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Chapter 1

Introduction

1.1 Random Graphs

We briefly describe a few models of random graphs that arise in different
applications.

Erdös-Rényi Graphs

Consider n fixed nodes a1, ..., an in the plane and for each i and j, join ai

and aj independently by an edge with probability pn. The random graph so
obtained was introduced by Erdös (1947) and is called the Erdös-Rényi (ER)
binomial random graph. This is a slight variant of the uniform random graph
studied by Erdös and Rényi (1960). The ER (n, m)-uniform random graph
is defined on the sample space Ω0 consisting of the set of all graphs with n
vertices and m edges and assigns equal probability for each graph in Ω0. ER
graphs as described above are useful in the study of reliability in networks
(see e.g. Janson, Luczak and Rucinski (2000)).

Various properties of the above graphs including emergence of giant com-
ponent and diameter of the giant component have been studied (see e.g.
Bollobás (1985)). Bollobás and Thomason (1987) have studied sharp thresh-
old properties of ER random graphs and more generally, of arbitrary random
subsets. Chromatic number of ER random graphs have also been extensively
studied (see e.g. Janson, Luczak and Rucinski (2000)). Chromatic number
of a graph is the minimum number of distinct colours needed to colour the
vertices so that no two adjacent vertices share the same colour. Shamir and
Spencer (1987) proved concentration of chromatic number for dense random
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CHAPTER 1. INTRODUCTION 7

graphs. Bollobas (1988) provided sharp estimates for chromatic number of
dense random graphs using martingale inequalities.

We briefly describe giant component and connectivity regimes for ER
binomial random graph. Analogous properties hold for ER uniform random
graph (see Janson, Luczak and Rucinski (2000)). Suppose that pn = λ

n
for

some constant λ > 0. It is well-known (see e.g. Durrett (2006)) that if λ < 1,
then the diameter of the largest cluster is less than C1 log n with probability
1−o(1) as n → ∞, for some constant C1 > 0. If λ > 1, then with probability
1 − o(1), there is a unique “giant component” containing roughly θn nodes
for some constant θ ∈ (0, 1). Moreover, every other component has less than
C2 log n nodes with probability 1−o(1) as n → ∞, for some constant C2 > 0.
Thus λ = 1 is the “critical” intensity beyond which the giant component
begins to appear.

On the other hand, suppose that edges are present with probability pn =
a log n

n
for some constant a > 0. We know that (see e.g. Durrett (2006))

if a > 1, the graph is connected with probability 1 − o(1) as n → ∞. If
a < 1, the graph is disconnected with probability 1 − o(1) as n → ∞. This
determines the critical value for the “connectivity regime”. This dual critical
behaviour is typical of such random graphs and is also present in random
geometric graphs described below.

Random Geometric Graphs

Closely related to ER graphs is the random geometric graph (RGG). The
study of random geometric graphs originated with the modelling of commu-
nication networks (see e.g. Gilbert (1961)). In RGGs n nodes are spatially
distributed in a unit square each independently according to a certain density
and two nodes u and v are joined to each other if their Euclidean distance
between them is less than rn. A slight variation of the above connectivity
model is the Poisson Boolean model where the nodes are distributed accord-
ing to a Poisson process and percolation properties of such models have also
been studied (see Meester and Roy (1996)). RGGs are a particular case of
the more general random connection model where two nodes u and v are
joined to each other with probability p(u, v). See Meester and Roy (1996)
and references therein for results on the general random connection model.

Giant component regime and connectivity regime for RGGs have been
extensively studied; see Sarkar (1995), Gupta and Kumar (1998) and Pen-
rose (2003). We briefly summarize the pertinent results. Consider n nodes
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independently distributed in the unit square S =
[

−1
2
, 1

2

]2
each according to

a certain density f satisfying

0 < inf
x∈S

f(x) ≤ sup
x∈S

f(x) < ∞. (1.1)

Connect two nodes u and v by an edge e if the Euclidean distance d(u, v)
between them is less than rn. The resulting random geometric graph (RGG)
is denoted as G = G(n, rn, f).

Theorem. (Penrose (2003)) If r2
n = c1

n
for some constant c1 > 0 sufficiently

large and the density f(.) is uniform, then:
(a) There exists a constant ǫ = ǫ(c1) > 0 so that

P(G contains a component CG such that #CG ≥ ǫn) −→ 1

and
#CG

n
−→ 2ǫ in probability

as n → ∞. If r2
n = c2

log n
n

for some constant c2 > 0 and the density f(.)
satisfies (2.1), we have:
(b) If c2 is sufficiently large, then P(G is connected) −→ 1 as n → ∞.
(c) If c2 is sufficiently small, then lim infn P(G is not connected) > 0.

Also, ǫ(c1) → 1
2

as c1 → ∞; (see Chapters 9 and 11 of Penrose (2003)).
Here and henceforth any constant will always be independent of n and #CG

denotes the number of nodes in CG. Part (a) of the above result describes
the size of the giant component CG of G. Parts (b) and (c) describe the
behaviour of G in the densely connected regime. Indeed when the density
f is uniform, parts (b) and (c) are proved in Corollary 3.1 and Corollary
2.1, respectively, of Gupta and Kumar (1998). The proof for non-uniform f
satisfying (2.1) is analogous (see e.g. Penrose (2003)). Part (a) and related
results are discussed in Chapter 2 of Sarkar (1995) and Chapter 11 of Penrose
(2003).

We remark that though the critical values for connectivity and giant com-
ponent regime look similar for ER graphs and RGGs, the proofs are different.
Our thesis concerns with infection spread on RGGs and rate of convergence
for functionals of random graphs based on Poisson processes. The next chap-
ter determines the size of giant component when rn is below the connectivity
regime but nr2

n −→ ∞. The third chapter deals with infection spread in



CHAPTER 1. INTRODUCTION 9

RGGs and we use results from the second chapter to estimate the size of
the total infected set. The final chapter studies convergence rate of locally
determinable Poisson functionals.

1.2 Size of the giant component in RGGs

Our main aim in this chapter is to estimate the size of the giant component
in the random geometric graph and study related properties.

In Chapter 2 we study the structure of giant component in the interme-
diate range i.e., when

c1 ≤ nr2
n ≤ c2 log n and nr2

n −→ ∞, (1.2)

for some positive constants c1, c2 and obtain estimates on the size and diam-
eter of non-giant components. In our main result of this chapter, we show
that if (1.2) is satisfied, then the giant component of G contains at least
n − ne−βnr2

n nodes with probability at least 1 − o(1) as n → ∞, for some
constant β > 0. We also obtain estimates on the diameter and number of the
non-giant components of G. The advantage of our approach is that it can also
be used to study related problems in RGGs. The results of this chapter are
also used to study infection spread in RGGs discussed in the next chapter.

1.3 Infection spread in RGGs

We consider the random geometric graph G = G(n, rn, f) as described above.
To study the spread of infection in G, we equip each edge e of G with a
passage time t(e) that is exponentially distributed with unit mean (Durrett
and Liu (1988), Gopalan et al (2011)). The passage times of distinct edges
are independent. At time t = 0, the node x0 closest to the origin in S is
infected. Any node x1 that shares an edge e with x0 is infected after time
t(e). This process continues and infected nodes stay in that state forever.
What is the minimum time elapsed after which no new nodes are infected?
How many nodes are ultimately infected by the above process? In this paper
we provide sharp bounds for the above two questions. The main tool we use
to describe our results is the speed of infection spread.

We define the infection process on the probability space (Ψ, H,P). For
any set A ⊆ R

2 and α > 0, define αA = ∪x∈A{αx} to be the dilation of A
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by factor α. At time t = 0, the node x0 closest to the origin is infected. Let
G(x0) denote the connected cluster of nodes in G containing x0. Let I(t) be
the set of nodes of G(x0) infected up to time t.

We say that infection spreads at speed at least vn,low if there exists func-
tions 0 ≤ a(x) = o(x) and 0 ≤ g(x) = o(x) as x → ∞ such that

P







⋂

a(r−1
n )≤m≤r−1

n −g(r−1
n )

{(

G(x0) \ I

(

m

vn,low

))

⋂

mrnS = φ

}





 = 1 − o(1)

(1.3)
as n → ∞. In other words, we want all nodes of G(x0) contained in mrnS to
be infected within time m

vn,low
. This must happen for “nearly all” indices m.

We say that the speed is at most vn,up if there exists functions 0 ≤ a(x) = o(x)
and 0 ≤ g(x) = o(x) as x → ∞ such that

P







⋂

a(r−1
n )≤m≤r−1

n −g(r−1
n )

{

I

(

m

vn,up

)

⊆ mrnS

}





 = 1 − o(1).

In our main result of Chapter 3 we prove that if (1.2) is satisfied, then
the infection spreads with speed at least D1nr2

n and at most D2n
√

n log n for
some positive constants D1 and D2. This is unlike regular lattices (like e.g.
Z

2) where the speed of infection spread is a constant.
The traditional subadditive methods (see e.g. Smythe and Wierman

(2008)) of first passage percolation are not directly suitable in our scenario
and we develop new techniques to establish the bound above. Finally we use
results from Chapter 2 to obtain sharp bounds on the eventual size of the
infected set.

1.4 Convergence rate of locally determinable

Poisson functionals

Let N be a Poisson process with intensity measure Λ(.) in R
d and place

an independent mark tx on each point x of N . Let NM be the resulting
marked process and let f(x) = f(x, NM), x ∈ N be a ‘locally determinable
function’ (for a more formal definition see (i)-(iv) in Chapter 4). Letting
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W =
[

−1
2
, 1

2

]d
, we evaluate the rate of convergence of

1

Λ(nW )

∑

x∈N ∩nW

f(x)

to its mean as n → ∞, in terms of the decay rate of the radius of deter-
minability.

Broadly speaking, there are at least two approaches towards determining
convergence rate: regularity and stability. Regularity of a functional essen-
tially requires that the value of the functional does not change much upon
adding or removing a few points in the configuration. For graph functionals
of binomial point processes, estimating such a change allows one to directly
apply McDiarmid type concentration inequalities thereby obtaining exponen-
tial decay (see e.g., Chapter 3, Steele (1987), Baccelli and Bordenave (2005)).
For Poisson point processes, one needs an additional step of conditioning on
the number of points. Significant work, however, involving the geometry of
the graph may be needed in establishing regularity. We seek to obtain con-
centration estimates (that are possibly weaker) with properties that are in a
sense, easy to identify and calculate.

Penrose and Yukich (2003), Baryshnikov and Yukich (2005) study weak
convergence of functionals using stability as a criterion. Roughly speaking,
a functional is said to be stabilizing if local changes to the configuration
does not affect the value of the functional far from the origin. The above
works study weak convergence of such functionals via the objective method
that essentially approximates inhomogenous Poisson processes by locally ho-
mogenous Poisson processes.

In a certain sense, stability highlights the locally determinable property
of the functional and is quantified by the radius of determinability. Our
principal aim in this chapter is to study how convergence rate varies with
the decay rate of the radius of determinability. We illustrate using functionals
of the Poisson Voronoi tessellation and the Poisson Boolean model.



Chapter 2

Size of the Giant Component in
a Random Geometric Graph

2.1 Introduction

Consider n nodes independently distributed in the unit square S =
[

−1
2
, 1

2

]2

each according to a certain density f satisfying

0 < inf
x∈S

f(x) ≤ sup
x∈S

f(x) < ∞. (2.1)

Connect two nodes u and v by an edge e if the Euclidean distance d(u, v)
between them is less than rn, where

c1 ≤ nr2
n ≤ c2 log n and nr2

n −→ ∞ (2.2)

for some positive constants c1 and c2 and as n → ∞. The resulting random
geometric graph (RGG) is denoted as G = G(n, rn, f). Here and henceforth
all constants are independent of n.

Our main aim in this chapter is to estimate the size of the giant component
in G and study its related properties. The results of this chapter are of
independent interest and are also used to determine the size of infected set
in the spread of infection described in Chapter 3. We briefly describe the
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CHAPTER 2. GIANT COMPONENT 13

notation. The diameter of any subgraph H of G is defined as

diam(H) = sup
u,v

dH(u, v),

where dH(u, v) represents the graph distance between the nodes u and v and
the supremum is taken over all pairs u, v belonging to the vertex set of H.
We state the main result of the paper below. Let TG denote the collection of
all components of G. For a fixed β > 0 we define the following events: Let

Un = Un(β) =

{

#TG ≤ 1

r2
n

e−βnr2
n

}

denote the event that the number of components of G is less than 1
r2

n
e−βnr2

n,

Vn = Vn(β) =
{

there exists C0 ∈ TG such that #C0 ≥ n − ne−βnr2
n

}

denote the event that there exists a (giant) component C0 in TG whose size
is at least n − ne−βnr2

n and

Wn = Wn(β) = Vn

⋂







sup
C∈TG\C0

diam(C) ≤ 1

β

(

log n

nr2
n

)2






.

denote the event that the diameter of every component of G other than the

giant component C0 is less than 1
β

(

log n
nr2

n

)2
.

Theorem 2.1. Consider the graph G = G(n, rn, f), where the density f(x)
satisfies (2.1) and the radius rn satisfies (2.2) for some fixed positive con-
stants c1 and c2. Let Un and Wn be events as defined above and fix δ > 1.
There exists a positive constant β = β(δ) sufficiently small so that:

(i) P(Un) ≥ 1 − e−βn1−1/δ
and

(ii) P(Wn) ≥ 1 − e−βnr2
n , for all n ≥ 1.

The above result essentially says whenever rn is in the intermediate range
as in (2.2), a giant component of G exists with very high probability and
moreover it contains nearly all the nodes.

2.2 Proof of Theorem 2.1

Divide the unit square S into small rn

∆
× rn

∆
closed squares {Si}i≥1 and choose

∆ = ∆n ∈ [4, 5] so that ∆
rn

is an integer. We choose such a ∆ so that nodes
in adjacent squares can be joined by an edge in G. Define Si to be occupied
if it has at least one node and vacant otherwise.
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2.2.1 Proof of (i)

We first count the number of vacant squares in the set {Si}i. We then use
the fact that for each vacant square Sj , the 8rn

∆
× 8rn

∆
square with same centre

as Sj intersects at most 81 distinct components of G to prove (i). The choice
of 8 is not crucial and any integer larger than 2 suffices since we only need to
estimate the number of components “associated” with Sj. The total number

of squares is t =
(

∆
rn

)2
. To obtain an estimate on the total number of vacant

squares, we let {Zi}1≤i≤t be Bernoulli random variables taking values either
zero or one. We set Zi = 1 if and only if the square Si is vacant which
happens if and only if none of the n nodes are in Si.

We note that the sum
∑

i Zi equals k if and only if there are exactly
k vacant squares. Since the random variables {Zi}i are not independent,
we cannot evaluate the probability that

∑

i Zi = k using standard binomial
estimates. We therefore proceed as follows. The number of ways of choosing
k squares from a total of t squares is

(

t
k

)

. The total area of the k squares is

k r2
n

∆2 ≥ kr2
n

25
since ∆ ≤ 5. All the k squares chosen are empty with probability

at most pn
k , where

pk = 1 − k inf
i

∫

Si

f(x)dx ≤ 1 − β0kr2
n ≤ e−β0kr2

n (2.3)

and β0 = 1
25

infx∈S f(x) > 0. Thus using the inequality
(

n
k

)

≤
(

ne
k

)k
, we have

P

(

t
∑

i=1

Zi ≥ k

)

≤
t
∑

j=k

(

t

j

)

pn
j

≤
t
∑

j=k

(

te

j

)j

pn
j

≤
t
∑

j=k

(

te

j

)j

e−jβ0nr2
n

≤
t
∑

j=k

(

te

k

)j

e−jβ0nr2
n .

Setting k = ete−θnr2
n for some constant θ < β0 to be determined later and
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letting β1 = β0 − θ, we get for all sufficiently large n that

P

(

t
∑

i=1

Zi ≥ ete−θnr2
n

)

≤
t
∑

j=k

e−jβ1nr2
n

≤ e−kβ1nr2
n

1 − e−β1nr2
n

≤ 2e−kβ1nr2
n

= 2 exp
(

−ete−θnr2
nβ1nr2

n

)

= 2 exp
(

−β1e∆2ne−θnr2
n

)

≤ 2 exp
(

−16eβ1ne−θnr2
n

)

,

where we use t = ∆2r−2
n and ∆ ≥ 4, respectively, in obtaining the last two

inequalities. In what follows, the constants {βi}i≥1 are not necessarily same
in each occurrence. Let δ > 1 be any constant. Since r2

n ≤ c2
log n

n
for some

c2 > 0 (see (2.2)), we choose θ sufficiently small so that

θnr2
n ≤ θc2 log n ≤ 1

δ
log n.

This implies that

P

(

t
∑

i=1

Zi ≥ ete−θnr2
n

)

≤ 2 exp
(

−16eβ1n1−1/δ
)

.

Also, for each vacant square Sj , the 8rn

∆
× 8rn

∆
square with same centre as Sj

intersects at most 81 distinct components of G. Since t = ∆2

r2
n

≤ 25
r2

n
, we get

from the above equation that

P

(

#TG ≥ 2025er−2
n e−θnr2

n

)

≤ 2 exp
(

−16eβ1n
1−1/δ

)

and (i) follows.
The rest of the proof is devoted to establishing (ii). The idea is to tile

S horizontally and vertically into rectangles and show that each rectangle
contains a crossing of edges in the longer direction with high probability.
We then join together these crossings to form a “backbone” and show that
it forms a part of the giant component. Throughout, we define Kn = log n

nr2
n

and allow Kn to be an integer. (Later, we show that the tiling is (slightly)
modified if Kn is not an integer without any change in the argument.)
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Figure 2.1: Occupied left-right crossing in the rectangle R for some ∆ ≥ 4.

From (2.2), we have that Kn ≥ 1
c2

. For positive integers m1, m2, let R be

any m2rn

∆
× m1Knrn

∆
rectangle contained in S which contains exactly m1m2Kn

of the squares from {Si}i. We define a left-right crossing in R to be any set
of distinct squares L = (Y0, Y1, ..., YT ) such that:
(a) For every i, the square Yi ∈ {Sk}k and Yi and Yi+1 share an edge.
(b) Y0 intersects the left face of R and YT intersects the right face.
If every square in L is occupied, we say that L is an occupied left-right
crossing. We define analogously top-bottom crossings and vacant crossings.
The only difference in the definition of vacant crossings is that edge in (a)
is replaced by corner. Sarkar (1995), Penrose (2003) and Franceschetti et al
(2007) also use the concept of left-right crossings in different contexts with
varying definitions.

Figure 3.1 illustrates an occupied left-right crossing in a m2rn

∆
× m1Knrn

∆

rectangle R. The nodes in the rectangle are illustrated as dark dots and
the sequence of grey squares form an occupied left-right crossing in R. We
need the following estimate on the probability of occurrence of an occupied
left-right crossing in R.

Lemma 2.2. For n ≥ N0 (independent of the choices of m1 and m2), the
event that an occupied left-right crossing occurs in R has probability at least

1 − m2

nm1δ1
(2.4)

for some constant δ1 > 0 (independent of the choices of m1 and m2).

We use the above estimate to construct a “backbone” of G and thus prove
(ii). Before we do so, we prove Lemma 2.2. The proof is independent of the
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rest of the proof of Theorem 2.1.
Proof of Lemma 2.2: To prove (2.4), we identify the centre of each square Si

contained in R with a vertex in Z
2 in the natural way. Thus the rectangle

R has an equivalent rectangle R̃ consisting of sites in Z
2. Say that a site is

occupied if the corresponding square Si is occupied and vacant otherwise.
We now use the fact that either a left-right occupied crossing or a top-

bottom vacant crossing must always occur in R̃ but not both (see e.g., [11]
or [22]). To evaluate the probability of a vacant top-bottom crossing, we fix
a point x in the top face of R̃ and consider a top-bottom crossing of length
k starting from x (see Figure 2.2 for illustration). The area enclosed by the

corresponding crossing Π1 in R
2 is kr2

n

∆2 ≥ kr2
n

25
, since ∆ ≤ 5. The probability

that a particular node is present in Π1 is (see also (2.3))
∫

Π1

f(x)dx ≥ kβ0r2
n,

where β0 = 1
25

infx∈S f(x) > 0. Therefore the probability that the crossing
Π1 is vacant is less than

(1 − kβ0r
2
n)n ≤ e−knβ0r2

n.

Since the number of top-bottom crossings of length k starting from x
is less than 8k (at each step no more than eight choices are possible), the
probability that there exists a vacant crossing of k squares starting from the
square Sx with centre x and contained in R is bounded above by 8ke−knβ0r2

n .
Any top-bottom crossing from starting from Sx must necessarily contain at
least m1Kn and no more than m1m2Kn squares. Therefore the probability
that there exists a vacant crossing starting from Sx and contained in R is
bounded above by

m1m2Kn
∑

k=m1Kn

8ke−kβ0nr2
n ≤ (e−β1nr2

n)m1Kn

for a fixed constant 0 < β1 < β0 and all n ≥ N0, for some constant N0

independent of the choices of m1 and m2. In the above, we use the fact that
nr2

n −→ ∞ and therefore that 8e−β0nr2
n < e−β1nr2

n for all n sufficiently large.
Since there are m2 possibilities for Sx, the probability that there exists a
vacant top-bottom crossing of R is bounded above by

m2(e−β1nr2
n)m1Kn = m2e−β1m1 log n = m2

(

1

nβ1

)m1

since Kn = log n
nr2

n
.
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x


Figure 2.2: Vacant top-bottom crossing of a 4 × 9 rectangle in Z
2 from the

site x. Circled sites correspond to occupied squares.

2.2.2 Proof of (ii)

Tile the square S horizontally into a set of rectangles RH each of size 1 ×
MrnKn

∆
and also vertically into rectangles each of size MrnKn

∆
×1 for some fixed

integer constant M ≥ 1 to be determined later. The argument below is for a
perfect tiling as in Figure 2.3(a). Otherwise we perform an analogous analysis
with tiling as in Figure 2.3(b). Let R be a fixed 1 × MKnrn

∆
rectangle in the

tiling RH and let δ > 1 be a fixed constant. From (2.4), we know that R
contains an occupied left-right crossing L = (Y0, Y1, ..., YT ) with probability
at least

1 − ∆

rn

1

nMδ1
≥ 1 − ∆√

c1

√
n

nMδ1
≥ 1 − 1

nδ+2

if M is sufficiently large. Fix such an M. The first inequality above is because
r2

n ≥ c1

n
for some constant c1 (see (2.2)). Let EH

n denote the event that every
rectangle in RH contains an occupied left-right crossing. The number of
rectangles in RH is less than

∆

MrnKn
≤ ∆

Mrn

1

c2
≤ ∆

Mc2

√
n√
c1

≤ D1

√
n

for some constant D1 > 0. In evaluating the above we again use (2.2). The
first inequality is because Kn = log n

nr2
n

≥ 1
c2

by our choice of rn in (2.2) and

the second inequality follows because r2
n ≥ c1

n
. It follows that

P(EH
n ) ≥ 1 − D1

√
n

nδ+2
≥ 1 − 1

nδ+1
,

for all n sufficiently large. Following an analogous analysis for the vertically
tiled rectangles described in the first paragraph of the proof and defining an
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(a) The event En in the unit square. Each
wavy line is an occupied left-right crossing
of rn

∆
× rn

∆
squares as in Figure 3.1.

MK  r
n
 n


MK  r
n
 n


1


MK  r
n
 n


(b) The tiling obtained when ∆

MKnrn

is not

an integer. The two topmost 1 × MKnrn

∆

rectangles in the tiling overlap.

Figure 2.3: Construction of the backbone.

analogous event EV
n , we have that P(EV

n ) ≥ 1 − 1
nδ+1 . Thus if En = EH

n ∩EV
n ,

we have that

P(En) ≥ 1 − 2

nδ+1
. (2.5)

In Figure 2.3(a), we depict the occurrence of the event En. We see that
the event En results in a connected set of rn

∆
× rn

∆
squares B ⊆ {Si}i forming

a “backbone” of crossings in S. Let C0 denote the component of G containing
nodes in B.

In the above, we have assumed that Kn = log n
nr2

n
is an integer. If not, we

set Kn = ⌈ log n
nr2

n
⌉ and starting from the base of the square S, we perform

an analogous horizontal tiling as above. The only difference is that the two
topmost rectangles could overlap as in Figure 2.3(b). A similar situation
occurs in the vertical tiling. Following an analogous analysis as above, we
obtain (2.5) and a corresponding backbone. The rest of the argument below
remains unchanged.

We note that the tiling of S into vertical and horizontal rectangles induces
a tiling of S into MrnKn

∆
× MrnKn

∆
size squares {S ′

i}i. If the event En occurs,
then the resulting backbone B (and hence the component C0) intersects each
square S ′

i “vertically” and “horizontally” as shown in Figure 2.3(a). There-
fore, if there exists a connected component C of G distinct from C0, it must
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Figure 2.4: The square A1A2A3A4 in Figure 2.3(a) is magnified to show a
component not attached to the backbone.

necessarily be contained in a 2MKn

∆
× 2MKn

∆
square with centre at some rn

∆
× rn

∆

square Si. In Figure 2.4, the square A1A2A3A4 of Figure 2.3(a) is magnified
and a component C distinct from C0 is shown. The centre of the hatched
rn

∆
× rn

∆
square is also the centre of A1A2A3A4.

Clearly in such a component C, the minimum number of edges traversed

in going from any node u to any other node v is at most
(

2MKn

∆

)2
< (2MKn)2

and therefore diam(C) < (2MKn)2. To summarize, so far we have proved
that if event En occurs, then a backbone B and hence the component C0

containing all the nodes in squares comprising the backbone and possibly
other nodes exist. Moreover, any component of G distinct from C0 has
diameter less than (2MKn)2. Recall that TG is the set of all components of
G and for θ > 0 let

Fn = Fn(θ) =







∑

C∈TG : diam(C)<(2MKn)2

#C < ne−θnr2
n







denote the event that the sum of sizes of components whose diameter does
not exceed (2MKn)2 is less than ne−θnr2

n . We have the following estimate on
probability of occurrence of the event Fn.
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Lemma 2.3. We have
P(Fn) ≥ 1 − e−θ1nr2

n (2.6)

for some positive constants θ and θ1.

Before we prove the above result, we complete the proof of (ii). When-
ever En ∩ Fn occurs, the component C0 contains at least n − ne−θnr2

n nodes
and is therefore the giant component. Also, the diameter of any non-giant
component is less than (2MKn)2. Choosing θ1 > 0 smaller if necessary, we
have from (2.5) and (2.6) that the event En ∩ Fn occurs with probability

P(En ∩ Fn) ≥ 1 − e−θ1nr2
n − 2

nδ+1
≥ 1 − 2e−θ1nr2

n

for all n sufficiently large. In the above estimate, we have used the fact
(2.2) that nr2

n ≤ c2 log n for some positive constant c2. This proves (ii) and
hence Theorem 2.1. The proof of Lemma 2.3 is independent of the proof of
Theorem 2.1 and is provided below.

Proof of Lemma 2.3: Say that a set of squares C ⊆ {Si}i is a cluster if
they form a connected set in R

2. We say that the cluster C is occupied if
every square in the cluster is occupied.

Fix i and consider the square Si. If Si is occupied, denote Ci to be the
maximal occupied cluster containing Si. Set Xi to be the number of nodes in
Ci if Ci is contained in the 2(2MKn)2rn × 2(2MKn)2rn square Sin

i with same
centre as Si. Otherwise set Xi to be zero. Thus,

∑

i Xi is an upper bound on
the sum of size of components whose diameter is less than 2(2MKn)2. In the
beginning of the proof of (ii), we recall that to obtain the estimate (2MKn)2

on the diameter of a component not attached to the backbone, we had con-
sidered a 2MKn × 2MKn square appropriately centred (like A1A2A3A4 in
Figure 2.4). In this subsection, however, we are not given any information
regarding the backbone. Therefore, to obtain a bound on the size of a com-
ponent whose diameter is less than (2MKn)2 the only information we have is
that the component is enclosed in a (slightly bigger) 2(2MKn)2 × 2(2MKn)2

square.
We first estimate P({#Ci = k}∩{Xi 6= 0}) for k ≥ 1. Suppose that Xi 6= 0

and therefore that the cluster Ci is contained in the square Sin
i . Our aim now

is to obtain a sufficiently large number of vacant squares “attached to” Ci.
Consider Ci as a set in R

2 and let ∂1, ..., ∂T be its disjoint boundaries. Each
∂i is a circuit of edges (ei,1, ..., ei,Li

) (not necessarily self-avoiding) such that
ei,1 and ei,Li

touch each other. Since Ci is connected, one of the boundaries,
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S


e
1, last


Figure 2.5: The occupied cluster Ci and the set of vacant squares π1 (marked
by the symbol Π) are shown for the square Si that is denoted by the dark
square.

say ∂1, contains all squares of Ci and all the other boundaries in its interior.
Also, any square S1,j that has an edge e1,j ∈ ∂1 and not contained in Ci is
necessarily vacant.

Let π1 denote the set of distinct vacant squares that contain some edge
in ∂1. The path ∂1 contains L1 ≥ 2 edges of which at least L1

2
of them have

an endvertex in the interior of the unit square S. (Here we use the fact that
the cluster Ci is contained in Sin

i . If we did not have a bounding box for the
cluster Ci, the above statement will not hold; e.g. consider the event that
each square in {Sk}k contains at least one node.) From the discussion in the
previous paragraph, each such “interior” edge has a vacant square “attached”
to it. Since each vacant square is counted at most four times (once for each
of its four edges), this implies that #π1 ≥ L1

8
. In Figure 2.5, the dark grey

square is Si and the grey squares form Ci. The set of vacant squares π1 is
shown by the squares marked Π and the curve of thick lines represents ∂1.

To compute the probability that such a vacant set of squares occurs, we
set the centre of Si to be the origin and draw X− and Y − axes parallel to
the sides of Si. Let e1,last be the “last” edge in ∂1 that intersects the X−axis
at (xlast, 0). In other words, if an edge e1,j in ∂1 intersects the X−axis at
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(xj , 0), then xlast > xj . In Figure 2.5, the edge e1,last is also shown. Clearly,
there are at most L1 possibilities for the location of edge e1,last. Also, the
number of choices for ∂1 starting from e1,last is less than 4L1.

Now, the total area of squares in π1 is at least L1

8
r2

n

∆2 ≥ L1

8
r2

n

25
since ∆ ≤ 5.

Given ∂1, with probability at least L1

8
β0r2

n a particular node is present in π1

where β0 = 1
25

infx∈S f(x) > 0 is as in (2.3). Therefore with probability at
most

(

1 − 1

8
β0L1r2

n

)n

≤ e−β0L1nr2
n/8

none of the n nodes are present in π1.

If Ci contains k squares, then the number of edges L1 in ∂1 satisfies
√

k
4

≤
L1 ≤ 4k. The upper bound is clear. To see why the lower bound is true,

suppose that ∂1 has less than
√

k
4

edges. It is then necessary that ∂1 is

contained in the
√

k
2

rn

∆
×

√
k

2
rn

∆
square Spk with the same centre as Si. The

square Spk contains at most k
4

squares from {Sj}j. This is a contradiction
since the path ∂1 contains Ci in its interior and Ci contains k squares. Thus
for k ≥ 1 we have from the above discussion that

P({#Ci = k} ∩ {Xi 6= 0}) ≤
∑

√
k

4
≤l≤4k

e−lβ0nr2
n/8l4l

≤ 4k
∑

√
k

4
≤l≤4k

(

4e−β0nr2
n/8
)l

≤ ke−θ0nr2
n

√
k (2.7)

for a fixed positive constant θ0 < β0

40
and all n ≥ N0, where N0 is a constant

that does not depend on k. Here we use the fact that nr2
n −→ ∞ and hence

that 4e−β0nr2
n/8 < e−5θ0nr2

n for all sufficiently large n. Letting N(A) denote
the number of nodes in the set A, we therefore have that

EXi = E
∑

C

∑

Sj∈C
N(Sj)11(Ci = C)11(Xi 6= 0)

= I1 + I2,

where the summation in the first line is over all clusters C that contain the
square Si and are contained in Sin

i . In the above equation,

I1 = E
∑

C

∑

Sj∈C
N(Sj)11(Ci = C)11(N(C) ≥ 2ekδ0nr2

n)11(Xi 6= 0),
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I2 = EXi − I1 and δ0 = 1
16

supx∈S f(x).
To evaluate I1 and I2, we need a couple of preliminary estimates. For a

fixed C containing k squares, we estimate P(N(C) ≥ 2ekδ0nr2
n) first. Analo-

gous to (2.3), we have a particular node is present in C with probability at
most qk = kδ0r2

n. Therefore

P(N(C) ≥ 2enqk) ≤
∑

2enqk≤j≤n

(

n

j

)

qj
k

≤
∑

2enqk≤j≤n

(

ne

j

)j

qj
k

≤
∑

2enqk≤j≤n

(

ne

2enqk

)j

qj
k

≤
∑

j≥2enqk

(

1

2

)j

≤ e−2β2knr2
n (2.8)

for some positive constant β2 independent of k, i and the choice of C0. In the

third inequality above, we have used the estimate
(

n
k

)

≤
(

ne
k

)k
. Also, the

expected number of nodes in any square Si is bounded above by

sup
j

EN(Sj) = n sup
j

∫

Sj

f(x)dx ≤ n sup
x∈S

f(x)
r2

n

∆2
≤ D1nr2

n (2.9)

for some positive constant D1 since supx∈S f(x) < ∞ (see (2.1)) and ∆ ≥ 4.
Analogously,

sup
j

EN(Sj)
2 ≤ D2(nr2

n)2 (2.10)

for some positive constant D2.
To evaluate I1, we now use Cauchy-Schwarz inequality to obtain that

I1 ≤
∑

k≥1

∑

#C=k

∑

Sj∈C
EN(Sj)11(N(C) ≥ 2ekδ0nr2

n)

≤
∑

k≥1

∑

#C=k

∑

Sj∈C
(EN2(Sj))

1/2
P(N(C) ≥ 2ekδ0nr2

n)1/2

≤ D3nr2
n

∑

k≥1

∑

#C=k

∑

Sj∈C
e−kβ2nr2

n
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for some positive constant D3 independent of i. In obtaining the final esti-
mate, we use (2.10) and the notation

∑

#C=k refers to the sum over all clusters
C containing k squares of which one of them is Si. Since the number of such
clusters is less than 8k, we get

I1 ≤ D3nr2
n

∑

k≥1

k8ke−kβ2nr2
n ≤ D4nr2

ne−β3nr2
n

for some positive constants D4 and β3, independent of i.
To evaluate I2 we write

I2 = E
∑

k≥1

∑

#C=k

∑

Sj∈C
N(Sj)11(Ci = C)11(N(C) ≤ 2ekδ0nr2

n)11(Xi 6= 0)

≤ 2eδ0nr2
nE

∑

k≥1

k
∑

#C=k

∑

Sj∈C
11(Ci = C)11(Xi 6= 0)

= 2eδ0nr2
nE

∑

k≥1

k2
∑

#C=k

11(Ci = C)11(Xi 6= 0)

= 2eδ0nr2
n

∑

k≥1

k2
P({#Ci = k} ∩ {Xi 6= 0})

≤ 2eδ0nr2
n

∑

k≥1

k3e−θ0nr2
n

√
k

≤ D5nr2
ne−β5nr2

n

for some positive constants D5 and β5 independent of i, where the second
inequality follows from the estimate (2.7). From the estimates of I1 and I2,
we therefore have that

EXi ≤ D6nr2
ne−β6nr2

n (2.11)

for some positive constants D6 and β6 independent of i.
The number of squares in {Si}i is ∆2r−2

n . By Markov inequality, we there-
fore have for θ > 0 that

P





∆2r−2
n

∑

i=1

Xi ≥ ne−θnr2
n



 ≤
∑

i EXi

n
eθnr2

n

≤ (∆2r−2
n )

D6nr2
ne−β6nr2

n

n
eθnr2

n

≤ D7e−θ1nr2
n

for some positive constants θ1 and D7, if θ is sufficiently small. Since Fn =
{

∑

i Xi < ne−θnr2
n

}

, this proves the lemma.



Chapter 3

Infection Spread in Random
Geometric Graphs

3.1 Introduction

We consider the random geometric graph G = G(n, rn, f) in the unit square

S =
[

−1
2
, 1

2

]2
as described in Chapter 2. To study the spread of infection in

G, we equip each edge e of G with a passage time t(e) that is exponentially
distributed with unit mean. The passage times of distinct edges are inde-
pendent. At time t = 0, the node x0 closest to the origin in S is infected.
Any node x1 that shares an edge e with x0 is infected after time t(e). This
process continues and infected nodes stay in that state forever.

We define the infection process on the probability space (Θ, H,P). We
describe the construction briefly in Section 3.2. For any set A ⊆ R

2 and
α > 0, define αA = ∪x∈A{αx} to be the dilation of A by factor α. At time
t = 0, the node x0 closest to the origin is infected. Let G(x0) denote the
connected cluster of nodes in G containing x0. Let I(t) be the set of nodes
of G(x0) infected up to time t. We say that infection spreads at speed at
least vn,low if there exists functions 0 ≤ a(x) = o(x) and 0 ≤ g(x) = o(x) as

26
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x → ∞ such that

P







⋂

a(r−1
n )≤m≤r−1

n −g(r−1
n )

{(

G(x0) \ I

(

m

vn,low

))

⋂

mrnS = φ

}





 = 1 − o(1)

(3.1)
as n → ∞. In other words, we want all nodes of G(x0) contained in mrnS
to be infected within time m

vn,low
. This must happen for “nearly all” indices

m. Throughout, we use the standard terminology o(.) and O(.) in the regime
n → ∞. We say that the speed is at most vn,up if there exists functions
0 ≤ a(x) = o(x) and 0 ≤ g(x) = o(x) as x → ∞ such that

P







⋂

a(r−1
n )≤m≤r−1

n −g(r−1
n )

{

I

(

m

vn,up

)

⊆ mrnS

}





 = 1 − o(1).

We have the main result of the chapter.

Theorem 3.1. Consider the graph G = G(n, rn, f) where f and rn satisfy
(2.1) and (2.2), respectively. There exists positive constants D1 and D2 such
that

D1nr2
n ≤ vn,low ≤ vn,up ≤ D2n

√
n log n. (3.2)

Theorem 3.1 above is analogous to the shape theorem for infected set
in regular lattices like Z

2 (see e.g. Grimmett (1999)). The main difference
is that the speed of infection spread in RGGs grows with n whereas it is
bounded in regular lattices.

Let Telap denote the time taken to infect all nodes of G(x0) and let Ninf =
#G(x0) denote the number of nodes that remain infected in S after time Telap.
We have the following corollary regarding Telap and Ninf .

Corollary 3.2. We have that

P

(

r−1
n

D3n
√

n log n
≤ Telap ≤ r−1

n

D4nr2
n

)

= 1 − o(1), as n → ∞ (3.3)

and
r−1

n

D3n
√

n log n
≤ ETelap ≤ r−1

n

D4nr2
n

(3.4)

for some positive constants D3 and D4. Also, as n → ∞,

P(Ninf ≥ n − ne−θnr2
n) = 1 − o(1) (3.5)

for some positive constant θ.
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Thus with high probability, infection starting from the node closest to the
origin eventually spreads to nearly all nodes.

From a practical point of view, it is very important to study infection
spread in RGGs due to its applications in various fields. The fundamental
difficulty, however, is the fact that it is a dense graph and unlike bounded de-
gree graphs, the speed of infection spread is not bounded (see Theorem 3.1).
Hence traditional subadditive techniques developed for first passage perco-
lation (see e.g. Smythe and Wierman (2008)) cannot be directly applied for
RGGs. Also, it is not known how many nodes will be ultimately infected if
infection starts from a randomly chosen node.

Our proof technique is general and holds for a wide range of radius rn.
We also have some auxiliary results in the course of our proof that are of
independent interest.

The chapter is organized as follows. In Section 3.2, we state and prove the
geometric results regarding RGGs that are needed for analysis of infection
spread. In Section 3.3, we prove lower bound on the speed in Theorem 3.1.
In Section 3.4, we prove the upper bound and finally, in Section 3.5, we prove
Corollary 3.2.

3.2 Preliminaries

We briefly describe the probability space in little more detail. We define the
point process on the probability space (Ω, F , µ) and following a construction
analogous to Chapter 1 of Meester and Roy (1996), we define the infection
on the probability space on (Θ, H,P), where Θ = Ξ × Ω and P = νp × µ is a
product measure. For any event A ∈ H, we then have that

P(A) =
∫

Ω
νp(Aω)µ(dω) (3.6)

where Aω = {ξ ∈ Ξ : (ω, ξ) ∈ A}. In other words, νp(Aω) is the probability
that A occurs for a fixed configuration of points ω.

In what follows, we collect a couple of geometric results (see Proposi-
tions 3.3 and 3.4) regarding RGGs and a result concerning Poissonization
(Lemma 3.5) that are required for studying infection spread and are also of
independent interest. At time t = 0, infection starts from the node x0 closest
to the origin. To trace the spread of infection, we first establish that there
exists a path of edges starting from x0 and reaching close to the boundary of
S. We proceed as follows.
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Divide S into small rn

∆
× rn

∆
squares {Sk}k≥1 where ∆ = ∆n ∈ [4, 5] is such

that ∆
rn

is an integer. We choose such a ∆ so that nodes in adjacent squares
are joined together by an edge. Let S0 denote the square in {Sk}k containing
the origin. Say that Γ(x0) occurs if x0 ∈ S0 and there exists a path of edges
(e0, e1, ..., efin) such that:
(i) e0 contains x0 as one of its endvertex and
(ii) there exists an endvertex zfin ∈ G of efin such that d(zfin, ∂S) ≤ rn

2
.

The following result estimates the probability of occurrence of Γ(x0).

Proposition 3.3. There exists a constant θ1 > 0 so that

P(Γ(x0)) ≥ 1 − e−θ1nr2
n (3.7)

for all n ≥ 1.

The proof of this geometric result is analogous to Lemma 2.3 of Chapter 2
and we briefly sketch the proof here. Also, in this proof and throughout, we
repeatedly use the following concept of denseness of squares.

For a fixed i, let 10σi be the mean number of nodes in the
rn

∆
× rn

∆
square Si.

(3.8)
Using (2.1) and ∆ ∈ [4, 5], we have for all i that

10β1nr2
n ≤ 10σi ≤ 10β2nr2

n (3.9)

where β1 = 1
25

infx∈S f(x) > 0 and β2 = 1
16

supx∈S f(x) < ∞. Define Si to be
dense if it has more than σi nodes and sparse otherwise. The definition of a
dense square is slightly stronger than the definition of an occupied square in
Chapter 2.

Proof of Proposition 3.3: Say that a set of squares C ⊆ {Si}i is a cluster
if they form a connected set in R

2. Define C to be dense if each square in C
is dense.

Let Sor denote the rn

∆
× rn

∆
square containing the origin. We claim that

P(Sor is dense) ≥ 1 − e−θ2nr2
n (3.10)

for some constant θ2 > 0. Indeed, a particular node is present in Sor with
probability pn =

∫

Sor
f(x)dx. Without loss of generality, we assume that

npn =: 10σ0 is an integer; the argument below holds with minor modifications
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otherwise. We have by the unimodality property of the binomial distribution
(see e.g. Alam (1972)) that

P(Sor is sparse) =
∑

k≤σ0

(

n

k

)

pk
n(1 − pn)n−k ≤ σ0

(

n

σ0

)

pσ0
n (1 − pn)n−σ0.

Since r2
n −→ 0 and ∆ ∈ [4, 5], it is easy to check that pn −→ 0 as n → ∞ and

in particular, 1 − pn ≥ 1
2

for all n sufficiently large. Thus using
(

n
k

)

≤
(

ne
k

)k
,

the final term in the previous equation can be bounded above as

σ0

(

ne

σ0

)σ0

pσ0
n (1−pn)n−σ0 = σ0(1−pn)n

(

npne

σ0(1 − pn)

)σ0

≤ σ0e−npn

(

2enpn

σ0

)σ0

where we use 1 − x < e−x in obtaining the final inequality. Again using
npn = 10σ0 and (3.9) and the fact that nr2

n −→ ∞, we get

P(Sor is sparse) ≤ σ0e−10σ0 (20e)σ0 ≤ e−5σ0

for all n sufficiently large. By (3.9), we get (3.10).
Suppose that Sor is dense and suppose Cor denotes the maximal dense

cluster containing Sor. If Sor is dense and Γ(x0) does not occur, then nec-
essarily Cor must be surrounded by a circuit of sparse squares contained in
S. Our aim is to show that such an event is very unlikely. This is because
sparse squares occur with probability at most e−θ2nr2

n and consequently a
large number of vacant squares cannot be “attached to” Cor. Following an
analysis analogous to the proof of Lemma 2.3 of Chapter 2, we have for
k ≥ 1 that

P({#Cor = k} ∩ Γc(x0) ∩ {Sor is dense}) ≤ ke−2θ0nr2
n

√
k

for a fixed positive constant θ0 and all n ≥ N0, where N0 is a constant that
does not depend on k. This implies that

P(Γc(x0)∩{Sor is dense}) = P({#Cor ≥ 1}∩Γc(x0)∩{Sor is dense}) ≤ e−θ0nr2
n

for all n sufficiently large. From the (3.10), we then get (3.7).
Before we go further we point out the differences in the analysis here from

Chapter 2. The concept of dense left-right crossings defined below is slightly
stronger than occupied left-right crossings defined in Chapter 2. The estimate
on the probability of occurrence of dense left-right crossings in Proposition 3.4
with a bound on the length is however a non-trivial extension of Lemma 2.2 of
Chapter 2. The construction of the backbone using dense left-right crossings
in Section 3.3 and the subsequent analysis is fundamentally different from
Chapter 2.
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Figure 3.1: A dense left-right crossing in the rectangle R in R
2.

Left-right Crossings

From Proposition 3.3, we know that with high probability, there exists a path
starting from x0 and crossing mrnS for each 1 ≤ m ≤ r−1

n −1. To estimate the
time taken for infection to cross the boundary of mrnS, we need to find paths
whose edges have low passage time. Left-right crossings described below are
useful in that aspect.

Let Kn = log n
nr2

n
and for positive integers m1, m2, let R be any m2

rn

∆
×

m1Kn
rn

∆
rectangle in the unit square S that contains exactly m1m2Kn of

the squares in {Si}i and intersects none others. Without loss of generality
we allow Kn to be an integer throughout and with minor modifications the
argument presented below holds for general Kn. We define a left-right crossing
in R to be any sequence of squares L = (Y1, Y2, ..., YT ) such that:
(a) For every i, the squares Yi and Yi+1 share an edge.
(b) Y1 intersects the left side of R and YT intersects the right side.
(c) For every i 6= 1, T, neither the left edge nor the right edge of R intersects
the square Yi.
If every square in L is dense, we say that L is a dense left-right crossing.
Figure 3.1 illustrates a dense left-right crossing in R. In Section 3.3, we use
dense left-right crossings to obtain paths with low passage times.

We have the following result regarding the probability of occurrence of a
dense left-right crossing. Let R1 be the m rn

∆
× MKn

rn

∆
rectangle containing

exactlr mMKn squares from {Sk}k and let En(R1) denote the event that
there exists a dense left-right crossing of R1 containing less than 10Mm
squares.
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Proposition 3.4. There exists positive constants C1 and M so that for all
n ≥ 1 and m ≥ n1/9 we have

P(En(R1)) ≥ 1 − C1

n9
. (3.11)

This is a stronger result than Lemma 2.2 of Chapter 2 since we also
control the length of the left-right crossing here. The fact there exists a dense
crossing with less than 10Mm squares plays a crucial role in obtaining path
of edges with the desired low passage times (see also Remark 3.7 following
Lemma 3.6).

To prove the above Proposition, we employ Poissonization and assume
that the nodes are distributed according to a Poisson process with intensity
function nf(.). Defining Po to be the probability measure under the Pois-
sonized system, we have the following result.

Lemma 3.5. For any measurable event A, we have

P(A) ≥ 1 − C1

√
n(1 − Po(A)), (3.12)

for some absolute constant C1 independent of A.

Proof of Lemma 3.5: To prove (3.12), we note that in the Poisson case,
the number of nodes N in the unit square S is a Poisson random variable
with mean n; and therefore by Stirling’s formula, Po(N = n) = e−n nn

n!
≥ C2√

n

for some positive constant C2. Since

Po(A
c) =

∞
∑

k=0

Po(A
c|N = k)Po(N = k)

≥ Po(A
c|N = n)Po(N = n)

= P(Ac)Po(N = n)

we get (3.12).
Proof of Proposition 3.4: We note that R1 is the m rn

∆
× MKn

rn

∆
rectangle

with centre as origin, where Kn = log n
nr2

n
≤ log n, m ≥ 4n1/9 and M ≥ 1 is a

constant.
For the rest of this proof we work in the Poissonized system. Our first

step is to translate the problem to Z
2. We identify each rn

∆
× rn

∆
square Si

with a vertex zi ∈ Z
2. The rectangle R1 thus corresponds to a m × MKn
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rectangle Rint
1 in Z

2. Also, there is a one-one correspondence between left-
right crossings of R1 and of Rint

1 given by the nearest neighbour connection
on the integer lattice. We now construct two i.i.d. Bernoulli site percolation
measures Pp1 and Pp2 on Rint

1 as follows.
Recall from (3.9) that the mean number of nodes in the rn

∆
× rn

∆
square Si

is 10σi and that Si is dense if it has more than σi nodes and sparse otherwise.
Analogously, we allow every site in Rint

1 to be in one of the two states, dense
or sparse. In the first measure Pp2, we set each site zi ∈ Rint

1 to be dense
with probability

p2 = inf
i
Po(Si contains more than σi nodes). (3.13)

Since the Poisson process is disjoint on independent sets, we have that Pp2

is an i.i.d. site percolation measure on the rectangle Rint
1 . Using standard

estimates on Poisson distribution (see e.g. Penrose (2003)), we have

p2 ≥ 1 − e−2β11nr2
n . (3.14)

for all n sufficiently large, where β11 > 0 is some constant.
For Pp1, we set zi to be dense with probability p1 = 1 − e−2θ1nr2

n for some
θ1 ∈ (0, β11). This is done to ensure that

p2 − p1 ≥ e−2θ1nr2
n − e−2β11nr2

n ≥ e−4θ1nr2
n (3.15)

for all n sufficiently large. Here we use nr2
n → ∞.

Let A denote the event that Rint
1 has a dense left-right crossing and let

Ir(A) denote the event that there are at least r disjoint dense left-right cross-
ings of Rint

1 . From Theorem 2.45 of Grimmett (1999), we have that

Pp2(Ir(A)) ≥ 1 −
(

p2

p2 − p1

)r

(1 − Pp1(A)).

Analogous to the proof of Lemma 2.2 of Chapter 2, we have that

Pp1(A) ≥ 1 − C1m

nMθ1

for some positive constant C1 and all n ≥ 1. Thus letting r = M
10

Kn = M
10

log n
nr2

n
,

we have from (3.15) that

Pp2(Ir(A)) ≥ 1 − exp

(

4Mθ1

10
log n

)

C1m

nMθ1
≥ 1 − C1mn− 3Mθ1

5
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for all n sufficiently large. Choosing the constant M sufficiently large, we
now have Pp2(Ir(A)) ≥ 1 − 1

n10 . If Ir(A) occurs in Rint
1 , we then have at least

MKn

10
disjoint dense left-right crossings of the rectangle R1 in the Poissonized

system. Since R1 is of size m rn

∆
× MKn

rn

∆
, the sum of lengths of all the

disjoint dense left-right crossings is less than mMKn. But this implies that
at least one of the dense crossing contains less than 10Mm squares and hence
En(R1) occurs.

To relate this to our Poissonized system, we let Psite be the site percolation
measure obtained the following way: a vertex zi ∈ Rint

1 is dense if and only if
the corresponding square Si is dense. By our choice of p2 in (3.13), we then
have that Pp2 ≤st Psite; i.e., Psite stochastically dominates Pp2. We thus have
that

Po(En(R1)) ≥ Psite(Ir(A)) ≥ Pp2(Ir(A)) ≥ 1 − 1

n10

and from (3.12) we get (3.11).

3.3 Proof of Theorem 3.1: Lower bound on

speed

For obtaining the lower bound on speed, we choose a(r−1
n ) = n1/9 as the

starting index from which we trace the infection spread (see definition prior
to Theorem 3.1). This suffices since n1/9 = o(r−1

n ) by (2.2). (In fact any
α < 1

2
suffices since nα = o(r−1

n ) by (2.2).)
Fix m ≥ n1/9 and tile m rn

∆
S horizontally into a set RH of m rn

∆
× MKn

rn

∆

rectangles and also vertically into a set RV of disjoint rectangles each of
size MKn

rn

∆
× m rn

∆
. Here and henceforth we fix the constant M so that

Proposition 3.4 holds. For now we allow m to be a multiple of MKn and
extend to the general case at the end. The first step is to construct a backbone
of low passage time paths in each rectangle of RH and RV .

The strategy of the proof is this: We obtain an explicit upper bound on
the passage time of each path of the backbone. We then estimate the time
taken for the infection to reach some node of this backbone starting from x0.
Our estimates hold for each n1/9 ≤ m ≤ r−1

n − (log n)2 resulting in the lower
bound on the speed.

For a vertical rectangle R in RV , we define En(R) to be the event that it
contains a dense top-bottom crossing consisting of less than 10Mm squares.
(A top-bottom crossing of R is a left-right crossing of the rectangle Rrot ob-
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tained by rotating R by 90 degrees about its centre). Again Proposition 3.4
is applicable to each rectangle R in RV with left-right crossing replaced by
top-bottom crossing. Defining En,tot :=

⋂

R∈RH ∪RV
En(R) and using the fact

that the number of rectangles in the set RV ∪ RH is O
(

∆
rn

)

= O(
√

n) (by

(2.2)), we then have that

P (En,tot) ≥ 1 − O(
√

n)
1

n9
≥ 1 − 1

n8
(3.16)

for all n large enough.
We henceforth assume that En,tot occurs. Consider now the lowermost

rectangle R2 ∈ RH and let L(R2) = (J1, J2, ..., Jq) be the bottommost dense
left-right crossing of R2 containing q ≤ 10Mm squares where each Ji ∈
{Sk}k. Such a left-right crossing is obtained in an iterative manner as follows:
Let S1 = {L′

i}1≤i≤W = {(Si,1, ..., Si,Hi
)}1≤i≤W be the set of all dense left-

right crossings of R2 containing less than 10Mm squares. Let yi,j be the
y-coordinate of the centre of Si,j. For j ≥ 2, we iteratively define

Sj = {L′
i ∈ Sj−1 : yi,j = min

L′
k

∈Sj−1

yk,j}.

Thus S2 is the subset of crossings of S1 such that the centre of the first
square has the least y−coordinate and so on. This procedure terminates
after a finite number of steps resulting in a unique dense left-right crossing.
Also, the final crossing obtained does not depend on the initial ordering of
the left-right crossings.

Let u1 be the node that is closest to the centre of J1. For 1 ≤ i ≤ q − 1,
we perform the following iteratively: Consider the set of all edges from ui

that have an endvertex in Ji+1 and choose that edge hi with the minimal
passage time. The endvertex of hi distinct from ui is set to be ui+1. Let
Lh(R2) = (h1, ..., hq−1) be the resulting path of edges.

In Figure 3.2, the hatched sequence of squares is the crossing L(R2).
The path Lh(R2) is also shown. Since every Ji is dense, at each iteration
we have chosen the minimum among at least β1nr2

n edges where β1 > 0
is the constant in (3.9) and therefore we expect to get an edge with low
passage time. The following result determines the overall passage time of the
resulting path of edges. Define the passage time T (R2) =

∑q−1
i=1 t(hi), where

Lh(R2) = (h0, ..., hq−1) is the path obtained as above. (For completeness, we
define T (R2) = ∞ if En,tot does not occur).
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Lemma 3.6. There exists positive constants D1 and δ1 such that

P

({

T (R2) ≥ D1m

nr2
n

}

⋂

En,tot

)

≤ e−δ1m

for all m ≥ 4n1/9.

Remark 3.7. If we did not have q ≤ 10Mm, then the only upper bound on
q would be number of squares in R2 which is mMKn. Following the proof of
Lemma 3.6, we would have obtained a bound of D1mKn

nr2
n

that is off the desired

bound by a factor Kn.

The above result (which is assumed for now and proved later) implies that
if En,tot occurs, then infection starting from some node in the path Lh(R2)
spreads to all the nodes of Lh(R2) within time D1m

nr2
n

with high probability. The

factor nr2
n occurs essentially because we have chosen the minimum among

β1nr2
n edges at each iteration above. This is the fundamental difference of

RGGs from graphs with bounded degree where such an unbounded factor
cannot appear. Recall that we continue to assume that En,tot holds and
therefore the path Lh(R2) is well-defined. Now, to determine the time taken
for infection to reach some node of Lh(R2), we grow low passage time paths
from Lh(R2) in the vertical direction. This is possible because the horizontal
rectangle R2 intersects each vertical rectangle R ∈ RV and each such rect-
angle has a dense top-bottom crossing (due to the occurrence of the event
En,tot).

Fix the leftmost vertical rectangle Rl ∈ RV and consider the leftmost
dense top-bottom crossing TB(Rl) = (A1, ..., As) of Rl consisting of s ≤
10Mm squares. This is obtained in an analogous iterative manner as for
bottom most left-right crossings as described above. The dense left-right
crossing L(R2) obtained above and the dense top-bottom crossing TB(Rl)
intersect in the sense that there exists a square Al0 with minimum index
in {Sk}k that is present in both TB(Rl) and L(R2). Here 1 ≤ l0 ≤ s is a
random index. In Figure 3.2(a), the set of grey squares constitute the dense
crossing TB(Rl). The vertically hatched square (which denotes Al0) and the
hatched square to the left of it are common to L(R2) and TB(Rl). Suppose
that Al0 = Ji0 ∈ L(R2) for some random index 1 ≤ i0 ≤ q. By construction,
there exists an edge hi0 of Lh(R2) that has an endvertex ui0 in Ji0 . We now
start from ui0 and perform the same iterative edge searching procedure that
was used to obtain Lh(R2) above, on the latter part (Al0 , ..., As) of TB(Rl).
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(a)

(b)

Figure 3.2: Construction of backbone in the rectangles R2 and Rl.
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(In our figure this latter part is the vertically hatched square together with
the set of grey squares lying above it and ui0 is the point marked umin.)

Set u′
l0

= ui0. For each l0 ≤ i ≤ s − 1, we iteratively choose the edge h′
i

with minimal passage time that has one endvertex as u′
i and one endvertex

in Ai+1. The node thus obtained in Ai+1 is defined to be u′
i+1. The resulting

path of edges starting from u′
l0

and ending at some node B of G is called
(h′

l0 , h′
l0+1, ..., h′

s−1) (see Figure 3.2(a)). Similarly, starting from i = l0 − 1
and for each l0 − 1 ≥ i ≥ 2, we iteratively choose the edge h′

i with minimal
passage time that has one endvertex as u′

i and one endvertex in Ai−1. We
obtain a path of edges (h′

l0−1, ..., h′
1). In Figure 3.2(b), we have zoomed the

circled part of Figure 3.2(a). The path of thick edges starting from u′
l0

to A
constitute (h′

l0−1, ..., h′
1). We set TBh(Rl) to be the concatenation

TBh(Rl) = (h′
1, ..., h′

l0−1, h′
l0

, h′
l0+1, ..., h′

s−1)

and define the passage time of the rectangle Rl to be

T (Rl) =
s−1
∑

i=1

t(h′
i).

Repeat now the above procedure for each R ∈ RV and obtain correspond-
ing paths TBh(R). This results in a connected set of edges Pe that form a
comb-like backbone as in Figure 3.3(a). The advantage of working with Pe

is that we have an explicit bound on the passage time of each of its paths via
Lemma 3.6. This is because even if the passage times of two distinct paths
in Pe are not independent, Lemma 3.6 holds for each of their passage times
individually with the same constants D1 and δ1. This can then be used to
estimate the time taken for infection to spread from some node of a path in
Pe to the boundary.

Before we do so, we need to settle the following question: Does infection
originally starting from node x0 ever reach this backbone? Or equivalently, is
x0 is connected to Pe? As we see from Figure 3.3(a), even if Γ(x0) occurs, the
path π0 from x0 to the boundary of S that is present due to the occurrence
of the event Γ(x0) (see definition prior to Proposition 3.3) and the backbone
Pe constructed above need not intersect. To remedy the situation, we “trap”
paths starting from x0 by adding horizontal paths to Pe.

Let R0 denote the rectangle in RH containing x0 and let Ru and Rd

denote the rectangles in RH sharing an edge with R0 and lying above and
below R0, respectively. Since En,tot occurs, each of the rectangles Ru and Rd
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(a)

(b)

Figure 3.3: Adding horizontal paths to the backbone to trap the path from
the node x0 denoted by the dark circle at the centre.
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contain a dense left-right crossing with less than 10Mm squares. Consider
the rectangle Ru and let L(Ru) = (W1, ..., Wf) be the bottom most dense left-
right crossing of Ru containing f ≤ 10Mm squares. Further, let (Az0, ..., Az1)
denote the segment of the top-bottom dense crossing TB(Rl) of the vertical
rectangle Rl, that is contained in Ru. Here 1 ≤ z0 ≤ z1 ≤ s are random
indices.

Clearly, there exists a square Az2 with the least index in {Sk}k that is
present in both (Az0 , ..., Az1) and L(Ra). Also, there exists a node vz2 ∈
Az2 (shown as vcom in Figure 3.3(b)) and an edge h′

z2
∈ TBh(Rl) ⊂ Pe

that contains vz2 as one of its endvertex. Suppose Az2 = Wt0 ∈ L(Ra)
for some random index 1 ≤ t0 ≤ f. As before, we consider the latter part
(Wt0 , Wt0+1, ..., Wf) of the left-right crossing L(Ru) and “grow” a path of
edges iteratively starting from vz2 ending in Wf and contained in L(Ru). We
choose the edge with minimum passage time at each iteration. Analogously,
considering the former part (W1, ..., Wt0−1, Wt0), we grow a path of edges
with minimum passage times starting from vz2 ∈ Wt0 and ending in W1. We
call the concatenation of the two paths as Lh(Ru) and define the passage
time T (Ru) as before. We perform an analogous procedure on Rd and call
the resulting path of edges as Lh(Rd) and the corresponding passage time as
T (Rd).

Finally, we define

P = Lh(R2)
⋃ ⋃

R∈RV

TBh(R)
⋃

Lh(Ru)
⋃

Lh(Rd) (3.17)

as the backbone. The backbone is connected by construction. In Fig-
ure 3.3(b), the occurrence of the event En,tot ∩ Γ(x0) and the resulting back-
bone of crossings in the square m rn

∆
S are shown. The dark dot at the centre

and the dotted line represents x0, the node closest to the origin and the path
due to the event Γ(x0), respectively. The dark dots at the junction of the
paths signify intersection.

With the above backbone construction, we claim that if En,tot ∩ Γ(x0)
occurs, then there is a path of edges starting from x0 and ending at some
node of P. We prove the claim as follows. First, the tiling of m rn

∆
S into the

set of rectangles RV and RH described above also tiles m rn

∆
S into squares

{S ′
i}i each of size MKn

rn

∆
× MKn

rn

∆
as seen in Figure 3.3(b). Let S(Kn)

be the square in {S ′
i}i that contains Sor, the square in {Sk}k containing the

origin and let S(3Kn) be the 3MKn
rn

∆
× 3MKn

rn

∆
with the same centre as

S(Kn). Since Γ(x0) occurs, there exists a path π0 of edges from x0 that crosses
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S(3Kn). (If there is more than one such path, we choose that path whose
sum of the length of edges is the least and call it π0.)

In Figure 3.4(a), we have magnified the grey region S(3Kn) of Figure 3.3(b)
and shown the dense crossings containing the paths marked 1, 2, 3 and 4. The
dense crossings form a circuit around x0 and therefore the path π0 necessar-
ily intersects the polygonal circuit shown in thick lines. Consequently π0

must intersect some dense rn

∆
× rn

∆
square Sα marked 1, 2, 3 or 4. Again by

construction, Sα must contain some node v of the backbone as shown in Fig-
ure 3.4(b). Since ∆ ∈ [4, 5], this implies that u and v are joined by an edge.
Thus there is a path of edges from x0 to some node v of the backbone that
is contained entirely in S(3Kn). If there is more than one such node, we set
v to be that node which is closest in Euclidean distance to x0.

To trace the infection starting from node v of the backbone P, we define

Vm =
⋂

R

{

T (R) ≤ D1m

nr2
n

}

⋂

En,tot,

where the intersection is taken over all rectangles R present in the expression
for P in (3.17) and T (R) denotes the passage time (see Lemma 3.6) of the
rectangle R. As mentioned before, even if the passage times of two distinct
paths are not independent, Lemma 3.6 holds for each of them individually
with the same constants D1 and δ1. Thus from (3.16) and Lemma 3.6 we get
that

P(V c
m) = P(Ec

n,tot) + P

(

⋃

R

{

T (R) >
D1m

nr2
n

}

⋂

En,tot

)

≤ P(Ec
n,tot) +

∑

R

P

({

T (R) >
D1m

nr2
n

}

⋂

En,tot

)

≤ 1

n8
+ C1

√
ne−δ1m

for some positive constant C1. In obtaining the final estimate above, we use
the fact that the number of rectangles in RH ∪ RV = O(r−1

n ) = O(
√

n)
by (2.2). Since m ≥ n1/9, we have for all n ≥ N0 sufficiently large and all
m ≥ n1/9 that

P(Vm) ≥ 1 − 2

n8
. (3.18)

The following result estimates local passage times and is the final ingredi-
ent needed for the proof of lower bound. Let m1 be the smallest integer that



CHAPTER 3. INFECTION SPREAD 42

(a)

(b)

Figure 3.4: The path π0 from x0 necessarily intersects the circuit of dense
squares with boundary denoted by thick line and hence the backbone.
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is a multiple of MKn and such that S ⊆ m1
rn

∆
S. The tiling of m1

rn

∆
S into the

rectangles in RH and RV also tiles m1
rn

∆
S into MKn

rn

∆
× MKn

rn

∆
squares

{S ′
i}i as seen in Figure 3.3(a). Let Ti denote the sum of passage times of the

edges that have at least one endvertex in S ′
i and let Tmax = maxi Ti.

Lemma 3.8. There exists a constant C1 > 0 so that

P(Tmax > (log n)8) ≤ C1

n9
(3.19)

for all n ≥ 1.

Assuming the above lemma (which is proved later), we now complete
the proof of the lower bound on the speed. Fix m ≥ n1/9. If the event
Vm ∩ {Tmax ≤ (log n)8} ∩ Γ(x0) occurs, then within time (log n)8 all nodes
of S(Kn) are infected and within time 2(log n)8 all nodes of S(3Kn) are
infected. This necessarily implies that infection has reached some node of the
backbone within time 2(log n)8. From the backbone, the infection therefore
reaches at least one node of each square S ′

i contained in m rn

∆
S within time

2(log n)8 + 4D1m
nr2

n
.

Hence within time 2(log n)8+ 4D1m
nr2

n
+(log n)8 ≤ 5D1m

nr2
n

, the infection reaches

all nodes of G(x0) in m rn

∆
S. In the final estimate, we use the fact that m ≥

n1/9 and therefore that (log n)8 = o
(

m
nr2

n

)

by virtue of (2.2). Summarizing,

if m ≥ n1/9 and Vm ∩ {Tmax ≤ (log n)8} ∩ Γ(x0) occurs, then

(

G(x0) \ I

(

5D1m

nr2
n

))

⋂

m
rn

∆
S = φ,

which is nearly what we want to prove.
So far we have assumed that m is a multiple of MKn and estimated the

time taken to cross the boundary of m rn

∆
S. To prove the lower bound on

the speed, however, we need estimates on the time taken for the infection to
cross the boundary of m3rnS for every a(r−1

n ) ≤ m3 ≤ r−1
n − g(r−1

n ) where
a(x) = o(x) and g(x) = o(x) as x → ∞ (see definition prior to Theorem 3.1).
We proceed as follows. We set a(r−1

n ) = n1/9 (which is o(r−1
n ) by (2.2)). For

m3 ≥ n1/9, let m be the smallest integer that is a multiple of MKn and such
that S ⊇ m rn

∆
S ⊇ m3rnS. Since ∆ ∈ [4, 5] we have that

4n1/9 ≤ 4m3 ≤ m ≤ 5m3 + 5MKn ≤ 6m3.
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Here we use Kn = log n
nr2

n
≤ log n. By the last sentence in the previous para-

graph and the above equation, we have that if Vm ∩{Tmax ≤ (log n)8}∩Γ(x0)

occurs, then
(

G(x0) \ I
(

30D1m3

nr2
n

))

⋂

m3rnS = φ. This conclusion holds for

each n1/9 ≤ m3 ≤ r−1
n − MKn. Since MKn = M log n

nr2
n

≤ M log n ≤ (log n)2

and r−1
n = O(

√
n) (see (2.2)), we have from (3.18) that

P







⋂

n1/9≤m3≤r−1
n −(log n)2

Vm





 ≥ 1 − 1

n7
.

From (3.19) and the estimate for Γ(x0) in (3.7), we have that

P







⋂

n1/9≤m3≤r−1
n −(log n)2

Vm

⋂

{Tmax ≤ (log n)8}
⋂

Γ(x0)





 ≥ 1 − 2

n7
− e−θ1nr2

n ,

where θ1 is as in (3.7). Since (log n)2 = o(r−1
n ) by virtue of (2.2), this implies

the lower bound on the speed in Theorem 3.1.
Proof of Lemma 3.6: For a constant D2 > 0, we let B =

{

T (R2) > 2D2m
nr2

n

}

,

A = B ∩ En,tot and use (3.6) to obtain that

P(A) =
∫

νp(Aω)µ(dω) =
∫

En,tot

νp(Bω)µ(dω) (3.20)

where as mentioned in Section 3.2, νp(Bω) denotes the probability that event
B occurs for a fixed configuration of points ω. From the discussion in the
paragraph preceding Lemma 3.8 we have that if ω ∈ En,tot, then the passage
time T (R2) of R2 satisfies

T (R2) =
q−1
∑

i=1

t(hi) ≤
q
∑

i=1

Xi ≤
10Mm
∑

i=1

Xi

where {Xi}i are i.i.d random variables with Xi = min1≤j≤β1nr2
n

ti,j and ti,j

are i.i.d exponential with unit mean. Here β1 > 0 is as in (3.9). Thus

νp(Bω) ≤ P

(

10Mm
∑

i=1

Xi >
2D2m

nr2
n

)

where the right hand side expression does not depend on ω. Integrating over
ω, we have from (3.20) that

P

({

T (R2) >
2D2m

nr2
n

}

⋂

En,tot

)

= P

(

10Mm
∑

i=1

Xi >
2D2m

nr2
n

)

. (3.21)
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Since β1nr2
nXi is exponentially distributed with mean one, we use Cher-

noff bound and obtain for D2 > 0, s ∈ (0, 1) that

P

(

10Mm
∑

i=1

Xi >
2D2m

nr2
n

)

≤
(

E exp
(

sX1β1nr2
n

))10Mm
e−2sβ1D2m

=
(

1

1 − s

)10Mm

e−2sβ1D2m.

Therefore fixing s = 1
2

and choosing the constant D2 > 0 sufficiently large,
we have for all n ≥ N0 sufficiently large and all m ≥ n1/9 that the last
expression above is no more than 210Mme−β1D2Mm ≤ e−δ1m for some positive
constant δ1.

Proof of Lemma 3.8: Let Ed(n) denote the event that every square in
the set of rn

∆
× rn

∆
squares {Si}i, contains less than K log n nodes for some

constant K ≥ 1. Using nr2
n ≤ c2 log n (see (2.2)), we have

P(Ed(n)) ≥ 1 − 1

n10
(3.22)

if K is sufficiently large. For a fixed i, let Ei denote the set of edges with at
least one endvertex in S ′

i. The square S ′
i contains (MKn)2 squares in {Sj}j .

Therefore if Ed(n) occurs, the number of nodes in the 3MKn
rn

∆
× 3MKn

rn

∆

square with the same centre as S ′
i is less than (3MKn)2K log n. Consequently

the number of edges in Ei is less than C1(K
2
n log n)2 ≤ C2(log n)6 for some

positive constants C1 and C2. Here we use Kn = log n
nr2

n
. Arguing as in the

derivation of (3.21) in proof of Lemma 3.6 above, we average over the con-
figurations and get

P

(

Ti > (log n)8
)

≤ P

({

Ti > (log n)8
}

∩ Ed(n)
)

+
1

n10

≤ P





C1(log n)6
∑

i=1

ti > (log n)8



+
1

n10
,

where ti are i.i.d exponential with unit mean. We have

P





C1(log n)6
∑

i=1

ti > (log n)8



 ≤ P





C1(log n)6
⋃

i=1

{

ti > C−1
1 (log n)2

}





≤ C1(log n)6e−C−1
1 (log n)2

.
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Thus

P

(

Ti > (log n)8
)

≤ C1(log n)6e−C−1
1 (log n)2

+
1

n10
≤ 2

n10

for all n sufficiently large. Since the maximum possible number of squares in

{S ′
i}i is

(

∆
rn

)2
= O(n) by (2.2), we have that

P

(

Tmax > (log n)8
)

≤
∑

i

P(Ti > (log n)8) ≤ O(n)

n10

proving (3.19).

3.4 Proof of Theorem 3.1: Upper bound on

speed

At time t = 0, the node x0 of G closest to the origin is infected. As before,
we assume initially the occurrence of the event Γ(x0) that there exists a path
of edges from x0 to the boundary of S (see (i)-(ii) prior to (3.7)). For a fixed
log n ≤ m ≤ r−1

n −5, we now look at the path πm through which the infection
first reaches the boundary of mrnS. More precisely, let π = (h0, ..., hb) be a
self-avoiding path of edges such that:
(iii) h0 contains x0 as one of its endvertex, exactly one endvertex of hb lies
in S \ mrnS and
(iv) all other endvertices of the edges {hi}i lie in mrnS.
Such a path definitely exists because of the occurrence of the event Γ(x0).
Define T (π) =

∑b
i=0 t(hi) to be the passage time of π and let πm be that path

whose passage time is T (πm) = minπ T (π), where the minimum is taken
over all paths satisfying (iii)-(iv) above. Such a unique path exists since the
passage times are continuous random variables.

To bound T (πm) we recall the event Ed(n) defined prior to (3.22). If
Ed(n) occurs, then each node has less than K1 log n neighbours for some
fixed constant K1 > 0. Therefore, if Ed(n) occurs, then the number of edges
of G is less than K1n log n. If e1, ..., eT denotes the set of edges, we then have
that

t(ei) ≥st min
1≤j≤K1n log n

tj =: X0,

where {tj}j are i.i.d. exponential with unit mean and ≥st denotes stochastic
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domination. Since πm contains at least m
4

edges, we then have that

T (πm) ≥st
m

4
X0.

Using the estimate

P

(

X0 ≥ 1

n
√

n log n

)

= 1 − O

(

1√
n

)

,

we have from the above discussion that

P

({

T (πm) ≥ m

4n
√

n log n

}

⋂

Ed(n)
⋂

Γ(x0)

)

= 1 − O

(

1√
n

)

.

Therefore,

P





⋂

log n≤m≤r−1
n −5

{

T (πm) ≥ m

4n
√

n log n

}

⋂

Ed(n)
⋂

Γ(x0)



 = 1 − O

(

r−1
n√
n

)

and the final expression is 1−o(1) as n → ∞, since nr2
n −→ ∞. We note that

if T (πm) ≥ m
4n

√
n log n

, then I
(

m
8n

√
n log n

)

⊆ mrnS. From the estimates of the

probabilities of the events Ed(n) and Γ(x0) in (3.22) and (3.7), respectively,
we therefore get the upper bound on the speed with a(r−1

n ) = log n = o(r−1
n )

and g(r−1
n ) = 5 = o(r−1

n ), (by (2.2)).

3.5 Proof of Corollary 3.2

Proof of (3.3): Let m be a multiple of MKn (the constant M as in Lemma 3.4)
that satisfies

m
rn

∆
S ⊆ S ⊆ (m + MKn)

rn

∆
S.

Using ∆ ∈ [4, 5] and Kn = log n
nr2

n
= o(r−1

n ) by (2.2), we get 4r−1
n ≤ m ≤ 6r−1

n

for all n sufficiently large. The square m rn

∆
S is the largest square contained

in S to which the tiling argument of the proof of Theorem 4.3 described in
Section 4.3 can be applied. Consequently, there exists a backbone of low
passage time connections as described in the paragraph preceding (3.18).

Suppose first that the event Vm defined prior to (3.18) and the event
{Tmax ≤ (log n)8} defined prior to Lemma 3.8 occurs and let Um = Vm ∩
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{Tmax ≤ (log n)8}. Let Γ(x0) as defined prior to (3.7) and Ed(n) be as defined
prior to (3.22). We have from (3.7), (3.18), (3.22) and (3.19) that Um∩Γ(x0)∩
Ed(n) occurs with probability 1−o(1). By the proof of lower and upper bound
on the speed in Theorem 4.3, we therefore have with probability 1−o(1) that
the time elapsed T0 before all nodes of G(x0) ∩ m rn

∆
S are infected satisfies

4D1r−1
n

n
√

n log n
≤ D1m

n
√

n log n
≤ T0 ≤ D2m

nr2
n

≤ 6D2r
−1
n

nr2
n

(3.23)

for some positive constants D1 and D2. The first and the last inequalities are

true by our choice of m. We claim that by time 6D2r−1
n

nr2
n

+ (log n)8 ≤ 7D2r−1
n

nr2
n

,

all nodes of G(x0) are infected. This is true since {Tmax ≤ (log n)8} occurs.

Here we use the fact that (log n)8 = o(r−1
n )

nr2
n

by (2.2). This proves the lower

and upper bound in (3.3) and the lower bound in (3.4).
Proof of (3.4): The lower bound in (3.4) is proved above. To prove the

upper bound in (3.4), we recall the event Ed(n) defined prior to (3.22) that
the number of nodes of each square in {Sk}k is less than K log n and the
event Um defined in the proof of (3.3) above. Also, x0 denotes the node of
G closest to the origin. Let Γ1(x0) denote the event that x0 ∈ S(Kn) and
the component G(x0) contains at least one node outside S(3Kn). As before,
S(Kn) is the MKn

rn

∆
× MKn

rn

∆
square with centre at the origin, where M is

the constant in Proposition 3.4. We now write

ETelap = ETelap11(Um ∩ Γ1(x0)) + ETelap11(Um ∩ Γc
1(x0) ∩ Ed(n))

+ ETelap11(Um ∩ Γc
1(x0) ∩ Ec

d(n)) + ETelap11(U c
m)

≤ ETelap11(Um ∩ Γ1(x0)) + ETelap11(Γc
1(x0) ∩ Ed(n))

+ ETelap11(Ec
d(n)) + ETelap11(U c

m) (3.24)

and evaluate each term separately.
For the first term, we note that Γ1(x0) occurs and therefore there is a

path π1 of edges from x0 ∈ S(Kn) that crosses S(3Kn). By an analogous
argument as in the two paragraphs following (3.17), the path π1 intersects
the backbone P (present due to the occurrence of Um). Thus we have from
the proof of upper bound of (3.3) above that

ETelap11(Um ∩ Γ1(x0)) ≤ 7D2r
−1
n

nr2
n

. (3.25)

We now show that each of the remaining term in (3.24) is o(r−1
n )

nr2
n

.
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To evaluate the second term, we write Γc
1(x0) = Γ1,1(x0) ∪ Γ1,2(x0), where

Γ1,1(x0) is the event that x0 /∈ S(Kn) and Γ1,2(x0) is the event that G(x0)
is contained in S(3Kn). If Γ1,2(x0) ∩ Ed(n) occurs, then the component con-
taining x0 is completely contained in S(3Kn). The time elapsed before no
new nodes are infected is bounded above by the sum of the passage times
of edges contained in the square S(3Kn). Since Ed(n) occurs, the square
S(3Kn) contains less than (3MKn)2 log n ≤ (log n)4 nodes and therefore less
than (log n)8 edges if n is sufficiently large. Here we use Kn = log n

nr2
n

≤ log n

for all n sufficiently large since nr2
n −→ ∞. Since passage time of any edge

has unit mean, this implies that

E(Telap11(Γ1,2(x0) ∩ Ed(n))) ≤ E

(log n)8
∑

i=1

ti = (log n)8

for all n sufficiently large. In the above, {ti}i are i.i.d Exponential with unit

mean. Using (2.2) we have that the right hand side of the above is o(r−1
n )

nr2
n

.

We estimate E(Telap11(Γ1,1(x0) ∩ Ed(n))) and the third and the fourth
terms in (3.24) together. We note that if Γ1,1(x0) occurs, then S(Kn) is
empty. Again using standard Binomial estimates (see e.g. Chapter 1 of
Penrose (2003)), we have that

P(Γ1,1(x0)) ≤ e−θ1(MKn)2nr2
n

for some constant θ1 > 0 and for all n sufficiently large. Choosing M larger
if necessary we have that

(MKn)2nr2
n =

M2(log n)2

nr2
n

≥ 10 log n

θ1
,

so that P(Γ1,1(x0)) ≤ 1
n10 . Here we use (2.2) and Kn = log n

nr2
n

. Thus using

Cauchy-Schwarz inequality, we have that

ETelap11(Γ1,1(x0) ∩ Ed(n)) ≤ ETelap11(Γ1,1(x0))

≤
(

ET 2
elap

)1/2
P(Γ1,1(x0))1/2

≤ 1

n5

(

ET 2
elap

)1/2
. (3.26)

Similarly, we bound the third term above as

ETelap11(U c
m) ≤

(

ET 2
elap

)1/2
P(U c

m)1/2
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where we use Cauchy Schwarz inequality in the final estimate. From (3.18)
and Lemma 3.8 we have that

P(U c
m) ≤ P(V c

m) + P(Tmax > (log n)8) ≤ 2

n8
+

1

n8
≤ 3

n8

for all n sufficiently large. Thus, the third term is bounded above by C1
(ET 2

elap)
1/2

n4

for some positive constant C1.
Also, have from (3.22) that

ETelap11(Ec
d(n)) ≤ (ET 2

elap)1/2
P(Ec

d(n))1/2 ≤ (ET 2
elap)1/2

n5
.

Thus from (3.26), the sum of E(Telap11(Γ1,1(x0) ∩ Ed(n))) and the third and

the fourth terms in (3.24) is bounded above by C2
(ET 2

elap)
1/2

n4 for some positive
constant C2. Since the number of edges in G is at most n2, we have that
Telap ≤ ∑n2

i=1 ti, where ti are i.i.d Exponential with unit mean. Hence by the
AM-QM inequality we have that

ET 2
elap ≤ En2

n2
∑

i=1

t2(ei) ≤ C2n4

for some positive constant C2. Here we use the fact that Et(e)2 < ∞. Thus

(

ET 2
elap

)1/2

n4
≤ C3

n2
=

o(r−1
n )

nr2
n

for some positive constant C3 by (2.2).
Proof of (3.5): To prove (3.5) we note from the proof of Theorem 4.3 that

infection starting from the node x0 closest to the origin crosses the boundary

of r−1
n

2
S with probability 1 − o(1). By the construction of giant component

in the proof of (ii) in Theorem 4.3 of Ganesan (2012) we know that this
path intersects the giant component with probability 1 − o(1). From the
estimate on the size of the giant component in Theorem 4.3(ii) of Ganesan
(2012), we know that the giant component contains at least n−ne−θnr2

n nodes
with probability 1 − o(1), for some constant θ > 0. The equation (3.5) then
follows.



Chapter 4

Convergence rate of locally
determinable Poisson
functionals

4.1 Introduction

Functionals of point processes arise naturally in computational geometry
and Boolean models. The most common application (see e.g. Heinrich,
Schmidt and Schmidt (2005), Møller (1994), Meester and Roy (1996)) is to
estimate a certain parameter of the process from a single realization over a
(possibly) large area. In such situations it is important to study how fast the
proposed (consistent) estimator converges to the true value of the parameter
in question.

Before we state the main result of this chapter, we present two examples,
the Poisson Voronoi Tessellation and the Poisson Boolean Model, where our
main result may be applied.

51
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4.1.1 Poisson Voronoi Tessellation

Consider for example the Poisson Voronoi Tessellation defined on R
2 as fol-

lows. For ω = {y1, y2, ....} ⊂ R
2 and x ∈ ω let

T (x, ω) = {z ∈ R
2 : d(z, x) ≤ d(z, yj) for all yj 6= x}

denote the Voronoi tessellate (Møller (1994)) containing the point x. Here
and henceforth d(a, b) represents the Euclidean distance between a and b.
Let N denote the realization of a Poisson process of unit intensity in R

2

and let J denote the random Voronoi tessellation of R2 obtained from the
points of N . Such random tessellations are important in the study of many
topics. See Bollobás and Riordan (2006b) for site percolation on Poisson
Voronoi tessellation and Møller (1994) for more properties and applications.
Let fV (x) = fV (x, N ) be the number of facets of the (random) tessellate of
J containing the point x ∈ N . For n ≥ 1 define

XV (nW ) =
∑

x∈nW ∩N
fV (x) (4.1)

where W =
[

−1
2
, 1

2

]2
. By ergodicity and stationarity, the scaled functional

XV (nW )
n2 is an unbiased estimator of the mean intensity µV = E

XV (mW )
m2 of the

facets (see also Heinrich, Schmidt and Schmidt (2005), Møller (1994)). The
following result determines the rate of convergence.

Proposition 4.1. Fix γ > 0, p > 1 and δ > 0. There exists positive constants
C1 = C1(γ, p, δ) and C2 = C2(γ, p, δ) such that

P

(∣

∣

∣

∣

∣

XV (mW )

m2
− µV

∣

∣

∣

∣

∣

>
1

C1mδ log m

)

≤ C2

mγ
(4.2)

and

E

∣

∣

∣

∣

∣

XV (mW )

m2
− µV

∣

∣

∣

∣

∣

p

≤ C2

mγ
(4.3)

for all m ≥ 1.

The term γ in the above equations is a lower bound on the rate of conver-
gence of the bias in the estimator. Thus, the bias in the estimator converges
at rate greater than γ for every γ > 0. Here and henceforth, we use P and E to
denote a generic probability measure and expectation operator, respectively.
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4.1.2 Poisson Boolean Model

We consider the Poisson Boolean model consisting of a homogenous Poisson
point process N = {x1, x2, ...} of intensity λ in R

2 and a sequence of non-
negative independent and identically distributed (i.i.d.) random variables
ρ1, ρ2, . . ., independent of the Poisson process. Throughout we assume that
0 < ρ1 ≤ R a.s. for some R > 0. The point xi is associated with the mark
ρi and the resulting marked process NM is Poisson and is called the Poisson
Boolean model of continuum percolation on R

2.
For x ∈ R

2 and r > 0, let S(x, r) = {y : d(y, x) ≤ r} denote the ball of
radius r centred at x and define

λc = inf{λ > 0 : P(diam(C(0)) = ∞) > 0}, (4.4)

where C(0) denotes the component of the occupied region ∪iS(xi, ρi) contain-
ing the origin and diam(A) = sup{d(x, y) : x, y ∈ A} denotes the diameter
of the set A. For λ < λc, we know by stationarity that a.s. the occupied
region is a countable collection of disjoint bounded connected components
{Cj}j; i.e., ∪iS(xi, ρi) = ∪jCj where Cj ’s are mutually disjoint and each Cj is
a maximal connected component with finite diameter.

For A ⊂ R
2, we let

XB(A) =
∑

xi∈A∩N
fB(xi),

where fB(xi) = fB(xi, NM) denotes the number of balls in the occupied

component containing xi. By stationarity, we know that µB = E
XB(nW )

n2 rep-
resents the mean number of balls in the occupied component containing the
origin. By ergodicity we know that

XB(nW )

n2
− µB −→ 0 a.s.

as n → ∞. We have the following result regarding the rate of convergence of
bias in the estimator.

Proposition 4.2. For λ < λc, we have that µB < ∞. Fix γ > 0, p > 1 and
δ > 0. There exists positive constants C1 = C1(γ, p, δ) and C2 = C2(γ, p, δ)
such that

P

(∣

∣

∣

∣

∣

XB(mW )

m2
− µB

∣

∣

∣

∣

∣

>
1

C1mδ log m

)

≤ C2

mγ
(4.5)
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and

E

∣

∣

∣

∣

∣

XB(mW )

m2
− µB

∣

∣

∣

∣

∣

p

≤ C2

mγ
(4.6)

for all m ≥ 1.

Proposition 4.1 and 4.2 are obtained as Corollaries of a more general
result we prove below.

4.1.3 Convergence rate of Poisson functionals

Let N = {x1, x2, ...} be a Poisson point process on R
d, d ≥ 2, with intensity

measure Λ(.). On each point x of N we place an independent and identically
distributed mark tx defined on the probability space (M, FM, µM). The re-
sulting marked point process NM is also a Poisson process on R

d × M (see
e.g. Daley and Jones (2008)). We denote P and E to be the probability
measure and expectation operator, respectively, with respect to the marked
process NM . For any set A ⊂ R

d, we then have that

P(#N ∩ A = k) = e−Λ(A) Λ(A)k

k!
.

For x ∈ R
d, let Px denote the probability measure of the process NM condi-

tioned to have a point at x.

For x ∈ R
d and m > 0, we define Bm(x) = x +

[

−m
2

, m
2

]d
to be the cube

of side length m centred at x and let B∗
m(x) = Bm(x) × M. Denote Bm(0)

simply as Bm.
Let f(x, ω) be any measurable real valued function defined for all pairs

(x, ω) where ω ⊂ R
d × M is countable and x ∈ R

d. We wish to determine
rate of convergence of functionals defined for A ⊂ R

d as

X(A) =
∑

x∈N ∩A

f(x, NM). (4.7)

To state our main result regarding X, we assume that the functional X
and the intensity measure Λ satisfy the following on all rectangles A whose
shortest edge has length at least one. (Here a rectangle is a set of the form
∏d

j=1[aj, bj ] for some real numbers aj , bj .)
(i) There exists a positive constant C1 independent of the choice of A so that

C−1
1 ≤ Λ(A)

ℓ(A)
≤ C1, (4.8)
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where ℓ(A) refers to the Lebesgue measure of A.
(ii) There exists positive constants p and C2 independent of A such that

E

∣

∣

∣

∣

∣

X(A)

Λ(A)

∣

∣

∣

∣

∣

p

≤ C2. (4.9)

(iii) For every v = (x, t) ∈ nW ×M, there exists rx = rx(t, NM , n) < ∞ a.s.,
such that

f(x, NM ∪ {v}) = f(x, ω′ ∪ {v})

for all ω′ satisfying (ω′ ∪ {v}) ∩ B∗
2rx

(x) = (NM ∪ {v}) ∩ B∗
2rx

(x).
(iv) There exists a positive constant α and a constant C(α) > 0 such that

sup
x∈Rd

Px(rx ≥ m) ≤ C

mα
(4.10)

for all m ≥ 1.
Statement (i) essentially implies that the intensity measure is comparable
to the Lebesgue measure. Integrability of the functional is described in (ii)
and in (iii) we state the locally determinable property of X : for every v =
(x, t) ∈ R

d × M, there exists a radius rx, finite a.s., such that the value of
f(x, NM ∪ {v}) is determined by the restriction of NM to the cube B∗

2rx
(x).

We call the smallest such rx to be the radius of determinability at x for the
realization NM . Finally, in (iv), we require mild tail conditions on rx. Here
and henceforth, we use the following notation: For x ∈ R

d, we let Px denote
the probability measure of the process NM conditioned to have a point at x.

Conditions (iii)-(iv) are analogous to but slightly different from the no-
tion of stability discussed in Penrose and Yukich (2003), Baryshnikov and
Yukich(2005), Penrose (2007).

The following is the main result of this chapter.

Theorem 4.3. Suppose (i)-(iv) are satisfied for some positive constants
p > 1 and α > d. There exists positive constants γ1, γ2 and C so that

P

(

|X(nW ) − EX(nW )| ≥ CΛ(nW )

nγ1 log n

)

≤ 1

Cnγ2
(4.11)

for all n ≥ 1. Also, if 0 < r < p and 0 < γ < min
(

rγ1,
(

1 − r
p

)

γ2

)

are

positive constants, then there exists a positive constant C1 = C1(r, γ) such
that

E

∣

∣

∣

∣

∣

X(nW )

Λ(nW )
− E

X(nW )

Λ(nW )

∣

∣

∣

∣

∣

r

≤ C1

nγ
(4.12)
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for all n ≥ 1.

If X(nW )
Λ(nW )

is an estimator as in Sections 4.1.1 and 4.1.2, the quantity γ in

(4.12) is a lower bound on the rate of convergence of the bias.
While the above theorem guarantees the positivity of convergence rate,

we are also interested to know how convergence rate varies with the decay
rate of the radius of determinability. We have the following result.

Theorem 4.4. Fix δ ∈
[

0, 1
2

)

and η > 0. Suppose that the functionals X

and Λ satisfy (i)-(iv) for some constants p > max
(

d+4η
d−4δ

, 2η
1−2δ

)

and

α > α0 = d
(

2 − a0

2 − 2a0

)

+
p(δ + η)

(p − 1)(1 − a0)
, (4.13)

where a0 = 2 max
(

(2pδ+2η)
d(p−1)

, η
p

+ δ
)

. We have that (4.11) holds for some γ1 > δ

and γ2 > η.

It is easy to check that 0 < α0 < ∞. The term α0 tells us how the conver-
gence rate is affected by the decay rate of the the radius of determinability.
For d ≥ 3, we set δ = 0 and γ = 1 in the above result and use Borel-Cantelli
Lemma to obtain that

X(nW )

Λ(nW )
− E

X(nW )

Λ(nW )
−→ 0 a.s. as n → ∞

provided (i)-(iv) are satisfied for some p > 3 and α > 2d + 5.
Before we prove the above results, we state a sufficient condition that

ensures that X satisfies (4.9) for some constant p ≥ 1. For l ≥ 1, let X =
{x1, ..., xl} denote any fixed set of l points in R

d and let ti denote a random
mark at xi. Since the marked process NM is Poisson, the term Ef(x1, NM ∪
∪l

i=1(xi, ti)) represents the expected value of f at x1 conditioned on the event
that the marked process contains the points {(xi, ti)}1≤i≤l (see e.g. Daley and
Jones (2008)). Averaging over the marks, we then let

Ex1,X f :=
∫

M
...
∫

M
Ef(x1, NM ∪ ∪l

i=1(xi, ti))µM(dt1)...µM(dtl) (4.14)

to denote the expected value of f at the point x1 conditioned on the event
that X ⊆ N . We have the following result.
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Proposition 4.5. If for some integer k ≥ 1 we have

sup
X

Ex1,X |f |k < ∞, (4.15)

where the supremum is taken over all sets X = {x1, ..., xl} having l ≤ k
distinct points, then the functional X satisfies (4.9) with p = k.

In Section 4.3, we use the expression in (4.14) along with the Slivnyak-
Mecke formula (Møller (1994)) to prove the above Proposition.

The chapter is organized as follows: In Section 4.2, we prove Proposi-
tions 4.1-4.2 assuming Theorems 4.3-4.4 and Proposition 4.5. In Section 4.3,
we prove the Theorems and Proposition 4.5.

4.2 Proof of Propositions 4.1 and 4.2

We assume Theorems 4.3-4.4 and Proposition 4.5 in this section. In the next
section, we prove Theorems 4.3-4.4 and Proposition 4.5.

4.2.1 Proof of Proposition 4.1

Let f = fV and X = XV be as defined in (4.1). We prove Proposition 4.1
using Theorem 4.4. To that end we prove that (i)-(iv) hold for every p > 1
and α > 0. It is easy to check that (i) and (iii) holds: since Λ(.) is the
Lebesgue measure, (i) holds; see e.g. Penrose and Yukich (2003) for a proof
that (iii) is satisfied.

It is well-known (see e.g. Baryshnikov and Yukich (2005)) that for XV , the
condition (iv) holds for every α > 0. We give a brief proof for completeness.
For m ≥ 2, divide Bm+2(log m)2 into small squares each of whose side length is

in the range
[

(log m)2

10
, (log m)2

5

]

and let Gm denote the event that each square
has a Poisson point. It is easy to check that

P0(Gm) ≥ 1 − e−C(log m)4

(4.16)

for some positive constant C. As before P0 denotes the probability measure of
the Poisson process conditioned to have a point at the origin. If Gm occurs,
the following two statements hold: (a) for every point y ∈ Bm−2(log m)2 ∩
(N ∪ {0}) , the corresponding tessellate T (y, N ∪ {0}) ⊆ Bm−(log m)2 and (b)
for every point z ∈ Bc

m ∩ (N ∪ {0}) , we have T (z, N ∪{0})∩Bm−(log m)2 = φ.
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In particular, if Gm occurs, the tessellate containing the origin is con-
tained in Bm no matter what the configuration is outside Bm and the radius
of determinability r0 of the point at the origin (see assumption (iii) of Sec-
tion 3.1) satisfies r0 ≤ m

2
. By translation invariance and (4.16), this proves

that (iv) holds for every α > 0.
To prove that (ii) holds for every p > 1, we use Proposition 4.5. Fix

integer k ≥ 1 and let PX denote the probability measure of the process NM

conditioned to have points in a finite set X . Assume that the origin is in X .
For l ≥ 2 max{x : x ∈ X }, we have that

PX (fV (0) = l) = PX ({fV (0) = l} ∩ G2l1/3) + PX (Gc
2l1/3)

≤ PX ({fV (0) = l} ∩ G2l1/3) + e−C1(log l)4

(4.17)

for some positive constant C1, where the last estimate is analogous to (4.16).
If G2l1/3 occurs, then by the discussion above, the tessellate T0 containing
origin is contained in Bl1/3 for all l sufficiently large. Moreover, each tessellate
intersecting T0 is also contained in Bl1/3 . Thus if #X = k, we have that

PX ({fV (0) = l} ∩ G2l1/3) ≤ P(#(N ∩ Bl1/3) ≥ l − k) ≤ e−C2l2/3

for some positive constant C3 depending only k and not on the choice of X .
Thus from (4.17) and the above estimate, we have that E0,X fk

V ≤ Ck for
some positive constant Ck independent of the choice of X . By translation
invariance and Proposition 4.5, we have that (iii) holds for p = k. Since k is
arbitrary, we are done.

4.2.2 Proof of Proposition 4.2

The first part of Proposition 4.2 follows from Chapter 3 of Meester and Roy
(1996).

If we prove that assumptions (i)-(iv) in Section 4.1.3 are satisfied then
the second part of Proposition 4.2 follows from Theorem 4.4. Clearly (i) is
satisfied since Λ(.) is the Lebesgue measure. To prove (iii) we place a ball of
(random) radius t at x ∈ R

2. Let Cx denote the component containing the
ball intersecting x in the Poisson Boolean model. Since λ < λc, we know that
Cx is bounded almost surely and therefore there exists T = T (x, t) < ∞ a.s.
such that C0 ⊆ BT (x). As before, Bm(x) is the square of side length m centred
at x. We have that (iii) is satisfied by setting rx = T + 2R.
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To prove (ii) and (iv), we let Ex1,X f be the expectation as defined in
(4.14) for a fixed finite set X ⊂ R

d and x1 ∈ X .

Proposition 4.6. Fix λ < λc. For every k ≥ 1, we have that

sup
X

Ex1,X fk
B < ∞ (4.18)

where supremum is over all sets X = {x1, ..., xk} containing k vertices. Also,

sup
x∈Rd

Px(rx ≥ m) ≤ e−C2m (4.19)

for all m ≥ 1 and for some positive constant C2.

We prove Proposition 4.6 at the end of this proof. From (4.18) and
Proposition 4.5, we have that (ii) is satisfied for every p > 1. From (4.19),
we have that (iv) is satisfied for every α > 0. Thus (i)-(iv) are satisfied and
Proposition 4.2 follows from Theorem 4.4.

Proof of Proposition 4.6: We first prove (4.18). Consider fixed points
y1, ..., yk and place a ball of radius ρ′

i at yi. Each ρ′
i has the same distribution

as the radius of a ball in the Poisson Boolean model. By stationarity, we let
y1 = 0. For 1 ≤ i ≤ k, let Zi = S(yi, 2R) denote the 2R ball centred at yi and
let C(Zi) denote the union of all occupied components in NM intersecting
Zi. Let CM(0) be the occupied cluster of the process NM

⋃⋃k
i=1{(yi, ρ′

i)}
intersecting the ball Z1 centred at the origin. Clearly, CM (0) ⊆ ⋃k

i=1 C(Zi),
the union of all the components. And therefore if diameter of CM (0) is at
least m, at least one of C(Zi) must have diameter at least m

2k
. Thus, given

ρ′
1, .., ρ′

k, we have that

P(diam(CM (0)) ≥ m|(y1, ρ′
1), ..., (yk, ρ′

k)) ≤ P

(

k
⋃

i=1

diam(C(Zi)) ≥ m

2k

)

≤ kP
(

diam(C(Z1)) ≥ m

2k

)

≤ C1P

(

diam(C(0)) ≥ m

2k

)

for some constant C1 > 0, where as before, C(0) denotes the component of the
occupied region intersecting the origin in the process NM . Here the second
inequality follows by translation invariance, and the last inequality follows
from Example 2.1 of Meester and Roy (1996). Since all critical intensities
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are equal (Theorems 3.5, 4.3 and 4.4 of Meester and Roy (1996)), we have
from Lemma 3.3 of Meester and Roy (1996) that

P

(

diam(C(0)) ≥ m

2k

)

≤ e−C2m, (4.20)

for some constant C2 > 0.
Let Ed(m) denote the event that Bm contains less than 4λm2 points.

It is easy to check that P(Ed(m)) ≥ 1 − e−C3m2
for some positive con-

stant C3. Suppose Ed(m) occurs. If for a fixed (y1, ρ′
1), ..., (yk, ρ′

k), we have
diam(CM (0)) ≤ m, then CM(0) is contained in Bm and consequently must
contain less than 4λm2 + k ≤ 5λm2 balls. Thus if N0 denotes the num-
ber of balls of the occupied cluster containing the origin in the process
NM

⋃⋃k
i=1{(yi, ρ′

i)}, we have that

P(Ed(m) ∩ {N0 ≥ 5λm2}|(y1, ρ′
1), ..., (yk, ρ′

k))

≤ P(diam(CM (0)) ≥ m|(y1, ρ′
1), ..., (yk, ρ′

k))

and since Ed(m) does not depend on {(yi, ρ′
i)}i, we get from (4.20) and the

estimate on the probability of the event Ed(m) above, that

P(N0 ≥ 5λm2|(y1, ρ′
1), ..., (yk, ρ′

k)) ≤ e−C2m + e−C3m2 ≤ e−C4m

for some positive constant C4. Thus

E(Nk
0 |(y1, ρ′

1), ..., (yk, ρ′
k)) ≤ C5

for some constant C5 that depends on k but not on the specific choice of
{(yi, ρ′

i)}i and integrating over ρ′
1, ..., ρ′

k, we have that E0,X fk
B ≤ C5.

To prove (4.19), we briefly define the notion of vacant circuits. A vacant
circuit is a piecewise linear curve that has the same starting and ending
point and is completely contained in the vacant region of the Poisson Boolean
model. For m ≥ 1, we say that a vacant circuit occurs in B3m \ Bm if there
is a vacant circuit π that surrounds Bm and is contained in B3m. Let G1,m

denote the event that a vacant circuit occurs in B3m \ Bm, B5m \ B3m and in
B7m \ B5m. We claim that

P(G1,m) ≥ 1 − e−C1m (4.21)

for some positive constant C1. Since the balls are bounded in radius by R a.s.,
we have that if G1,m occurs then changing the configuration inside Bm will



CHAPTER 4. CONVERGENCE RATE 61

Figure 4.1: Occupied top-bottom crossing.

not affect the configuration outside B7m. Thus the radius of determinability
at the origin, r0, as defined in (iv) of Section 3.1 can be bounded as

P0(r0 ≥ 4m) ≤ P(Gc
1,m) ≤ e−C1m,

proving (4.19).
To prove (4.21), we use the ideas of occupied and vacant left-right cross-

ings. As in Section 4.1.2, let N = {x1, x2, ...} denote a realization of the
Poisson process and let ρi denote the random radius at xi. Fix m ≥ 1 and
consider the rectangle

Q(3m, m) :=
[

−3m

2
,
3m

2

]

×
[

−m

2
,
m

2

]

.

A piecewise linear path π is said to be a left-right crossing of Q(3m, m)
if π is contained in Q(3m, m) and π intersects the left and right faces of
Q(3m, m). We say that π is an occupied left-right crossing if π is contained
in the occupied region; i.e.,

π ⊆ (∪iS(xi, ρi))
⋂

Q(3m, m).

We say that π is a vacant left-right crossing if it is contained in the vacant
region; i.e.,

π ⊆ (∪iS(xi, ρi))
c
⋂

Q(3m, m).
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Let LR∗(3m, m) denote the event that there exists a vacant left-right
crossing of Q(3m, m). If λ < λc, we claim that

P(LR∗(3m, m)) ≥ 1 − e−C1m

for some positive constant C1. Indeed, if a vacant left-right crossing does not
occur, then an occupied top-bottom crossing occurs. Consider the 2R × 2R
squares intersecting the top edge of Q(3m, m) as shown in Figure 4.1. The
number of such squares is at least 3m

2R
and at most 3m

R
. Enumerate them

as {Hi}i. If there exists a top-bottom crossing of Q(3m, m), necessarily
diam(C(Hi)) ≥ m/2 for some i. Thus,

P(LR(m, 3m)) ≤ P

(

⋃

i

{

diam(C(Hi)) ≥ m

2

}

)

≤ 3m

R
P

(

diam(C(H1)) ≥ m

2

)

≤ C1mP

(

diam(C(0)) ≥ m

2

)

≤ C1me−C2m

for some positive constants C1 and C2 where the third inequality follows from
Example 2.1 of Meester and Roy (1996) and the last inequality follows from
Lemma 3.3 of Meester and Roy (1996).

Thus P(LR∗(3m, m)) ≥ 1 − C1me−C2m and by FKG inequality

P(Gm) ≥ 1 − 4C1me−C2m

where Gm is the event that there exists a vacant circuit contained in B3m\Bm.
This implies (4.21).

4.3 Proof of Theorems and Proposition 4.5

We prove Theorem 4.4 and obtain Theorem 4.3 as a Corollary.

4.3.1 Proof of Theorem 4.4

Without loss of generality, we assume that f ≥ 0. Otherwise, we prove for
f+ = f11(f ≥ 0) and f− = f11(f < 0) separately. Fixing δ and η > 0, we first
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prove (4.11). The main idea in the proof is to divide the set nW into cubes
whose sides are of length n1−β each for an appropriately chosen β ∈ (0, 1)
and decompose the functional X into sums of independent random variables
and then use a concentration inequality to estimate the sum.

Tile Bn = nW into small cubes {Sout
i }i each having side length in the

range
[

n1−β , 2n1−β
]

for some β ∈ (0, 1) to be fixed later. Let {Sout
i }1≤i≤mn

denote the set of cubes that are completely contained inside nW, where mn

is an integer that satisfies

mn(n1−β)d ≤ ℓ(nW ) = nd (4.22)

where as before ℓ(.) denotes the Lebesgue measure. For each i, 1 ≤ i ≤ mn,
let Si denote the cube with the same centre as Sout

i , such that Si ⊂ Sout
i and

d(∂Sout
i , ∂Si) = 4n1−2β.

Define the events

Tinf(Si) =
⋂

x∈N ∩Si

{rx ≤ n1−2β} and Ti = Tinf (Si) ∩ {X(Si) ≤ (Λ(Sout
i ))1+ǫ}

(4.23)
where ǫ is some positive constant to be chosen later and the term rx is the
radius of determinability defined in the statement (iv) following (4.9). Write

X(nW ) = X̃1 + X̃2 + X(nW \ (nW )in) (4.24)

where (nW )in =
⋃mn

i=1 Si,

X̃1 =
mn
∑

i=1

X(Si)11(Ti) and X̃2 =
mn
∑

i=1

X(Si)11(T c
i ),

The following result explains the rationale behind splitting X(nW ) as in
(4.24).

Lemma 4.7. For any i, 1 ≤ i ≤ mn, the event Tinf(Si) and the random
variable X(Si)11(Ti) are both determined by the restriction of the marked
Poisson process to Sout

i × M; i.e., if ω ∩ (Sout
i × M) = ω′ ∩ (Sout

i × M)
for ω, ω′ ⊂ R

d × M, then ω ∈ Tinf(Si) if and only if ω′ ∈ Tinf(Si) and
X(Si)11(Ti)(ω) = X(Si)11(Ti)(ω

′). Moreover,

P(Tinf(Si)) ≥ 1 − Cn(1−β)d

n(1−2β)α
(4.25)

for some constant C > 0.
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The estimate (4.25) is a consequence of tail condition (4.10) and we prove
the above result at the end of this proof.

The approach in evaluating the terms in (4.24) is as follows. From
Lemma 4.7 we know that for i 6= j, the random variables X(Si)11(Ti) and
X(Sj)11(Tj) are independent of each other. The first term X̃1 in (4.24) is
therefore a sum of independent random variables and can be estimated using
a concentration inequality. We then use the comparability and integrability
conditions (i) and (iii) to show that the remaining two terms in (4.24) are
negligible provided the constants β and ǫ in (4.23) are appropriately chosen.

The first and the third terms are estimated from the following result.

Lemma 4.8. We have that

ℓ(nW \ (nW )in) ≤ Cnd−β (4.26)

for some positive constant C. Also, for a fixed ǫ > 0, there are positive con-
stants C1 and C2 such that

P

(

|X̃1 − EX̃1| ≥ Λ(nW )

nδ log n

)

≤ exp

(

−C1
nδ0

(log n)2

)

(4.27)

and

P

(

X(nW \ (nW )in) ≥ Λ(nW )

nδ log n

)

≤ C2
(log n)p

npβ−pδ
, (4.28)

where δ0 = (dβ − 2δ) − (2d(1 − β)ǫ).

The following result estimates for the second term.

Lemma 4.9. There exists positive constants C1 and C2 so that

EX̃2 ≤ C1
Λ(nW )

nδ1
and P

(

X̃2 ≥ Λ(nW )

nδ log n

)

≤ C2
log n

nδ1−δ
, (4.29)

where δ1 = p−1(p − 1) min (dpǫ(1 − β), (1 − 2β)α − (1 − β)d) .

We prove the above lemmas at the end of the proof.
Before we choose the parameters β and ǫ, we collect together the esti-

mates. From (4.27), (4.28) and (4.29), we have for some constants C1, C2 > 0
that

P

(

|X(nW ) − EX̃1| ≥ C1
Λ(nW )

nδ log n

)

≤ C2

nδ2
+ exp

(

−C1
nδ0

(log n)2

)
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where
δ2 = min(pβ − pδ, δ1 − δ). (4.30)

Since we desire EX(nW ) − EX(nW ) in the left-hand side, we estimate
EX(nW ) − EX̃1. From (4.24), we first write

0 ≤ EX(nW ) − EX̃1 = EX̃2 + EX(nW \ (nW )in).

Since nW \ (nW )in is a finite union of rectangles with disjoint interiors, each
rectangle having diameter at least one, by (4.9) we have that

EX(nW \ (nW )in) ≤ (EXp(nW \ (nW )in))1/p ≤ CΛ(nW \ (nW )in) (4.31)

for some constant C > 0. Here the first and the second estimates follows
from Holders inequality and Minkowski’s inequality, respectively.

Thus for some constant C1 > 0 we have

0 ≤ EX(nW ) − EX̃1 ≤ EX̃2 + CΛ(nW \ (nW )in) ≤ C1
Λ(nW )

nδ1
+ C1

Λ(nW )
nβ

where the last estimates follow from (4.29),(4.26) and (4.8). This implies
that for some constants C1, C2 > 0 we have

P

(

|X(nW ) − EX(nW )| ≥ C1
Λ(nW )

nδ3 log n

)

≤ C2

nδ2
+ exp

(

−C1
nδ0

(log n)2

)

(4.32)
where δ3 = min(β, δ1, δ).

We now choose positive β and ǫ such that δ0 > 0, δ2 > η and δ3 > δ. To
get δ0 > 0, we need to choose ǫ so that

ǫ <
dβ − 2δ

2d(1 − β)
. (4.33)

To get δ2 > η, we need δ1 − δ > η and pβ − pδ > η (see (4.30)). The latter
holds if

2β >
2η

p
+ 2δ. (4.34)

(Since δ < 1
2

and p > 2η
1−2δ

, the right hand side above inequality is strictly
less than one.) The former holds if

ǫ >
δ + η

d(1 − β)(p − 1)
(4.35)
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and (α(1 − 2β) − d(1 − β))
(

1 − 1
p

)

> δ + η or equivalently if

2β <
2α − 2d

2α − d
− 2(δ + η)p

(p − 1)(2α − d)
. (4.36)

Finally, for (4.33) and (4.35) to be true simultaneously, we need

δ + η

d(1 − β)(p − 1)
<

dβ − 2δ

2d(1 − β)
, (4.37)

which is satisfied if

2β > 2
(2pδ + 2η)

d(p − 1)
. (4.38)

The right hand side above inequality is less than one since p > d+4η
d−4δ

.
We choose β satisfying (4.34), (4.36) and (4.38) (this is possible since

α > α0). Fixing such a β ensures (4.37) and allows us to choose ǫ satisfying
(4.33) and (4.35). This implies that δ0 > 0 and δ2 > η. Since (4.34) is
satisfied, we have that δ3 = min(δ1, δ) and since δ2 > η, it follows from (4.30)
that δ3 > δ. From (4.32), this proves that (4.11) holds for some γ1 > δ and
γ2 > η.

Proof of Lemma 4.7: The first part follows from definition of radius of
determinability rx in condition (iv). To prove (4.25), we first write

P(T c
inf(Si)) = E11





⋃

x∈N ∩Si

rx ≥ n1−2β



 ≤ E
∑

x∈N ∩Si

11
(

rx ≥ n1−2β
)

.

Using the Slivnyak-Mecke formula (Møller (1994)), we get that the last term
equals

∫

Si

Px

(

rx ≥ n1−2β
)

Λ(dx) ≤
∫

Si

C1

n(1−2β)α
Λ(dx) ≤ C2

n(1−β)d

n(1−2β)α
.

We have used (4.10) and (4.8), respectively, in obtaining the first and the
second inequalities.

Proof of Lemma 4.8: To prove the bound in (4.26), we first write

ℓ(nW \ (nW )in) =
mn
∑

i=1

ℓ(Sout
i \ Si).
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We have that ℓ(Sout
i \ Si) ≤ C1n(1−β)d

nβ and from the estimate (4.22) we have
that mn ≤ C2ndβ, for some positive constants C1 and C2, independent of i.
This implies that

ℓ(nW \ (nW )in) ≤ C2n
dβ C1n(1−β)d

nβ
≤ C3

ℓ(nW )

nβ
,

for some positive constant C3.
To prove (4.27), we write X̃1 − EX̃1 =

∑mn
i=1 Xi where Xi = X(Si)11(Ti) −

EX(Si)11(Ti). We have that EXi = 0 for every i. Also, since 0 ≤ X(Si)11(Ti) ≤
(Λ(Sout

i ))1+ǫ, we have that

|Xi| ≤ 2(Λ(Sout
i ))1+ǫ ∆

= ci.

By Azuma-Hoeffding Inequality (Azuma (1967)) we have for t ≥ 0 that

P

(

|X̃1 − EX̃1| ≥ t
)

≤ exp

(

− t2

2
∑mn

i=1 c2
i

)

and setting t = Λ(nW )
nδ log n

we obtain

P

(

|X̃1 − EX̃1| ≥ Λ(nW )

nδ log n

)

≤ exp



− 1

2(log n)2

(

Λ(nW )

nδ

)2
1

∑mn
i=1 c2

i



 .

By (4.8) and (4.22), we have for some constant C > 0 that

mn
∑

i=1

c2
i =

mn
∑

i=1

Λ(Sout
i )2+2ǫ ≤ Cmnℓ(Sout

1 )2+2ǫ = Cndβ(n(1−β)d)2+2ǫ

and that Λ(nW )2 ≥ Cn2d. Thus we get for constants C1, C2 > 0 that

(

Λ(nW )

nδ

)2
1

∑mn
i=1 c2

i

≥ C1
n2d

n2δndβ(n(1−β)d)2+2ǫ
= C1nδ0 ,

where δ0 is as in the statement of this Lemma. Substituting in the above
equation, we get (4.27).

Finally, to prove (4.28), we use Markov’s inequality to get that

P

(

X(nW \ (nW )in) ≥ Λ(nW )

nδ log n

)

≤ C1
EXp(nW \ (nW )in)

(Λ(nW ))p
npδ(log n)p

≤ C2
EXp(nW \ (nW )in)

ndp
npδ(log n)p
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for some positive constants C1 and C2, where the last equation follows from
(4.31). By (4.26) and (4.8), we get (4.28).

Proof of Lemma 4.9: We first need an estimate of the probability of
the event Ti for every 1 ≤ i ≤ mn. We recall from (4.23) that Ti is the
intersection of two events. Using Markov’s inequality, (4.9), (4.8) and the
fact that nd(1−β) ≤ ℓ(Sout

i ) ≤ C1n
d(1−β) for some constant C1 > 0 we estimate

the probability for the latter event as

P(X(Si) ≥ (Λ(Sout
i ))1+ǫ) ≤ EX(Si)

p

(Λ(Sout
i ))p+pǫ

≤ EX(Sout
i )p

(Λ(Sout
i ))p+pǫ

≤ C2

nd(1−β)pǫ

for some constant C2 > 0.
Using the estimate for P(Tinf(Sout

j )c) from Lemma 4.7, we then get

P(T c
i ) ≤ P(X(Si) ≥ (Λ(Sout

i ))1+ǫ) + P(Tinf(Si)
c) ≤ C

nδ1p(p−1)−1 (4.39)

where δ1 is as in the statement of this Lemma. By Holder’s inequality, (4.9)
and (4.8), we then have

EX(Si)11(T c
i ) ≤ (EXp(Si))

1
p (P(T c

i ))1− 1
p ≤ C1Λ(Si)

nδ1

for some constant C1 > 0. Since EX̃2 =
∑mn

i=1 EX(Si)11(T c
i ), we therefore have

for constants C1, C2 > 0 that

EX̃2 ≤ C1

mn
∑

i=1

Λ(Si)

nδ1
≤ C2

Λ(nW )

nδ1
,

where the second inequality follows from ∪mn
i=1Si ⊆ nW and the final in-

equality follows from (4.8). We then apply Markov’s inequality to obtain
(4.29).

4.3.2 Proof of Theorem 4.3

To prove that (4.11) holds for some γ1 > 0 and γ2 > 0, we observe that the
quantity a0 → 0 as δ → 0 and η → 0. Here a0 is as defined in Theorem 4.4.
Moreover, for δ and η positive, α0 is also positive. Thus, given α > d and
p > 1, we can choose δ and η appropriately so that α > α0 > d and hence
(4.11) holds for γ1 > δ and γ2 > η.
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To prove that (4.12) holds, we let Zn =
∣

∣

∣

X(nW )
Λ(nW )

− E
X(nW )
Λ(nW )

∣

∣

∣ and An =
{

Zn ≤ n−δ
}

. For r < p, we have

EZr
n = EZr

n11(An) + EZr
n11(Ac

n) ≤ 1

nrδ
+ EZr

n11(Ac
n).

To bound the second term above, we let θ1 = r
p

< 1 and use Holder’s in-
equality to obtain

EZr
n11(Ac

n) ≤ (EZp
n)θ1 (P(Ac

n))1−θ1 ≤ C1(EZp
n)θ1

(

1

nη

)1−θ1

for some constant C1 > 0, by our choice of η. Since X satisfies (4.9) we have
that

E|Zn|p ≤ C1E

∣

∣

∣

∣

∣

X(nW )

Λ(nW )

∣

∣

∣

∣

∣

p

+ C1

∣

∣

∣

∣

∣

E
X(nW )

Λ(nW )

∣

∣

∣

∣

∣

p

≤ C2

for some constants C1, C2 > 0. Combining the estimates we have (4.12).

4.3.3 Proof of Proposition 4.5

Fix n ≥ 1 and let A ⊆ nW be any rectangle whose shortest edge has length
at least one. We have by the Slivnyak-Mecke formula (Møller (1994)) that

EX(A)k = E
∑

x1∈A∩N
...

∑

xk∈A∩N
f(x1, NM)...f(xk, NM)

=
k
∑

l=1

(

k

l

)

∫

A
...
∫

A

∫

M
...
∫

M

∑

Dl

Ef i1
1 ...f il

l

µM(dt1)...µM(dtn)Λ(dx1)...Λ(dxl)

where fj = f(xj , N ′
M), the process N ′

M = NM
⋃⋃l

i=1(xki
, tki

) and the inner-
most summation is over the set Dl = {(i1, ..., il) : i1 + i2 + · · · + il = k}.

Using the AM-GM inequality, the innermost term can be bounded above
as

Ef i1
1 ...f il

l ≤ 1

k

l
∑

j=1

ijEfk
j
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and hence

EX(A)k ≤
k
∑

l=1

(

k

l

)

∫

A
...
∫

A

∫

M
...
∫

M

∑

Dl

1

k

l
∑

j=1

ijEfk
j

µM(dt1)...µM(dtn)Λ(dx1)...Λ(dxl)

=
k
∑

l=1

(

k

l

)

∑

Dl

1

k

l
∑

j=1

ij

∫

A
...
∫

A
Exj ,X fk

j Λ(dx1)...Λ(dxl).

where Exj ,X f represents the expected value as in (4.14). By (4.15) we have
that

EX(A)k ≤ C1

k
∑

l=1

(

k

l

)

∑

Dl

1

k

l
∑

j=1

ij

∫

A
...
∫

A
Λ(dx1)...Λ(dxl) ≤ C2(Λ(A))k

for some positive constants C1 and C2. This proves that (iii) holds.
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