3.6)
< max |Jadl)—1[[E yue | Jart) =111
nes
which tends to zero as a—» oo, since the first factor does so and the sccond factor is

Lounded according to (3.7). Thus we have a sequence of ‘accompanying i.d. laws’
the logarithms of whose c.f.'s are given by

$ul) = i(Z Yok @) +2 yar J (ehe—1)0F (5% ) . (38)
80 that ¢,(1)—> ¢(!) as n— oo, for all &. Thus, [ is i.d.
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Wo now pass to the other assertions of tho theorem.

(a) If A < 0, equivalently if ¥, + ...4¥r < 1, then it follows from (3.4) that
101 < S 7arl$Bur )] <yt t70)® wax |$(Bar )] =0 as n> o

0 that ¢ = 0 or F is tho d.f. degencrato at the origin. This proves ono of the asser-
tions of (a).

Let us consider the casoc A> 0, equivalently y,+...4+y,> 1. Let, for
1£0, y(t)=log|f(1)|/]t|*. Then, with y,8} = py, (3.3) gives (1) =Epps(Byt). Sinco
 is continuous and real-valued in ¢ > 0 and X py = 1, the R.ILS. in this relation,
being a weighted average (with positive weights) of the values of i at the points
Ay (1 < j <) is, by the intermediato valuo ti , equal to the value of y at
some point A(f) such that ¢ < A(t) < Br .

Thus we have for any ¢ > 0 a scquence of real values : fO)t) = ¢, SV (1), ...
tending to zero as n—» o such that forall s > 0

BB W) K B () K Be B () e (3.9)
and yi) = g1 ()] . (3.10)

Choosing ¢ = 1 in particular, wo sce that there exists a scquence {¢,} of positive values
of ¢ tending to zcro such that foralln > 0

=L/t <tiu<brta - (311)

yit.) = y(1). e (3.12)

From (3.12) and Theorem 2.3(d), it follows at once that if A > 2 then Fis
degencrate.  Further, if f(1) = e/@, a- 3 0, then wo must have X y,8; = 1 contradicting

the fact that X y48} = 1 for some A > 2. llence we can only have a = 0, or f = 1.
This completes tho proof of (a).

and

(b) I1f A =2, then let ¢ = —2y(1) > 0. Wo then have from (3.12) that
|f(t,) | 2=exp (—ct?) for all n, so that|f(¢)|? is a Normal c.f. by Theorem 2.1. It follows
from the Levy-Cramer theorem that f is itself a Normal c.f. [Tho use of this powerful
result can be avoided by appealing instead directly to tho Levy representation for in-
finitely divisiblo laws, for which sco below].  We note that cither F is non-degenerato
Normal or f = 1 (since X y,8f = 1 implics that ¥ y,8; cannot be equal to onc). This
proves (b).

(¢) 0<A<2 Ignoring tho triviul svlution f==1 which satisfies (3.2b)
whatever bo the constants # and y, we noto thut f(t) = e@, a # 0, can bo a solution
onlyif A = 1,80 that if0 < A < lor 1 < A < 2, there aro no non-degenerato solutions
for (3.2b). Thus degencrate solutions exist only in the caso A = 1, in which caso
any such c.f, is casily verificd to satisfy (3.2b). Wo shall hencoforth consider only
the non-degenerate solutions of (3.2b).
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Let then f bo a non-degenerate solution of (3.2b) in the case 0 <A < 2. Then
in any closed interval [a,0), 0 <a < b, log |f(t)] is bounded away from zero; for,
if for a soquence {r,} of points in [a, b), |f(r.)| =1, then by the Bolzano-Wicrstrass
theorem and the continuity of f, there exists a 7, in [a, 8] such that |f(r,)| = 1, and
then, by (3.10), log|f(f) | =0 at a sequence of positive values of  tending to zero, so that

J corresponds to a deg te d.f., contrary to assumption. Let then a > 0 and let
o<m| Y= ‘-"’%M < M forte [a. ,-%] Then by (3.9) and (3.10), it is easily

scen that for all £ > a, the same inequalities hold; for, for any such ¢, A1) belongs
to the above interval for some value of » (depending on 1), in view of (3.0). Thus,
if [t| > a, wo have

exp (—=2|t] ) /O] < exp (—=m[t[*). we (3.03)
The right inequality shows that f belongs lo an absolulely conlinuous disiribution (with
a continuous version of the density given by p(z) = % [ e~z f(t)dr). We now pass

to the ideration of the ts of F. [It is of some interest to note that the two
inequalities in (3.13) do not enable us to infer anything about the existence of the mo-
ments of F, which appear to be determined more by the behaviour of the e.f. in the
neighbourhood of the origin (as indicated by Theorem 2.3) than by that at infinity.
Thus, git) = exp (— || ) and h(t) = max [exp (— [¢[*), exp (— [¢[)]. where 0< s < v
< 1 are both c.f.’s of Polya’s type (being convex functions in ¢ > 0) and coincide for
|¢]> 1. But, by Theorems 2.3(a) and (b), @ has moments of all orders < x but no
moments of order > s, while I/ has moments of all orders < v but no moments of
order > v.] Since y(1) # 0, it follows immediately from (3.12) that the scquence
(¢,) is bounded as well as bounded away from zero as n—» co (being in fact equal to
a non-zero constant for all n) so that Theorem 2.3(a) guarantecs that F has no moments

of order > A. To apply Theorem 2.3(b), we notice that by (3.11), ,'L < ’L and that,
w1 1

since £, < A, = 14 converges for any & > 0, so that all the conditions of that theorem
are satisficd and hence F has moments of all orders < A. We shall show below that
the moment of order A does not exist (a proof of this fact using only relations (3.9)-
(3.12) is desirable); this will plete the proof of Part (c).

It is worth noting at this stage, howover, that the solutions of (3.2b) having
finite first moment are all degenerate if A < 1; more precisely, f=1if A < 1; and
J(t) = ¢let, where @ can be any real number, if A = 1. To see this, we note that if
the first moment exists, then f(1) is defined for all #; denoting ¥4y by a; and [f'()//()]
—£'(0) by E(t), we have the relation,

&) = Z &8y 1)
which, after n iterations, gives us the inoquality
|01 @ttt max (887 4, 011,
‘Thia follows from (3.12) 1 0o the foot note on p. 130.
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the maximum being taken over all distinet r-vectors (ny, ny, ..., ny) with non-negative
integer clements such that £ ng = n, 80 thatif £ ay < 1, then §() = 0 forall . Hence
1

Jis constant. If then f(t) = e'at, a = 0if Ey,f; # 1 and a can be any real number if
S yfiy = 1, if f wero to satisfy (3.2b). This proves our above assertion.
(d) We pass to the Levy representation L{a, %, M, N) of the logarithm of
/- (3.2) implies that we must have :
a(ybrt..+rvebr—1) =0
it +yfi=1)=0
Sy Nulfy) = Nl Ty Mulfy) = Mu).
1£ A be the exponent of the GS law concerned, it is clear thata = 0ifA # 1,ando? = 0
if A # 2, as a conscquence of the above relations. This proves assertions (i) and (ii).
Also if h(u) = w*N(u), Mu) = |u|*J(u) and yyf} = p;, we have assertion (v):
h(u) = Zpgh(u]fy); ku) = Epskin/fy). . (314)
Thus k(x) is & weighted average (with positive weights) of the values of & at the points
ulf1 <3 <r). IfN(u) # 0, then let b > 0 be any point such that N(b) # 0, and let
a = bf, (where, we recall, 0 < 8, < ... <fr<1). Itis clear that if ¢ =|N(b)|a*
and d =| N(a)]be, then 0 < ¢ < |k(u)| < d for all u in [a,b]. If now uefa fi, a), then,
for 1 < j & r, every u/fy lies in [a, b] so that by (3.14), the same bounds for | A] hold
in the interval [a £, a] also. Similarly, the same bounds are valid in all the intervals
[a S, aft-" also, k = 2, 3, ..., successively, so that, for all u(0, b), we have ¢ < | h(u)|

&d. Letnow m > 1be so chosen that e.m* > d. Then J" u%dN(u) < oo implics that
0
W (V) — | N[ € § 24N(x)-> 0 as ums O+,
u

50 that we must have A < 2if N(u) o 0. Similarly, if M(u) w 0, then A < 2. Thus,
in particular, if A = 2, then a = 0, M/ =0, N =0 s0 that we can only have a (possibly
degenerate) Normal law as the solution of (3.2b) in this case. If A > 2, then a = ¢?
=0, M=N=0, s0 that f=1; as already noted, f=1 if A < 0 as well. Thus
assertions (iii) and (iv) are proved.

We shall now show that, if 0 < A < 2, for a non-degencrate solution of (3.2b)
with exponent A, the absolute moment of order A does not exist. (The only degenerate
solutions for values of A in this range occur when A = 1, and in that case f can be
the c.f. of any degenerate law). We have alrcady noted that of= 0 for all such
Aanda=0if A#1.

Let F* denote the convolution of F with its conjugate d.f. F, so that F* has
|/()|* asits e.f. Then, we have the analogue of (3.8) for log {| f(f)|%}, namely,

2log |f(t)] = Zyar [ (cos tz—1)AF*x|fu).
[This is also an immediate consequence of the fact that, for all sufficiently largo »,
Zynt{1=|f (Bur )11 =2 Z yur log| f(Bur )|
< Eym{(t=1S(Bue )12 1/Bur 0)]%
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whence it follows that as n—»
Zynt{l=|S(Bax )]*]> —2log | f(1)] ]

It then follows from Gnedenko and Kolmogorov (1954, p. 88, Theorem 2), that (M
and N denoting the Levy functions appearing in the representation for log| f]?)

Z e [F.(ﬁu'_.;)_l] = N(v) for u>0

Sy r(%) —3 M(u)(= =N(-u)} for u<0

where =) signifies convergence to a function at all continuity points thereof. We
have already proved that F and hence F* is a continuous (indeed an absolutely conti-
nuous) d.f. Tence, if b bo any continuity point of N, it follows that

Syue e {0 | s 1300

Noting that = yar B2 = (S v5 8})* = 1, we sce that the expression on the LHS of the
above relation is a weighted average (with positive weights) of the values at the points
P of the continuous function {L—F*(b/0)}/0* of the positive variable 0, so that the
LHS = {1—F*(6/0,)}/0}, where A} < O < fi7. Hence, if N(u) o 0, then there exists
a sequence {u,} of positive real numbers tending to infinity such that u}[1—F*(uy)]
tends to a finito positive limit as n— 0. Hence F* and so F docs not have a finito
absolute moment of order A. Similarly, if M(u) o 0, then also the same conclusion
holds. This completes the proof of Theorem 3.1

We then easily have the following result concerning c.f.'s which satisfy relation
(3.20).

Theorem 3.2: Let f be the c.f. of a non-degenerate d.f. salisfying (3.2a).
Then il is infinitely divisible, and if A be the unique real solution of the equation
Syl4A =1, then

(a) 0<AK2,

(b) if A=2, fisa Normal c.f., and

(¢) if 0 <A <2, then F is an absolulely continuous d.f. having momenls of all
orders < A but nol having momenls of orders > A.

Proof: We obtain the infinite divisibility of f by proceeding along the lines of
the corresponding part of tho proof of Theorem 3.1. Tho other assertions follow
from Theorem 3.1 and the fact that g = |f|* satisfies a relation of the form
(3.2b), namely,

J=r v
o= T g’
To prove (b), we also need the Lovy-Cramer theorem..
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1t is also possible to give general representation theorems for GS laws following
Linnik (19533, Theorems V and VI). The representations would be true for
|f]%in case f satisfies an equation of the form (3.1) where the #'s are not neces-
sarily of tho same sign, and for f itsclf if the /s are all of tho same sign. (Inciden-
tally, tho representation (2.2) of Thoorem V in Linnik (1953a) appears to be valid,
not for all #> 0 but for 0 <u <1).

4. PROOFS OF THE MAIN RESULTS
In this section, we prove the main results of the paper, stated in Section 1.
Proof of Theorem 1.1: The relation (1.1) is equivalent to the following
relation, valid for all real {(x = —ayfa, and g = byfb,) :
E[(X,-ax,) e«(xlu,\'p] =0,
If f bo the c.f. of X, and I is the largest interval around the origin in which fis non-

vanishing (I is necessarily symmetric about the origin), then we have from the above
that

¢ =ad(ft) for tel e (41)
where ¢(t) = f'()/f(), and on integration, with y = z/f,
SO =[fpo1 for tel, e (42)

If af <0, i.e., ¥ <O, then (+.2) implics that for tel, | f(t)] > 1 since| f(f)| <1
and hence |[f(t)] =1 for such f. Hence |f| =1 or X, =0as. This proves
assertion (i) of the theorem.

Let then aff > 0, and let us consider the case |#] = 1. From (4.1), wo have
if #=1 and a =1, then f can be arbitrary; if # = —1, then |a| = 1=—)a=—1
and so f can bo any arbitrary real-valued c.f; if |a| # 1, then () = a?(f%) =
a?3(f) implies that ¢(f) = 0 for fel and so X, = 0 a.s. This proves (ii).

Wo pass on to the only non-trivial case : ¢ > 0 and |#| <1. Let A be the
unique solution of the equation [a| |#[** =1, ie., y|A1*=1. IfA<Z], then [a]
< 1, and from (4.1), we have that, for lel,

o) =ag(Bl) = ... = a"g(ft)— 0 a8 n > 0
since (/") - §(0) = 0, so that f=1. If A > 2, then, from (4.2), for any fixed (e,
g0l _loglfgl _  _ loglfipnl _
[V L | e

for all positive integers #, so that the sequenco E(lﬁf?(l/;"’_)l_, 0 as n— co and conse-

quently, by Theorem 2.3(d), X; = 0a.s. This proves assertion (iiia).
log/f(A™) : faict
If A = 2, then tho seq mi)E g0 that, by Corollary
2.1, f is a Normal c.f. (possibly degenerate). This proves (iiib).
Let 1 <A <2. e first noto that f is non-vanishing. For, if not, let -1,
1> 0, bo the zeros of f nearest to tho origin. Then, in I : (—ty, Ig), wo have the rela-
tion : |f(1)] = |f(A1)]7. Lotting ¢=> t,—0 through values in I, wo obtain by the
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continuity of |f| that |f(fl)| = 0 also, contrary to assumption. Hence relation
(4.2) is valid for all realt, being valid in any interval around the origin in which f does
not vanish.

Since, for all ¢ and all positive integers m, f(t) = [f(A)]" = [j(ﬂ"l)]"', whero

L > 1, we sce that /" is a c.f. for every n and hence f is infinitely divisible.

Y=

181*
£ i in fact a ‘scmi-stable’ law in the scnse of P. Levy (1937), having finite expectation.
We omit the proofs of the other statements of Theorem 1.1 (iic), since they follow
from our proofs of Theorems 3.1 and 3.2. We may, however, remark that if (using
an obvious notation) the Levy representation of the logarithm of f be L(a, ¢, JI, N),
and A be the exponent of f, then defining h(x) = w*N(u) and ku) = |u[*M(x), we
have the relations :

h(u) = M(Bu) and K(u) = k(Bu) if #>0;

h(u) = MPu) and k(u) = h(Bu) if # <0,

Proof of Theorem 1.2 : Let us assume as beforo that |#] < 1 (without loss of
generality). Then, in any interval J around the origin in which f is non-vanishing,
we have ¢(t) = ag(Bt), ¢ =['lf, from tho first of tho relations (1.2). Also, in a sub-
interval of I where f(a!) docs not vanish, we have from the second of the relations (1.2)
that ¢(t) = B¢(t), so that ¢(t) = afd(apt) there. This implies that if [af| # 1, then
$(t) vanishes in that sub-interval and so f= 1; if |¢f| =1, then, by Theorem 1.1
(Scctions (iiib) and (i) respectively), f belongs to a Normal (possibly degenerate) d.f.
ifap=1and f=1if af = —1.

Proof of Theorem 1.3 : In view of the condition (1.4) and the definitions (1.5),
the two lincar statistics may be written as :

L= —a)X;—... =21 X0y + X,
Ly = X+ oA X aa X

where [fi] <1,1 i n—1. The condition E(L;|L,) =0 as., implics that, in
any interval I around the origin where f does not vanish,

#0 =% @y 4y, whero ¢ =/,
and, on integration,
log J() =;z'." aylog fiBy ), tel. . (43)

If g{t) = log (| f(t)|?) for lel, then, recalling the definition (1.7) of tho €'s and sctting
0, = ||, wo have

o) =é‘ @ glOit), lel.
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Since the g > 0, with & > 0 for at least one i, by assumption, there is a unique real
root of the equation Xgg 0} = 1. Denoting this root by A, the assertions of the theorem
follow from Theorem 3.1, since | f(t)|* satisfics a relation of the form (3.2b). We note
further that || is an infinitely divisiblo c.f., and that the Levy-Cramer theorem on
the Normal law has to be invoked to prove assertion (ii) of the theorem.

Proof of Theorem 1.4 : Assertion (4.3) holds under the conditions of the present
theorem as well, and we have

log f(1) = " wn log f(Au1), tel,

where 4, ..., A are the distinct 8's.  Since y¢ > 0 for ull i and y¢ > 0 for at lcast one
i, there is a uniquoe real value of A satisfying the equation Sy(|fi|* = 1. All the
assertions of the theorem then follow from Theorem 3.2,

Theorems 1.5-1.7: We nced only consider here the remark about the case
where the ¢j's are all non-ncgative. Relation (1.3) yields : Eejlog f(4t) = 0 for all

¢ in some neighbourhood of the origin so that n]j(b/)]" = 1there. Ifeverye >0,
then thisimplies that f() = 1. The proofs of these three theorems follow from the work
of Linnik (1953a, 1953b), as pointed out in Section 1.

Proof of Theorems 1.8 and 1.9 : Suppose L = Xa;Xy and X, have the same
distribution, where at ledst two ay’s are non-zero, Then, for all ¢,

J) =flay1) ... flan)
8o that [f(t)| < |f(ay)] < |/(@i™t)] for all positive integers m. This shows that if
a, # 0, then |a;] < 1, if f belongs to a non-degencrate d.f.  Also if |a,| = 1,if a, be
any other non-zero coeflicient, then
1£a)] 1 (agt)| .. flan )] = 1 implics that |f(a)] = 1

which is impossiblo since f does not belong to a non-degenerate d.f. Hence every
lag] < 1. The assertions of Theorems 1.8 and 1.9 then follow from Theorems 3.1
and 3.2,
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