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1
Introduction

In this chapter, we explain the background and the main theme of this thesis and pro-

vide a chapter-wise summary of its principal results. We introduce some notations and

preliminaries that will be used in the subsequent chapters.

Study of proximinality related properties and ball intersection related properties of Ba-

nach spaces have been an active area of research in the field of geometry of Banach spaces.

In this thesis, we mainly study these two classes of Banach space theoretic properties.

We consider only Banach spaces over the real field R and all subspaces we consider are

assumed to be closed.

1.1 Preliminaries

For a Banach space X and a subspace Y , one of the basic problems in the field of approx-

imation theory is the existence of a best approximation from Y for an element x of X. If

this happens for every x ∈ X, then Y is said to be a proximinal subspace of X.

Definition 1.1.1. Let K be a non-empty closed subset of a Banach space X. For x ∈ X,

the distance of x from K, denoted by d(x,K), is given by d(x,K) = inf{‖x− k‖ : k ∈ K}.
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Chapter 1. Introduction

The set-valued mapping PK : X → 2K defined by PK(x) = {k ∈ K : d(x,K) = ‖x− k‖} is

called the metric projection onto K. An element of PK(x) is called a best approximation

from K to x. The set K is said to be proximinal in X if PK(x) 66= ∅ for all x ∈ X.

Some of the natural examples of proximinal subspaces are reflexive subspaces and

ker(f), where f ∈ X∗ is such that ‖f‖ = f(x) for some x ∈ X with ‖x‖ = 1 (the so-called

norm attaining functional). The earliest results concerning characterization of proximinal

subspaces of finite co-dimension (that is dim(X/Y ) <∞) are mainly due to Garkavi (see

[17,18] for details). For instance, in [18], he characterized finite co-dimensional proximinal

subspaces of C(K), the space of all continuous functions on a compact Hausdorff space K,

equipped with the supremum norm.

Theorem 1.1.2 ([18]). Let K be a compact Hausdorff space and let Y be a finite co-

dimensional subspace of C(K). Then Y is proximinal in C(K) if and only if the annihilator

Y ⊥ satisfies the following three conditions:

(a) supp(µ+)
⋂

supp(µ−) = ∅ for each µ ∈ Y ⊥ \ {0},

(b) µ is absolutely continuous with respect to ν on supp(ν) for every pair µ, ν ∈ Y ⊥\{0},

(c) supp(ν) \ supp(µ) is closed for each pair µ, ν ∈ Y ⊥ \ {0}.

The following result by Garkavi gives a necessary condition for factor reflexive subspaces

to be proximinal. We recall that a subspace Y of a Banach space X is said to be a factor

reflexive subspace if the quotient space X/Y is reflexive.

Proposition 1.1.3 ([46, Chapter III, Lemma 1.1]). If Y is a factor reflexive proximinal

subspace of a Banach space X, then every f ∈ Y ⊥ is a norm attaining functional on X.

But in general the converse of the Proposition 1.1.3 need not be true though it is true

when Y is of co-dimension one. Precisely, for a Banach space X and f ∈ X∗, ker(f) is

proximinal in X if and only if f is a norm attaining functional on X.

In [19], Godefroy and Indumathi introduced a stronger version of proximinality called

strong proximinality.
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1.1. Preliminaries

Definition 1.1.4. A proximinal subspace Y of a Banach space X is said to be strongly

proximinal in X if for every x ∈ X and every ε > 0, there exists a δ > 0 such that

PY (x, δ) ⊆ PY (x) + εBX , where PY (x, δ) = {y ∈ Y : ‖x− y‖ < d(x, Y ) + δ} and BX is the

closed unit ball of X.

For a proximinal subspace Y of a Banach space X, one can easily observe that the

above definition is equivalent to the following: for every element x ∈ X and for every

sequence (yn) in Y with ‖x− yn‖ → d(x, Y ), d(yn, PY (x))→ 0.

Clearly, any finite dimensional subspace of a Banach space is strongly proximinal. In

[38], Narayana proved that every infinite dimensional Banach space can be embedded

isometrically as a non-strongly proximinal hyperplane in another Banach space.

In [16], Franchetti and Payá introduced a non-smooth extension of Fréchet differentia-

bility, namely strong subdifferentiability, which in turn characterizes strongly proximinal

hyperplanes.

Definition 1.1.5. The norm of a Banach space X is strongly subdifferentiable (in short

SSD) at x ∈ X if the one sided limit

d+(x)(y) := lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists uniformly for y ∈ BX . In this case, we call x an SSD point of X. If this happens for

all unit vectors in X, then we say that the norm of X is SSD.

In [16], Franchetti and Payá observed that the norm of any finite dimensional Banach

space X is SSD. They also proved that the norms of sequence spaces c0 and `p (1 < p <∞)

are SSD. In the case of `1, by [16, Theorem 1.2] and [15, Theorem 7], it follows that

SSD-points of `1 are sequences with finite support. Combining [16, Theorem 1.2] and

[15, Theorem 5], we have the following characterization of SSD-points of `∞.

Theorem 1.1.6. Let x ∈ `∞. Then x is an SSD-point of `∞ if and only if

sup{|x(n)| : |x(n)| 6= ‖x‖} < ‖x‖.
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Chapter 1. Introduction

The following result by Godefroy and Indumathi connects SSD-points with strongly

proximinal subspaces of co-dimension one.

Theorem 1.1.7 ([19]). Let X be a Banach space. Then for an f ∈ X∗, ker(f) is a strongly

proximinal subspace of X if and only if f is an SSD-point of X∗.

In the case of finite co-dimensional strongly proximinal subspaces, we have the following:

Theorem 1.1.8 ([19]). Let Y be a finite co-dimensional subspace of a Banach space X.

If Y is strongly proximinal in X, then Y ⊥ is contained in the set of all SSD-points of X∗.

Later in [20], using the notion of strong subdifferentiability of convex functionals, Gode-

froy, Indumathi and Lust-Piquard gave a sufficient condition for the proximinality of finite

co-dimensional subspaces in a Banach space. In the same article, they also proved that

the converse of Theorem 1.1.8 holds for finite co-dimensional subspaces of the space of

compact operators on the Hilbert space `2.

The following notion of quasi-polyhedral point, introduced in [2] by Amir and Deutsch,

is stronger than the notion of an SSD-point.

Definition 1.1.9. A vector x in a Banach space X is called a quasi-polyhedral (in short

QP) point of X if there exists a δ > 0 such that JX∗(z) ⊆ JX∗(x) if ‖z − x‖ < δ and

‖z‖ = ‖x‖, where JX∗(x) = {f ∈ BX∗ : f(x) = ‖x‖}.

For a finite dimensional Banach space X, by [2, Theorem 2.19], each unit vector in

X is a QP-point if and only if the closed unit ball of X has only finitely many extreme

points. Lemma 3.3 of [19] shows that a QP-point is an SSD-point. But the converse need

not be true. For example, consider Rn with usual norm. Then all unit vectors in Rn are

SSD-points, but all unit vectors in Rn cannot be QP-points as the unit ball in Rn has

infinitely many extreme points.

The following results by Dutta and Narayana show that, for a compact Hausdorff space

K, the notions of SSD-point and QP-point coincide in C(K) and in C(K)∗.
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1.1. Preliminaries

Theorem 1.1.10 ([13, Theorem 2.1]). Let f ∈ C(K) be such that ‖f‖ = 1. Then the

following are equivalent:

(i) {k ∈ K : |f(k)| = 1} is a clopen set.

(ii) f is an SSD-point.

(iii) f is a QP-point.

Theorem 1.1.11 ([14, Theorem 2.1]). Let µ ∈ C(K)∗ be such that ‖µ‖ = 1. Then the

following are equivalent:

(i) µ is finitely supported.

(ii) µ is an SSD-point.

(iii) µ is a QP-point.

In [1], Alfsen and Effros introduced the notion of an M -ideal in a Banach space. This

well-studied concept in M -structure theory is stronger than proximinality (in fact stronger

than strong proximinality).

Definition 1.1.12. Let X be a Banach space.

(a) A linear projection P on X is called an M-projection if

‖x‖ = max{‖Px‖, ‖x− Px‖} for all x ∈ X.

A linear projection P on X is called an L-projection if

‖x‖ = ‖Px‖+ ‖x− Px‖ for all x ∈ X.

(b) A subspace Y ⊆ X is called an M-summand if it is the range of an M -projection. A

subspace Y ⊆ X is called an L-summand if it is the range of an L-projection.

(c) A subspace Y ⊆ X is called an M-ideal if Y ⊥ is an L-summand in X∗. If a Banach

space X, under the canonical embedding, is an M -ideal in X∗∗, then we say that X

is an M-embedded space.
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The following result will play an important role in Section 4.4 of Chapter 4.

Proposition 1.1.13 ([22, Page 66]). Let Y be a subspace of a Banach space X. Then

(a) Y is an M-ideal in X if and only if Y is an M-ideal in span{Y, x} for all x ∈ X.

(b) Y is an M-summand in X if and only if Y is an M-summand in span{Y, x} for all

x ∈ X.

We now recall some results on M -ideals and M -summands which will be used in the

subsequent chapters.

Proposition 1.1.14 ([22]). For a Banach space X, we have the following:

(a) Every weak∗-closed M-ideal in X∗ is an M-summand.

(b) Every M-summand in X∗ is weak∗-closed and is of the form Y ⊥ for some L-summand

Y in X.

(c) If X is an M-embedded space, then every subspace of X is also an M-embedded space.

In [32], Lima introduced a weaker notion of M -ideal called semi M -ideal which is also

stronger than being strongly proximinal.

Definition 1.1.15. A subspace Y of a Banach space X is called a semi M-ideal in X if

there is a (nonlinear) projection P from X∗ onto Y ⊥ such that

P (λx∗ + Py∗) = λPx∗ + Py∗,

‖x∗‖ = ‖Px∗‖+ ‖x∗ − Px∗‖

for all x∗, y∗ ∈ X∗ and λ ∈ R. Such a projection is called a semi L-projection and its range

a semi L-summand.

The following result characterizes semi M -ideals in Banach spaces.

Theorem 1.1.16 ([32, Theorem 6.14]). Let Y be a subspace of a Banach space X. Then

Y is a semi L-summand in X if and only if Y ⊥ is a semi M-ideal in X∗.
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1.1. Preliminaries

We now recall an example of a semi M -ideal which is not an M -ideal.

Example 1.1.17 ([22, Chapter I, Remark 2.3(a)]). Let µ be a positive measure and let

dim(L1(µ)) > 2. Then Y = {f ∈ L1(µ) :
∫
f dµ = 0} is a semi M -ideal in L1(µ), but Y is

not an M -ideal in L1(µ).

The following result due to Lima gives a sufficient condition for a Banach space to be

an M -embedded space.

Theorem 1.1.18 ([33, Corollary 3.4]). Let X be a Banach space. If X is a semi M-ideal

in X∗∗, then X is an M-embedded space.

In [21], Godefroy, Kalton and Saphar introduced a weaker notion of M -ideal called an

‘ideal’.

Definition 1.1.19. A subspace Y of a Banach space X is said to be an ideal in X if Y ⊥

is the kernel of a norm one projection on X∗.

Clearly, range of any norm one projection is an ideal. Also, every Banach space, under

the canonical embedding, is an ideal in its bidual. For, if X is a Banach space, then the

well-known projection P : X∗∗∗ → X∗∗∗ defined by P (Λ) = Λ|X is a projection of norm

one with kernel X⊥. It is well-known that c0 is an example of an ideal in `∞ that is not

the range of a projection of norm one.

The following theorem due to Lima characterizes ideals in Banach spaces.

Theorem 1.1.20 ([34, Theorem 1]). For a subspace Y of a Banach space X, the following

are equivalent:

(i) Y is an ideal in X.

(ii) Y ⊥⊥ is the range of a norm one projection in X∗∗.

(iii) If F is a finite dimensional subspace of X and ε > 0, then there exists an operator

T : F → Y such that:

7



Chapter 1. Introduction

(a) T (x) = x for x ∈ F
⋂
Y ,

(b) ‖T‖ ≤ (1 + ε).

Some of the important Banach space theoretic properties which are closely related to

proximinality properties are intersection properties of balls in Banach space. In [1], Alfsen

and Effros characterized M -ideals in terms of an intersection property of balls, namely the

n-ball property (n ∈ N).

For a Banach space X, we denote by BX(x, r) (or B(x, r), if there is no scope for

confusion) the closed ball of radius r > 0 around x ∈ X.

Definition 1.1.21 ([22]). Let n ∈ N. A subspace Y of a Banach space X is said to have

the n-ball property if, given n closed balls {B(ai, ri)}ni=1 in X such that
⋂n
i=1B(ai, ri) 6= ∅

and Y
⋂
B(ai, ri) 6= ∅ for all i, then Y

⋂
(
⋂n
i=1B(ai, ri + ε)) 6= ∅ for every ε > 0.

We now recall the following characterization of M -ideals.

Theorem 1.1.22 ([22, Chapter I, Theorem 2.2]). Let Y be a subspace of a Banach space

X. Then the following are equivalent:

(i) Y is an M-ideal in X.

(ii) Y has the n-ball property for all n ∈ N.

(iii) Y has the 3-ball property.

We also recall the following characterization of a semi M -ideal.

Theorem 1.1.23 ([32, Theorem 6.10]). Let Y be a subspace of a Banach space X. Then

Y is a semi M-ideal in X if and only if Y has the 2-ball property in X.

In [50], Yost introduced another intersection property of balls, namely the 11
2
-ball prop-

erty, which is weaker than the n-ball property and is stronger than proximinality (in fact,

stronger than strong proximinality).

8



1.1. Preliminaries

Definition 1.1.24. A subspace Y of a Banach space X is said to have the (strong) 11
2
-ball

property if the conditions x ∈ X, y ∈ Y, Y ∩ B(x, r) 66= ∅ and ‖x − y‖ ≤ r + s (r, s > 0)

imply that Y ∩B(x, r + ε) ∩B(y, s+ ε) 66= ∅ for all (ε ≥ 0) ε > 0.

We can easily see that the (strong) 11
2
-ball property is equivalent to requiring the

(strong) 2-ball property subject to the restriction that one of the centers lies in Y . Propo-

sition 3.3 of [13] proves that a subspace having the 11
2
-ball property is strongly proximinal.

Hence through the intersection properties of balls, we can see that all geometric properties

considered above, other than that of an ideal, lead to strong proximinality. We also have

the following characterization of the strong 11
2
-ball property due to Payá and Yost.

Theorem 1.1.25 ([39, Proposition 3(ii)]). A subspace Y of a Banach space X has the

strong 11
2
-ball property in X if and only if for every x ∈ X, there exists an element

y ∈ PY (x) such that ‖x‖ = ‖x− y‖+ ‖y‖.

Recently in [5], Bandyopadhyay, Lin and Rao introduced a stronger version of proxim-

inality called ball proximinality.

Definition 1.1.26. A subspace Y of a Banach space X is said to be ball proximinal in X

if the closed unit ball BY of Y is proximinal in X.

In [5, Proposition 2.4], it is proved that ball proximinal subspaces of Banach spaces are

proximinal. But Theorem 1 of [45] shows that the converse need not be true.

In [25], Indumathi and Lalithambigai characterized subspaces having the strong 11
2
-ball

property using ball proximinality.

Theorem 1.1.27 ([25]). Let Y be a subspace of a Banach space X. Then Y has the strong

11
2
-ball property in X if and only if Y is ball proximinal and has the 11

2
-ball property in X.

Another type of intersection property of balls studied by Grothendieck in 1950’s and

Lindenstrauss in 1960’s is the n.2 intersection property, using which they obtained many

significant results regarding projections in Banach spaces and operator version of Hahn-

Banach theorem.

9
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Definition 1.1.28 ([36]). Let n ∈ N. A Banach space X has the n.2 intersection property

(n.2.I.P ) if for every family of n balls in X such that any two of them intersect, there is

a point common to all the n balls.

The following result gives a sufficient condition for a Banach space to have n.2.I.P .

Lemma 1.1.29 ([36, Lemma 4.2]). Let X be a Banach space such that every pair-wise

intersecting family {B(xi, ri)}ni=1 of n balls in X satisfies
⋂n
i=1B(xi, ri + ε) 6= ∅ for all

ε > 0. Then X has the n.2.I.P .

Using this intersection property, Grothendieck and Lindenstrauss characterized the so-

called L1-predual spaces and P1-spaces.

Definition 1.1.30 ([29]). (a) A Banach space X such that X∗ is isometrically isomor-

phic to L1(µ) for some positive measure µ is called an L1-predual space.

(b) A Banach space X is said to be a P1-space if for every Banach space Z containing

X, there is a linear projection P from Z onto X with ‖P‖ ≤ 1.

(c) A subspace Y of a Banach space X is said to be 1-complemented in X if there exists

a linear projection P of norm one on X with range Y .

It is well-known that for any compact Hausdorff space K, C(K) is an L1-predual space.

We now recall the following example from [9] which will be used in the next chapter.

Example 1.1.31. Let K be a compact Hausdorff space and let k1, . . . , kn ∈ K. If

µ1, . . . , µn are regular Borel measures on K with ‖µi‖ ≤ 1 and |µi|({k1, . . . , kn}) = 0

for i = 1, . . . , n; then A = {f ∈ C(K) : f(ki) =
∫
f dµi, i = 1, . . . , n} is an L1-predual

space.

The following theorem by Nachbin, Kelley, Goodner and Hasumi characterizes P1-

spaces. We recall that a compact Hausdorff space K is extremally disconnected if the

closure of every open subset of K is open (see [29, Section 7] for details).

10
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Theorem 1.1.32 ([29, Section 11, Theorem 6]). A Banach space X is a P1-space if and

only if X is isometrically isomorphic to C(K) for some extremally disconnected space K.

The following theorem connects the n.2.I.P , L1-predual spaces and P1-spaces.

Theorem 1.1.33 ([29, Section 21, Theorem 6]). Let X be a Banach space. Then the

following are equivalent:

(i) X is an L1-predual space.

(ii) X∗∗ is a P1-space.

(iii) X has the n.2.I.P for all n ∈ N.

(iv) X has the 4.2.I.P .

The following result gives a characterization of L1-predual spaces in terms of ideals.

Theorem 1.1.34 ([41, Proposition 1]). For any Banach space X, the following are equivalent:

(i) If Z is a Banach space such that X is isometric to a subspace of Z, then X is an

ideal in Z.

(ii) X is isometric to an ideal in C(K) for some compact Hausdorff space K.

(iii) X is an L1-predual space.

Apart from the n-ball property and the n.2.I.P , one of the ball intersection properties

studied in the literature is the relative ball intersection property. These properties helps

to study the class of Banach spaces that admit weighted Chebyshev centers for finite sets.

In [47], Veselý called such class of Banach spaces as the class (GC) and developed a theory

for such spaces.

Definition 1.1.35. Let X be a Banach space. Let a1, . . . , an ∈ X and η1, . . . , ηn > 0.

Minimizers of the function φ : X → R defined by φ(x) = max1≤i≤n ηi‖x − ai‖ are called

weighted Chebyshev centers with the weight η = (η1, . . . , ηn). Classical Chebyshev centers

are the weighted Chebyshev centers with the weight η = (1, . . . , 1).

11



Chapter 1. Introduction

Theorem 1.1.36 ([47, Theorem 2.7]). For a Banach space X and a1, . . . , an ∈ X, the

following are equivalent :

(i) If r1, . . . , rn > 0 and
n⋂
i=1

BX∗∗(ai, ri) 6= ∅, then
n⋂
i=1

BX(ai, ri) 6= ∅.

(ii) a1, . . . , an admits weighted Chebyshev centers for all weights η = (η1, ..., ηn), where

ηi > 0 for all i = 1, . . . , n.

Definition 1.1.37 ([47, Definition 2.8]). We shall denote by (GC) the class of all Banach

spaces X such that for every positive integer n and every a1, . . . , an ∈ X, one of the

equivalent conditions (i), (ii) of Theorem 1.1.36 is satisfied.

The following proposition gives an intrinsic characterization of the class (GC).

Proposition 1.1.38 ([6, Proposition 2.9]). Let X be a Banach space. Then X ∈ (GC) if

and only if for all n ∈ N, a1, . . . , an ∈ X and r1, . . . , rn > 0,
⋂n
i=1B(ai, ri + ε) 6= ∅ for all

ε > 0 implies
⋂n
i=1B(ai, ri) 6= ∅.

Later in [6], Bandyopadhyay and Rao generalized the concept (GC). In fact, this

generalization comes from the subspace condition (i) of Theorem 1.1.36.

Definition 1.1.39 ([6, Definition 2.1]). Let X be a Banach space. We say that a subspace

Y ⊆ X is a central subspace of X if every finite family of closed balls with centers in Y

that intersect in X, also intersect in Y .

Clearly, X ∈ (GC) if and only if X is a central subspace of X∗∗. It follows from

[6, Proposition 2.2 (a)] that Y is a central subspace of a Banach space X if and only

if for any finite set {yi}ni=1 ⊂ Y and x ∈ X, there exists an element y ∈ Y such that

‖y − yi‖ ≤ ‖x − yi‖ for 1 ≤ i ≤ n. Also, it is easy to see that if Y is a central subspace

of a Banach space X, then finite subsets of Y that have Chebyshev centers in X have

Chebyshev centers (relative to Y ) in Y .

The following result characterizes L1-predual spaces in terms of central subspaces.

12



1.1. Preliminaries

Theorem 1.1.40 ([6, Theorem 3.3]). A Banach space X is an L1-predual space if and

only if whenever X is a subspace of a dual space, it is a central subspace there.

An infinite version of central subspaces called almost constrained subspaces was inves-

tigated in [3] and [4].

Definition 1.1.41. A subspace Y of a Banach space X is said to be an almost constrained

(in short AC) subspace of X if any family of closed balls centered at points of Y that

intersect in X, also intersect in Y .

One can easily see that 1-complemented subspaces are AC-subspaces and hence they

are also central subspaces. We also observe that Y is an AC-subspace of a Banach space

X if and only if for any family {yα}α∈I ⊆ Y and x ∈ X, there exists an element y ∈ Y

such that ‖y − yα‖ ≤ ‖x− yα‖ for α ∈ I.

The following result shows that the notion of being an AC-subspace is closely related

to the notion of being a 1-complemented subspace.

Theorem 1.1.42 ([3, Proposition 2.2]). For a subspace Y of a Banach space, the following

are equivalent:

(i) Y is an AC-subspace of X.

(ii) Y is 1-complemented in span{Y, x} for every x ∈ X.

We also recall the following theorem of Bandyopadhyay and Dutta that characterizes

an AC-subspace of finite co-dimension in the space C(K).

Theorem 1.1.43 ([4, Theorem 1.1]). Let K be a compact Hausdorff space and Y be a

subspace of co-dimension n in C(K). Then the following are equivalent :

(i) Y is an AC-subspace of C(K).

(ii) Y is 1-complemented in C(K).

13



Chapter 1. Introduction

(iii) There exist measures µ1, . . . , µn on K and distinct isolated points k1, . . . , kn of K

such that:

(a) Y =
⋂n
i=1 ker(µi),

(b) ‖µi‖ ≤ 2|µi({ki})|, i = 1, . . . , n.

We now recall the definition of the injective tensor product of two Banach spaces which

will be needed in the subsequent chapters.

Definition 1.1.44 ([11]). Let X and Y be two Banach spaces and let X
⊗

Y be the

algebraic tensor product of X and Y . Let u ∈ X
⊗

Y . Define λ(u) by

λ(u) = sup{|(x∗ ⊗ y∗)(u)| : x∗ ∈ X∗, y∗ ∈ Y ∗, ‖x∗‖ ≤ 1 and ‖y∗‖ ≤ 1}.

Then λ is a norm on X
⊗

Y . The injective tensor product of X and Y , denoted by X
∨⊗
Y ,

is the completion of the normed linear space X
⊗

Y , equipped with the norm λ.

Example 1.1.45 ([11, Chapter VIII, Example 6]). Let K be a compact Hausdorff space

and let X be a Banach space. Then the space C(K)
∨⊗
X is isometrically isomorphic to

the Banach space C(K,X) of continuous functions f : K → X, equipped with the norm

‖f‖ = sup{‖f(k)‖ : k ∈ K}.

In [48], Veselý defined a new direct sum called polyhedral direct sum of Banach spaces.

This direct sum helps us to produce more examples of Banach spaces that belong to the

class (GC), as the membership of the class (GC) is stable under the polyhedral direct sum.

For n ∈ N, the set [0,∞)n will be denoted by Rn
+.

Definition 1.1.46 ([48]). A function π : Rn
+ → R+ is a norm on Rn

+ if it is subadditive,

positively homogeneous and π(t) = 0⇔ t = 0.

A norm π on Rn
+ is called polyhedral if it is of the form π(t) = max1≤j≤m gj(t), where

g1, . . . , gm ∈ (Rn)∗. In this case, we say that the family {g1, . . . , gm} generates π. Now

Lemma 1.5 of [48] shows that if {g1, . . . , gm} is a minimal family generating π, then gj(i) ≥ 0

for all i = 1, . . . , n and j = 1, . . . ,m.
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We say that a Banach space X is the polyhedral direct sum of Banach spaces X1, ..., Xn

if X = X1 ⊕ . . .⊕Xn and the norm on X is of the form

‖x‖π = π(‖x(1)‖, . . . , ‖x(n)‖), x = (x(1), . . . , x(n)),

where π is a polyhedral non-decreasing norm on Rn
+ with respect to the co-ordinate wise

ordering on Rn
+. In this case, we write

X = (X1 ⊕ . . .⊕Xn)π.

1.2 Notations and Conventions

In this section, we introduce some notations and conventions which will be used in the

subsequent chapters.

In this thesis, we restrict ourselves to real scalars and all subspaces we consider are

assumed to be closed. We consider every Banach space X, under the canonical embedding,

as a subspace of X∗∗ and do not write the embedding explicitly. Also, if a Banach space

Y is isometric to a subspace of a Banach space X, then without loss of generality, we will

consider Y as a subspace of X.

For a Banach space X, we denote by BX(x, r) (or B(x, r), if there is no scope for

confusion) the closed ball of radius r > 0 around x ∈ X. The closed unit ball and the unit

sphere of X will be denoted by BX and SX respectively.

For a Banach space X, we denote by NA(X) the set of all norm attaining functionals

on X and by NA1(X) the set of all norm attaining functionals on X whose norm is one.

Precisely,

NA(X) = {f ∈ X∗ : there exists an element x ∈ BX such that f(x) = ‖f‖} and

NA1(X) = NA(X)
⋂
SX∗ .

For a complete positive σ-finite measure space (Ω, Σ, µ), we denote by Lp(µ,X) the

Banach space of all Bochner p-integrable (essentially bounded for p = ∞) functions on Ω

with values in X, endowed with the usual p-norm (see [11] for details).
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For a compact Hausdorff space K and a Banach space X, we denote by C(K,X) the

space of all X-valued continuous functions defined on K, endowed with the supremum

norm. C(K,R) will be denoted by C(K).

For a completely regular space T , let βT denote the Stone-Čech compactification of T .

Definition 1.2.1. For an arbitrary collection {Xi : i ∈ I} of Banach spaces,

(a) `p-sum (1 ≤ p <∞) of Xi (i ∈ I) is defined by

⊕
p

i∈I

Xi =
{
x ∈

∏
i∈I Xi : ‖x‖ = (

∑
i∈I ‖x(i)‖p)1/p <∞

}
.

When Xi = R for all i ∈ I,
⊕

p
i∈I

Xi will be denoted by `p(I).

(b) `∞-sum of Xi (i ∈ I) is defined by

⊕
∞

i∈I

Xi =
{
x ∈

∏
i∈I Xi : ‖x‖ = supi∈I ‖x(i)‖ <∞

}
.

When Xi = R for all i ∈ I,
⊕

∞
i∈I

Xi will be denoted by `∞(I).

For a finite family of Banach spaces {X1, . . . , Xk}, `∞-sum of Xi (1 ≤ i ≤ k) will be

denoted by (X1

⊕
. . .
⊕

Xk)`k∞ .

(c) c0-sum of Xi (i ∈ I) is defined by

⊕
c0

i∈I

Xi =
{
x ∈

∏
i∈I Xi : {i ∈ I : ‖x(i)‖ > ε} is finite for all ε > 0

}
with the supremum norm on it.

When Xi = R for all i ∈ I,
⊕

c0
i∈I

Xi will be denoted by c0(I).

When there is no confusion, we omit writing the index set for the direct sums.

Our notations are otherwise standard. Any unexplained terminology can be found in

[11,22,29].
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1.3. Chapter-wise Summary

1.3 Chapter-wise Summary

In this section, we give a chapter-wise summary of the thesis.

In Chapter 2, we mainly consider various notions of proximinality in Banach spaces.

In [40], Pollul raised the following question on transitivity of proximinality.

(P1) Which Banach spaces X have the following property: for any subspaces Y and Z

of X with Z ⊆ Y , if dim(X/Y ) = dim(Y/Z) = 1, Z is proximinal in Y and Y is

proximinal in X, then Z is proximinal in X?

Later in [23], Indumathi asked a more general question.

(P2) Which Banach spaces X have the following property: for any subspaces Y and Z of

X with Z ⊆ Y , if dim(X/Z) = n <∞, Z is proximinal in Y and Y is proximinal in

X, then Z is proximinal in X?

A Banach space X with the property described in (P2) is called a P (n) space and X is said

to be a Pollul space if it is a P (n) space for every n ≥ 2. i.e., proximinality is transitive for

finite co-dimensional subspaces. Clearly, reflexive spaces are Pollul spaces. c0 and K(`2)

(the space of all compact operators on `2) are non-trivial examples of Pollul spaces. It

is also proved in [23] that the infinite dimensional C(K) and L1(µ) spaces are not P (2)

spaces and hence are not Pollul spaces. Motivated by this, we ask the transitivity problem

for various degrees of proximinality (viz. proximinality, strong proximinality, the 11
2
-ball

property, semi M -ideal etc). Precisely, we ask the following:

(Q) Let (P ) be one of these proximinality properties and let Y and Z be subspaces of X

with Z ⊆ Y ⊆ X such that Z has the property (P ) in Y and Y has the property (P )

in X , then is it necessary that Z has the property (P ) in X?

We had already observed that the answer is not affirmative if the property (P ) is proxim-

inality. In [13], Dutta and Narayana proved that the transitivity of strong proximinality

fails in `1. In [14], they also proved that the strong proximinality is a transitive relation for
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finite co-dimensional subspaces of C(K). From [39, Example 6], it follows that the 11
2
-ball

property fails to be transitive in R3, equipped with `1-norm. Due to the fact that in a

finite dimensional space the 11
2
-ball property implies the strong 11

2
-ball property, the same

example also ensures that the strong 11
2
-ball property fails to be transitive. But in [39],

by using intersection properties of balls, Payá and Yost proved that the notions of being

a semi M -ideal and being an M -ideal are transitive. In this chapter, we discuss the above

mentioned transitivity problem and proximinality related problems. For instance, we prove

that if (P ) is strong proximinality and if Y is an M -ideal in X, then the question (Q) has

an affirmative answer. In order to prove this, we prove that for a finite co-dimensional

subspace Y of a Banach space X, Y is strongly proximinal in X if and only if Y ⊥⊥ is

strongly proximinal in X∗∗.

In [19], Godefroy and Indumathi proved that if Y is a finite co-dimensional strongly

proximinal subspace of X, then Y ⊥ is contained in the set of SSD-points of X∗. It remains

an open problem whether the converse of this is true. In this chapter, we show that the

converse is true in L1-predual spaces. In order to prove this, we first show that for a

positive measure µ, the notions of SSD-point and QP-point coincide in L1(µ).

We also study the following problem: if Y is a subspace of a Banach space X and

f ∈ SY ∗ is an SSD-point of Y ∗, then can we say that all the norm preserving Hahn-Banach

extensions of f are SSD-points of X∗? We show that the answer is negative in general and

is affirmative if the subspace Y is an M -ideal.

In [25, Corollary 2.5], it is stated that M -ideals are ball proximinal. In this chapter,

we disprove this by giving an example. We also give a class of Banach spaces in which

M -ideals are ball proximinal.

In Chapter 3, we discuss various notions of proximinality in vector-valued function

spaces and direct sums. In approximation theory, one of the important problems is the

following: Suppose that a subspace Y of a Banach space X has one of the proximinality

properties in X. Does it follow that L1(µ, Y ) has the same proximinality property in

L1(µ,X)? Since, for a measurable set E with µ(E) > 0, the map P : L1(µ,X)→ L1(µ,X)

defined by P (f) = fχE is a non-trivial L-projection, by [22, Theorem 1.8], L1(µ,X) cannot
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1.3. Chapter-wise Summary

have any M -ideal provided that the dimension of L1(µ,X) is greater than 2. Therefore

if the dimension of L1(µ,X) is greater than 2, then L1(µ, Y ) can never be an M -ideal in

L1(µ,X). Then under the assumption that Y is anM -ideal, one can ask about the strongest

proximinality property that L1(µ, Y ) possesses. Proposition 3.1.14 gives a partial answer

to this question.

In [37], Mendoza proved that L1(µ, Y ) is not proximinal in L1(µ,X) even if Y is prox-

iminal in X, but for a separable proximinal subspace Y of X, L1(µ, Y ) is proximinal in

L1(µ,X). For a non-atomic σ-finite countably generated measure space, an analogous

result for the strong 11
2
-ball property is proved in [44]. In this chapter, we prove these

two results for every non-separable subspace Y of X satisfying a general condition: “each

separable subspace of Y is contained in a separable subspace of Y that has the appropriate

proximinality property in X ”. We also give a class of Banach spaces and their subspaces

where this general condition holds. But if the proximinality property under consideration

is strong proximinality or the 11
2
-ball property, an analogous result for the above problem

is not known.

Now moving to the discrete version of the above problem, one can ask about the stability

of these proximinality properties under `p-sums (1 ≤ p ≤ ∞) and c0-sums of Banach

spaces. In the discrete version, we ask the following question: Suppose that (P) is one

of the proximinality properties and that for each i ∈ I, Yi is a subspace of Xi having

property (P) in Xi. Does this imply that, for 1 ≤ p ≤ ∞,
⊕

p Yi and
⊕

c0
Yi have the same

property in
⊕

pXi and
⊕

c0
Xi respectively? The answer is affirmative if the property

under consideration is proximinality. In [44], it is proved that the 11
2
-ball property and

the strong 11
2
-ball property are stable under `∞-sums and c0-sums. It is also proved in [44]

that the 11
2
-ball property is stable under `1-sums. But the stability of the strong 11

2
-ball

property under `1-sums is still not known.

It is proved in [30] that the strong proximinality is stable under countable c0-sums and

finite `∞-sums of Banach spaces. In this chapter, we prove that the strong proximinality

is also stable under finite `1-sums. In fact, we prove that proximinality and strong prox-

iminality (under an additional assumption) are stable under the polyhedral direct sums of
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Banach spaces. Moreover, we characterize SSD-points of `1-sums of dual spaces.

In Chapter 4, we study the intersection properties of balls in Banach spaces. Differ-

ent types of ball intersection properties were studied in the literature, namely the n-ball

property and the n.2.I.P . In this chapter, we study relative intersection properties of balls

in Banach spaces. The main aim of this study is to investigate the class of Banach spaces

which admit weighted Chebyshev centers for finite sets. Our motivation for this work

comes from the work [47] of Veselý where he studied a new class of Banach spaces, namely

the class (GC) which is defined in terms of the existence of weighted Chebyshev centers.

In the same article, he also characterized such spaces using intersection properties of balls.

In [6], Bandyopadhyay and Rao considered some general results about the class (GC)

using the concept of central subspaces. In fact, they characterized the class (GC) and

produced several examples of Banach spaces which belong to the class (GC). In this chapter,

we introduce and study a new notion of almost central subspaces which is weaker than that

of central subspaces. Using this concept, we obtain some new results about the class (GC)

and also about some of the other types of intersection properties of balls studied in the

literature. In particular, we characterize L1-predual spaces in terms of the almost central

subspaces and give some examples of Banach spaces which belong to the class (GC).

The problem of characterizing 1-complemented subspaces of Banach spaces is of great

importance in the theory of Banach spaces. It is well-known that subspaces of Hilbert

spaces are 1-complemented. A classical result of Kakutani states that if every subspace

of a Banach space X (with dim(X) ≥ 3) is 1-complemented in X, then X is a Hilbert

space. In 1940, Phillips proved that c0 is not 1-complemented in `∞. In [8], Baronti

characterized finite co-dimensional 1-complemented subspaces of `∞ and in [7], Baronti and

Papini characterized finite co-dimensional 1-complemented subspaces of c0. In this chapter,

we extend these results to c0(Γ) and `∞(Γ) for any infinite discrete set Γ. Using this, we

prove that `∞(Γ) cannot have a finite co-dimensional 1-complemented subspace containing

c0(Γ). We also give a simple proof for the implication (iii) =⇒ (ii) of Theorem 1.1.43

when K is an extremally disconnected space.

In this chapter, we also derive several sufficient conditions for a semi M -ideal to be
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an M -ideal in terms of these intersection properties of balls. Some sufficient conditions

for a central subspace to be an almost constrained subspace are also obtained. Moreover,

we prove the stability of some of the ball intersection properties in quotient spaces, direct

sums, vector-valued continuous function spaces and injective tensor product spaces. We

also prove that the following question raised in [6] by Bandyopadhyay and Rao has an

affirmative answer: for a family {Xα : α ∈ I} of Banach spaces, is
⊕

c0
Xα a central

subspace of
⊕
∞Xα?
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Transitivity of Proximinality

Properties in Banach Spaces

In this chapter, we discuss the transitivity of various degrees of proximinality in Banach

spaces. When transitivity does not hold, we investigate these properties under some addi-

tional assumptions on the intermediate space. For instance, we prove that if Z ⊆ Y ⊆ X,

where Z is a finite co-dimensional subspace of X which is strongly proximinal in Y and Y

is an M -ideal in X, then Z is strongly proximinal in X. In order to prove this, we show

that for a finite co-dimensional proximinal subspace Y of a Banach space X, Y is strongly

proximinal in X if and only if Y ⊥⊥ is strongly proximinal in X∗∗. Using this, we prove that

in an abstract L1-space, the notions of SSD-point and QP-point coincide. We also prove

that if Y is an M -ideal in a Banach space X and f ∈ SY ∗ is an SSD-point of Y ∗, then

any norm preserving Hahn-Banach extension of f to X is an SSD-point of X∗. Moreover,

we give an example to show that M -ideals need not be ball proximinal and also we give a

class of Banach spaces in which M -ideals are ball proximinal.

Most of the results in this chapter are from [28].
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Chapter 2. Transitivity of Proximinality Properties in Banach Spaces

2.1 Transitivity of Strong Proximinality

In [42], Rao observed that the subspace V = {x ∈ c0 : x(2n) = nx(2n − 1), n ≥ 1} is

proximinal in c0, but not in `∞. Since c0 is an M -ideal in `∞, this example shows that

proximinality need not be transitive even when one of the subspace has the stronger prop-

erty of being an M -ideal. But in [24], Indumathi proved that every finite co-dimensional

proximinal subspace of c0 continues to be proximinal in `∞.

We now give an example to show that the strong proximinality need not be transitive

even with the finite co-dimensionality assumption on subspaces.

Example 2.1.1. There exist two subspaces Z and Y of finite co-dimension in `1 such that

Z is strongly proximinal in Y and Y is strongly proximinal in `1, but Z is not strongly

proximinal in `1.

Proof. Let f = (0, 1, 1, . . .) and g = (1,−1
2
,−1

3
, . . .). Then, by Theorem 1.1.6, f and g are

SSD-points of `∞. Since `∞ = C(βN), by Theorem 1.1.10, we can see that the notions

of SSD-point and QP-point coincide in `∞. Thus f and g are QP-points of `∞. Let

Z = ker(f)∩ker(g) and Y = ker(f). Since f is a QP-point of `∞, Y is strongly proximinal

in `1. Also, since g attains its norm on Y and g is a QP-point of `∞, by the proof of

[13, Proposition 4.2], g|Y is a QP-point of Y ∗. Hence Z = ker(g|Y ) is strongly proximinal

in Y . Since sup{|(f + g)(n)| : |(f + g)(n)| 6= 1} = 1, by Theorem 1.1.6, f + g ∈ Z⊥ is not

an SSD-point of `∞. Hence, by Theorem 1.1.8, Z is not strongly proximinal in `1.

Our next result shows that transitivity holds under stronger assumptions on the inter-

mediate space.

We call ϕ : R+ × R+ → R+ a monotone map if ϕ(α1, β) ≥ ϕ(α2, β) whenever α1 ≥ α2.

Proposition 2.1.2. Let Y and Z be subspaces of a Banach space X such that X = Y ⊕Z

and let ϕ : R+ × R+ → R+ be a monotone map such that for x ∈ X, ‖x‖ = ϕ(‖y‖, ‖z‖),

where x = y + z with y ∈ Y and z ∈ Z. Suppose that for every sequence (αn) in R+
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and for α, β ∈ R+, ϕ(αn, β) → ϕ(α, β) implies αn → α. If W is a proximinal (strongly

proximinal) subspace of Y , then it is proximinal (strongly proximinal) in X.

Proof. Suppose W is proximinal in Y . Then for x ∈ X, we get

d(x,W ) = ϕ(d(y,W ), ‖z‖), where x = y + z with y ∈ Y and z ∈ Z.

For, let w0 ∈ PW (y). Then

d(x,W ) = inf{‖x− w‖ : w ∈ W}

= inf{ϕ(‖y − w‖, ‖z‖) : w ∈ W}

≤ ϕ(‖y − w0‖, ‖z‖)

= ϕ(d(y,W ), ‖z‖).

On the other hand, it is clear from

ϕ(d(y,W ), ‖z‖) ≤ ϕ(‖y − w‖, ‖z‖) ≤ ‖x− w‖ for all w ∈ W

that ϕ(d(y,W ), ‖z‖) ≤ d(x,W ). Thus d(x,W ) = ϕ(d(y,W ), ‖z‖). Now it follows that

w0 ∈ PW (x). Thus PW (y) ⊆ PW (x). Hence W is proximinal in X.

Note that the convergence assumption on ϕ has not used yet.

Now let W be strongly proximinal in X and let (wn) be a sequence in W such that

‖x − wn‖ → d(x,W ). Then, by the assumption on ϕ, ‖y − wn‖ → d(y,W ) and hence,

by the strong proximinality of W in Y , d(wn, PW (y)) → 0. Since PW (y) ⊆ PW (x),

d(wn, PW (x))→ 0 and hence the strong proximinality of W in X follows.

As an immediate consequence of Proposition 2.1.2, we have the following:

Corollary 2.1.3. If Y is an L-summand in a Banach space X, then any proximinal

(strongly proximinal) subspace of Y is proximinal (strongly proximinal) in X. Moreover, if

Z is an M-summand in X, then any proximinal subspace of Z is proximinal in X.

Proof. Let Z be a subspace of X such that X = Y
⊕

1 Z. Define ϕ : R+ × R+ → R+ by

ϕ(s, t) = s + t for s, t ∈ R+. Then ϕ is a monotone map such that ‖x‖ = ϕ(‖y‖, ‖z‖),
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where x = y + z with y ∈ Y and z ∈ Z. Since for every sequence (αn) in R+ and for

α, β ∈ R+, ϕ(αn, β) = αn + β → ϕ(α, β) = α + β implies αn → α, the conclusion follows

from Proposition 2.1.2.

We now recall a result from [24] to prove that the notion of strong proximinality pass

through M -summands.

For a Banach space X, let C(X) denote the class of non-empty, bounded and closed

subsets of X. Then the Hausdorff metric on C(X) is given by

h(A,B) = max

{
sup
x∈A

d(x,B), sup
z∈B

d(z, A)

}
for A,B ∈ C(X).

Lemma 2.1.4 ([24, Fact 3.2]). Let X be a Banach space and Y be a proximinal subspace

of X. Let x ∈ X \ Y and α > d(x, Y ). Then for every ε > 0, there exists a δ > 0 such

that for any z ∈ B(x, δ) and for any β > 0 satisfying |β − α| < δ, we have

h (B(x, α)
⋂
Y, B(z, β)

⋂
Y ) < ε,

where h is the Hausdorff metric on C(X).

Proposition 2.1.5. Let X be a Banach space and let Y be an M-summand in X. If W

is a strongly proximinal subspace of Y , then W is strongly proximinal in X.

Proof. Suppose W is a strongly proximinal subspace of Y . Then, by Corollary 2.1.3, it

follows that W is proximinal in X.

Now let x ∈ X and ε > 0. Let Z be a subspace of X such that X = Y
⊕
∞ Z and let

x = y + z with y ∈ Y and z ∈ Z. An argument similar to the one used in the proof of

Proposition 2.1.2 gives

d(x,W ) = max{d(y,W ), ‖z‖} and PW (y) ⊆ PW (x).

Case 1. ‖z‖ > d(y,W ).

In this case, since d(x,W ) = ‖z‖, we have

PW (x) = B(y, ‖z‖) ∩W and PW (x, η) = B(y, ‖z‖+ η) ∩W for all η > 0.
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Since ‖z‖ > d(y,W ), by Lemma 2.1.4, there exists a δ > 0 such that for u ∈ Y with

‖u− y‖ < 2δ and for β > 0 with |β − ‖z‖| < 2δ, we get

h(B(y, ‖z‖)
⋂
W, B(u, β)

⋂
W ) < ε, (2.1.1)

where h is the Hausdorff metric on C(Y ).

Now put u = y and β = ‖z‖+ δ in (2.1.1). Then we get

h (B(y, ‖z‖)
⋂
W,B(y, ‖z‖+ δ)

⋂
W ) < ε.

Thus B(y, ‖z‖ + δ)
⋂
W ⊆ (B(y, ‖z‖)

⋂
W ) + εBX and hence PW (x, δ) ⊆ PW (x) + εBX .

Case 2. ‖z‖ ≤ d(y,W ).

In this case, since d(x,W ) = d(y,W ), we have

PW (x) = PW (y) and PW (x, η) = PW (y, η) for all η > 0.

Since W is strongly proximinal in Y , there exists a δ > 0 such that PW (y, δ) ⊆ PW (y)+εBY .

Thus PW (x, δ) ⊆ PW (x) + εBX .

Hence W is strongly proximinal in X.

We now recall some notations from [19] which will be used in the remaining part of this

section.

Let X be a Banach space and let {f1, . . . , fn} be a set of linearly independent functionals

in X∗. Define M1,M
∗
1 , JX(f1) and JX∗∗(f1) as:

M1 = ‖f1‖, JX(f1) = {x ∈ SX : f1(x) = ‖f1‖},

M∗
1 = ‖f1‖, JX∗∗(f1) = {x∗∗ ∈ SX∗∗ : x∗∗(f1) = ‖f1‖}.

Also, define M2,M
∗
2 , JX(f1, f2) and JX∗∗(f1, f2) as:

M2 = sup{f2(x) : x ∈ JX(f1)}, JX(f1, f2) = {x ∈ JX(f1) : f2(x) = M2},

M∗
2 = sup{x∗∗(f2) : x∗∗ ∈ JX∗∗(f1)}, JX∗∗(f1, f2) = {x∗∗ ∈ JX∗∗(f1) : x∗∗(f2) = M∗

2}.

Now, inductively obtain Mi, M
∗
i , JX(f1, . . . , fi) and JX∗∗(f1, . . . , fi) for 1 ≤ i ≤ n.
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For ε > 0, define JX(f1, ε) by

JX(f1, ε) = {x ∈ BX : f1(x) > ‖f1‖ − ε}.

Having defined JX(f1, . . . , fj, ε) for 1 ≤ j ≤ i < n inductively, define JX(f1, . . . , fi+1, ε) by

JX(f1, . . . , fi+1, ε) = {x ∈ JX(f1, . . . , fi, ε) : fi+1(x) > Mi+1 − ε}.

The following result by Godefroy and Indumathi characterizes strongly proximinal sub-

spaces of finite co-dimension.

Theorem 2.1.6. [19] Let Y be a finite co-dimensional proximinal subspace of X. Then Y

is strongly proximinal in X if and only if for any basis {f1, . . . , fn} of Y ⊥,

lim
ε→0

[sup{d(x, JX(f1, . . . , fi)) : x ∈ JX(f1, . . . , fi, ε)}] = 0

for 1 ≤ i ≤ n.

In other words, a necessary and sufficient condition for the strong proximinality of a

finite co-dimensional subspace Y of a Banach space X is: if {f1, . . . , fn} is a basis of Y ⊥ and

i ∈ {1, . . . , n}, then for every ε > 0 there exists a δε > 0 such that d(x, JX(f1, . . . , fi)) < ε

whenever x ∈ JX(f1, . . . , fi, δε).

We now recall some relations between the notations defined above.

Remark 2.1.7 ([19, Remark 1.2]). Let X be a Banach space and let f ∈ SX∗ be an SSD-

point of X∗. Then

(a) JX∗∗(f) = JX(f)
w∗

,

(b) d(x, JX∗∗(f)) = d(x, JX(f)).

Proposition 2.1.8. Let X be a Banach space and let Y be a finite co-dimensional strongly

proximinal subspace of X. Let {f1, . . . , fn} ⊆ SY ⊥ be a basis of Y ⊥ and let Mi,M
∗
i ,

JX(f1, . . . , fi) and JX∗∗(f1, . . . , fi) be defined as before. Then, for 1 ≤ i ≤ n,

(a) Mi = M∗
i ,
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2.1. Transitivity of Strong Proximinality

(b) JX∗∗(f1, . . . , fi) = JX(f1, . . . , fi)
w∗

.

Proof. (a) Clearly, M1 = M∗
1 and Mk ≤ M∗

k for k = 1, . . . , n. Let i ∈ {1, . . . , n}. Now

suppose that Mj = M∗
j for 1 ≤ j ≤ i. Since JX∗∗(f1, . . . , fi) is w∗-compact, fi+1 attains its

supremum over JX∗∗(f1, . . . , fi) at some element x∗∗0 ∈ JX∗∗(f1, . . . , fi). Let (xα) be a net

in BX such that xα → x∗∗0 in weak∗-sense. Since x∗∗0 ∈ JX∗∗(f1, . . . , fi), x
∗∗
0 (fj) = M∗

j = Mj

for 1 ≤ j ≤ i. Hence for 1 ≤ j ≤ i, fj(xα) → Mj. Since Y is a strongly proximinal

subspace of X, by Theorem 2.1.6, it follows that d(xα, JX(f1, . . . , fi)) → 0. Now let (zα)

be a net in JX(f1, . . . , fi) such that ‖xα − zα‖ → 0. Then zα → x∗∗0 in weak∗-sense. Since

fi+1(zα)→ x∗∗0 (fi+1) = M∗
i+1, we get M∗

i+1 = limα fi+1(zα) ≤Mi+1. Now the result follows

by induction.

(b) Since f1 is an SSD-point, we have JX(f1)
w∗

= JX∗∗(f1). For i = 2, it is easy to see that

JX(f1, f2)
w∗

⊆ JX∗∗(f1, f2). Now let x∗∗ ∈ JX∗∗(f1, f2) and let (xα) be a net in BX such

that xα → x∗∗ in weak∗-sense. Since f1(xα) → x∗∗(f1) = M1, d(xα, JX(f1)) → 0. Choose

a net (yα) in JX(f1) such that ‖xα − yα‖ → 0. Hence yα → x∗∗ in weak∗-sense. Since

f2(yα) → x∗∗(f2) = M2, d(yα, JX(f1, f2)) → 0. Hence there exists a net (zα) in JX(f1, f2)

such that ‖yα − zα‖ → 0. Thus zα → x∗∗ in weak∗-sense. i.e., JX(f1, f2)
w∗

= JX∗∗(f1, f2).

By a similar argument, we can prove (b) for i > 2.

Lemma 2.1.9. Let Y be a finite co-dimensional strongly proximinal subspace of a Banach

space X and let {f1, . . . , fn} ⊂ SY ⊥ be a basis of Y ⊥. Then, for x ∈ BX ,

d(x, JX(f1, . . . , fi)) = d(x, JX∗∗(f1, . . . , fi)).

Proof. If n = 1, then the conclusion follows from Remark 2.1.7(b).

Since no new ideas are required for n > 2, we prove the lemma only for n = 2.

Hence we have to show that for x ∈ BX , d(x, JX(f1, f2)) = d(x, JX∗∗(f1, f2)).

Let d = d(x, JX∗∗(f1, f2)). Since JX∗∗(f1, f2) is weak∗-compact, it is proximinal. Choose

φ ∈ JX∗∗(f1, f2) such that ‖x− φ‖ = d. Since Y is strongly proximinal in X, given ε > 0

there exists a δε > 0 such that d(x, JX(f1, f2)) < ε whenever x ∈ JX(f1, f2, δε).
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Now choose ε > 0 arbitrarily. Let E = span{x, φ} ⊆ X∗∗ and F = span{f1, f2} ⊆ X∗.

Let ε′ be such that 0 < ε′ < min{δε/22 , ε
2(d+1)

}. Now, by the principle of local reflexivity

(see [35]), there exists a bounded linear map T : E → X such that:

(1) Tx = x,

(2) (1− ε′) ≤ ‖T (z∗∗)‖ ≤ (1 + ε′) for z∗∗ ∈ SE,

(3) fi(T (z∗∗)) = z∗∗(fi) for z∗∗ ∈ E and i = 1, 2.

Let x1 = T (φ)
‖T (φ)‖ . Now

‖x− x1‖ ≤ ‖x− Tφ‖+ ‖Tφ− Tφ

‖Tφ‖
‖

= ‖T (x− φ)‖+ |1− ‖Tφ‖|

≤ (1 + ε′)d+ ε′

= d+ ε′(1 + d) < d+
ε

2

and for i = 1, 2, we have

fi(x1) = fi

(
Tφ

‖Tφ‖

)
≥ Mi

1 + ε′

= Mi −
Miε

′

1 + ε′

= Mi −
fi(T (φ))ε′

1 + ε′

> Mi − ε′

> Mi − δε/22 .

Thus x1 ∈ JX(f1, f2, δε/22) and hence we have

d(x1, JX∗∗(f1, f2)) ≤ d(x1, JX(f1, f2)) < ε/22.

Let φ1 ∈ JX∗∗(f1, f2) be such that ‖x1−φ1‖ < ε/22. Then, again by principle of local reflex-

ivity, there exists an element x2 ∈ BX such that ‖x1−x2‖ < ε/22 and fi(x2) > Mi − δε/23 .

30



2.1. Transitivity of Strong Proximinality

Proceeding inductively, we obtain a sequence (xn) in BX such that ‖xn−xn−1‖ < ε/2n

and fi(xn) > Mi − δε/2n+1 for all n ∈ N and for i = 1, 2. Without loss of generality, we

assume that δε/2n → 0.

Clearly, (xn) is a Cauchy sequence and hence there exists an element z ∈ BX such that

z = limn→∞ xn. Now fi(z) = Mi for i = 1, 2 and hence z ∈ JX(f1, f2). Also, for all n ∈ N,

we have ‖x−xn‖ ≤ d+ε/2+ . . .+ε/2n. Now letting n→∞, we get ‖x−z‖ ≤ d+ε. Since

ε > 0 is arbitrary and z ∈ JX(f1, f2), we have d(x, JX(f1, f2)) ≤ d = d(x, JX∗∗(f1, f2)).

Since JX(f1, f2) ⊆ JX∗∗(f1, f2), we have d(x, JX(f1, f2)) ≥ d(x, JX∗∗(f1, f2)) and hence the

result follows.

We now recall some results regarding SSD-points to motivate our next result.

In [16, Theorem 1.2], Franchetti and Payá proved that for a Banach space X, an

element u ∈ SX is an SSD-point of X if and only if u strongly exposes the set JX∗(u),

in the sense that the distance d(fn, JX∗(u)) tends to zero for any sequence (fn) in BX∗

such that fn(u) → 1. But we can easily observe that this is equivalent to the following:

for every ε > 0, there exists a δ > 0 such that d(f, JX∗(u)) < ε whenever f ∈ BX∗ and

f(u) > 1− δ. Hence we get:

Lemma 2.1.10. Let X be a Banach space and u ∈ SX . Then the following are equivalent:

(i) u is an SSD-point of X.

(ii) For every ε > 0, there exists a δ > 0 such that

d(f, JX∗(u)) < ε whenever f ∈ BX∗ and f(u) > 1− δ.

We also have the following characterization of an SSD-point of a dual space.

Lemma 2.1.11 ([19, Lemma 1.1]). Let X be a Banach space and f ∈ SX∗. Then the

following are equivalent:

(i) f is an SSD-point of X∗.
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(ii) f ∈ NA1(X) and for every ε > 0, there exists a δ > 0 such that

d(x, JX(f)) < ε whenever x ∈ BX and f(x) > 1− δ.

The following result also characterizes an SSD-point of a dual space.

Corollary 2.1.12. Let X be a Banach space and f ∈ SX∗. Then f is an SSD-point of X∗

if and only if f is an SSD-point of X∗∗∗.

Proof. Suppose f is an SSD-point of X∗. Let ε > 0. Since f is an SSD-point of X∗,

f ∈ NA1(X). Thus f ∈ NA1(X∗∗). Now, by Lemma 2.1.10, there exists a δ > 0 such that

d(x∗∗, JX∗∗(f)) < ε whenever x∗∗ ∈ BX∗∗ and x∗∗(f) > 1 − δ. Then, by Lemma 2.1.11, it

follows that f is an SSD-point of X∗∗∗.

Conversely, suppose that f is an SSD-point of X∗∗∗. Let ε > 0. Then, by Lemma 2.1.11,

there exists a δ > 0 such that d(x∗∗, JX∗∗(f)) < ε whenever x∗∗ ∈ BX∗∗ and x∗∗(f) > 1− δ.

Hence, by Lemma 2.1.10, f is an SSD-point of X∗.

Since for a Banach space X and for an element f ∈ SX∗ , f is an SSD-point of X∗

if and only if ker(f) is strongly proximinal in X, the following result is immediate from

Corollary 2.1.12.

Proposition 2.1.13. Let Y be subspace of co-dimension 1 in a Banach space X. Then Y

is strongly proximinal in X if and only if Y ⊥⊥ is strongly proximinal in X∗∗.

Proof. Let Y = ker(f) for some f ∈ SX∗ . Then

Y is strongly proximinal in X ⇐⇒ f is an SSD-point of X∗

⇐⇒ f is an SSD-point of X∗∗∗

⇐⇒ Y ⊥⊥ = ker(f) is strongly proximinal in X∗∗.

Our next result generalizes Proposition 2.1.13 for finite co-dimensional case.

Proposition 2.1.14. Let Y be a finite co-dimensional proximinal subspace of a Banach

space X. Then Y is strongly proximinal in X if and only if Y ⊥⊥ is strongly proximinal in

X∗∗.
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Proof. Suppose that Y is strongly proximinal in X. Let {f1, . . . , fn} ⊂ SY ⊥⊥⊥ be a basis

of Y ⊥⊥⊥. As Y ⊥ is finite dimensional, Y ⊥⊥⊥ = Y ⊥. Thus {f1, . . . , fn} is also a basis of

Y ⊥.

Now let i ∈ {1, . . . , n} and let ε > 0. Since Y is strongly proximinal in X, there

exists a δ > 0 such that d(x, JX(f1, . . . , fi)) < ε whenever x ∈ JX(f1, . . . , fi, δ). Then

for x∗∗ ∈ JX∗∗(f1, . . . , fi, δ), we have x∗∗(fj) > Mj − δ for 1 ≤ j ≤ i. Let (xα) be a

net in BX such that xα → x∗∗ in weak∗-sense. Now, without loss of generality, we as-

sume that fj(xα) > Mj − δ for all α and for 1 ≤ j ≤ i. Hence there exists an element

zα ∈ JX(f1, . . . , fi) such that ‖xα − zα‖ < ε. Passing to a subnet of (zα), if neces-

sary, we may assume that zα → φ in weak∗-sense for some φ ∈ JX∗∗(f1, . . . , fi). Thus

(xα − zα) → (x∗∗ − φ) in the weak∗-sense. Then ‖x∗∗ − φ‖ ≤ limα‖xα − zα‖ ≤ ε. There-

fore d(x∗∗, JX∗∗(f1, . . . , fi)) ≤ ‖x∗∗ − φ‖ < ε. Hence, by Theorem 2.1.6, Y ⊥⊥ is strongly

proximinal in X∗∗.

Conversely, suppose that Y ⊥⊥ is strongly proximinal in X∗∗. Let {f1, . . . , fn} ⊂ SY ⊥

be a basis of Y ⊥ and let ε > 0. Since Y ⊥⊥⊥ = Y ⊥, {f1, . . . , fn} is also a basis of Y ⊥⊥⊥. Let

i ∈ {1, . . . , n}. It is easy to observe that JX(f1, . . . , fi, δ) ⊆ JX∗∗(f1, . . . , fi, δ). Since Y ⊥⊥

is strongly proximinal in X∗∗, there exists a δ > 0 such that d(x∗∗, JX∗∗(f1, . . . , fi)) < ε

whenever x∗∗ ∈ JX∗∗(f1, . . . , fi, δ). Then for x ∈ JX(f1, . . . , fi, δ), by Lemma 2.1.9, we

have d(x, JX(f1, . . . , fi)) = d(x, JX∗∗(f1, . . . , fi)) < ε and this completes the proof.

We are now ready to prove the main theorem of this section.

Theorem 2.1.15. Let X be a Banach space and let Z be a finite co-dimensional proximinal

subspace of X. Let Y be an M-ideal in X and let Z ⊆ Y ⊆ X. If Z is strongly proximinal

in Y , then Z is strongly proximinal in X.

Proof. Let Z be strongly proximinal in Y . Then, by Proposition 2.1.14, it follows that Z⊥⊥

is strongly proximinal in Y ⊥⊥. Since Y ⊥⊥ is an M -summand in X∗∗, by Proposition 2.1.5,

Z⊥⊥ is strongly proximinal in X∗∗. Then, again by Proposition 2.1.14, Z is strongly

proximinal in X.
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Example 2.1.1 shows that the strong proximinality, in general, need not be transitive.

We do not know whether we can replace the M -ideal assumption in Theorem 2.1.15 by the

semi M -ideal assumption.

Question 2.1.16. Let Y be a semi M -ideal in X and Z be a strongly proximinal subspace

of Y such that Z is of finite co-dimension in X. Is Z also strongly proximinal in X ?

Example 2.5.2 asserts that the transitivity of strong proximinality fails if we assume

only that Y is an ideal.

Remark 2.1.17. We do not know whether the finite co-dimensionality assumption on Y in

Theorem 2.1.15 is necessary. The answer is not known even if the strong proximinality in

Theorem 2.1.15 is replaced by proximinality.

2.2 SSD-points and Strong Proximinality

For an SSD-point f of X∗, there always exists a norm preserving Hahn-Banach extension

of f to X∗∗ which is an SSD-point of X∗∗∗, namely the canonical image of f in X∗∗∗. But

it is not known whether any norm preserving Hahn-Banach extension of f to X∗∗ is again

an SSD-point. Coming to a more general set up, since X is an ideal in X∗∗, it is natural

to ask the following:

Question 2.2.1. Let Y be an ideal in X and let f be an SSD-point of Y ∗. If f̃ is a norm

preserving Hahn-Banach extension of f to X, then is f̃ an SSD-point of X∗?

We now give an example to show that the above question does not have an affirmative

answer.

Example 2.2.2. There exist a strongly proximinal subspace Y of `1 and an SSD-point of

Y ∗ such that one of its norm preserving Hahn-Banach extension is not an SSD-point of

`∞.

Proof. Let f = (0, 1, 1, . . .) and g = (1,−1
2
,−1

3
, . . .). Then f and g are QP-points of `∞.

Let Z = ker(f) ∩ ker(g) and Y = ker(f). Since f is a QP-point of `∞, Y is strongly
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proximinal in `1. Also, since g attains its norm on Y and g is a QP-point of `∞, by

the proof of [13, Proposition 4.2], g|Y is a QP-point of Y ∗ and hence is an SSD-point of

Y ∗. We observe that f + g is a norm preserving Hahn-Banach extension of g|Y . But, by

Theorem 1.1.6, f + g ∈ Z⊥ is not an SSD-point of `∞.

But the answer to Question 2.2.1 is affirmative under some extra assumptions on Y . Our

next theorem is a particular case of [16, Proposition 2.1], but for the sake of completeness

we outline the proof below.

Theorem 2.2.3. Let Y be a semi L-summand in a Banach space X and let y ∈ Y be an

SSD point of Y . Then y is also an SSD-point of X.

Proof. Let P : X → X be a semi L-projection with range Y , then

d+(y)(x) = d+(y)(Px) + ‖x− Px‖.

Now the conclusion follows from

‖y + tx‖ − 1

t
− d+(y)(x) = ‖Px‖

(
‖y + t‖Px‖ Px

‖Px‖‖ − 1

t‖Px‖
− d+(y)( Px

‖Px‖)

)
.

Since, for an M -ideal Y in X, X∗ = Y ∗
⊕

1 Y
⊥, the following corollary is immediate

from Theorem 2.2.3.

Corollary 2.2.4. If Y is an M-ideal in a Banach space X and f ∈ SY ∗ is an SSD-point of

Y ∗, then the unique a norm preserving Hahn-Banach extension of f to X is an SSD-point

of X∗.

We now prove the following lemma which will be used in the next proposition.

Lemma 2.2.5. Let Y be subspace of a Banach space X and let y ∈ SY . If y is a QP-point

of X, then y is a QP-point of Y .

Proof. Let y be a QP-point of X. Then there exists a δ > 0 such that JX∗(z) ⊆ JX∗(y)

for all z ∈ SX with ‖z − y‖ < δ.
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Now let u ∈ SY be such that ‖u− y‖ < δ. Then JY ∗(u) ⊆ JY ∗(y). For, let f ∈ JY ∗(u).

Let f̃ be a norm preserving Hahn-Banach extension of f to X. Then it follows that

f̃ ∈ JX∗(u) ⊆ JX∗(y). Thus f(y) = f̃(y) = 1 and hence f ∈ JY ∗(y). Therefore y is a

QP-point of Y .

Our next result gives a class of Banach spaces where the notions of SSD-point and

QP-point coincide.

Proposition 2.2.6. For a positive measure µ, an SSD-point of L1(µ) is also a QP-point.

Proof. Let f ∈ L1(µ) be an SSD-point. Since L1(µ) is an L-summand in its bidual, by

Theorem 2.2.3, f is an SSD-point of L1(µ)∗∗. But L1(µ)∗∗ is isometric to C(K)∗ for some

compact Hausdorff space K. Then, by Theorem 1.1.11, f is a QP-point of L1(µ)∗∗. Hence,

by Lemma 2.2.5, f is a QP-point of L1(µ).

The following theorem characterizes strongly proximinal subspaces of C(K).

Theorem 2.2.7 ([14, Corollary 2.3]). Let K be a compact Hausdorff space and Y be a

finite co-dimensional subspace of C(K). Then the following are equivalent:

(i) Y is strongly proximinal in C(K).

(ii) Y ⊥ ⊆{f :f is an SSD-point of C(K)∗}={f :f is a QP-point of C(K)∗}.

Our next result is the generalization of Theorem 2.2.7 to an L1-predual space.

Proposition 2.2.8. Let X be an L1-predual space and Y ⊆ X be a finite co-dimensional

proximinal subspace of X. Then the following are equivalent:

(i) Y is strongly proximinal in X.

(ii) Y ⊥ ⊆{f ∈X∗ :f is an SSD-point of X∗}={f ∈X∗ : f is a QP-point of X∗}.

Proof. The implication (i) =⇒ (ii) follows from Theorem 1.1.8. To prove (ii) =⇒ (i),

suppose that Y ⊥ ⊆{f ∈X∗ : f is an SSD-point of X∗}. Since Y is of finite co-dimension

in X, we can see that Y ⊥⊥⊥ ⊆ {ϕ ∈ X∗∗∗ : ϕ is an SSD-point of X∗∗∗}. Since X is
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an L1-predual space, by Theorem 1.1.33, it follows that X∗∗ = C(K) for some compact

Hausdorff space K. Then, by Theorem 2.2.7, Y ⊥⊥ is strongly proximinal in X∗∗. Hence,

by Proposition 2.1.14, Y is strongly proximinal in X.

If Y is a strongly proximinal subspace of finite co-dimension in a Banach space X, then,

by Theorem 1.1.8, Y is the intersection of finitely many strongly proximinal hyperplanes.

We now prove the converse of this result here.

Corollary 2.2.9. Let X be an L1-predual space. Then the intersection of finitely many

strongly proximinal subspaces of finite co-dimension in X is strongly proximinal in X.

Proof. Let X be an L1-predual space and let {Yi}mi=1 be a finite family of strongly prox-

iminal subspaces of finite co-dimension in X. Let Y =
⋂m
i=1 Yi. For 1 ≤ i ≤ m, let

fi,1, . . . , fi,ni
be SSD-points of X∗ such that Yi =

⋂ni

k=1 ker(fi,k). Thus Y =
⋂
i,k ker(fi,k)

and hence Y ⊥ = span{fi,k : 1 ≤ i ≤ m, 1 ≤ k ≤ ni} ⊆{f ∈X∗ :f is an SSD-point of X∗}.

Hence, by Proposition 2.2.8, Y is strongly proximinal in X.

2.3 Transitivity of Ball Intersection Properties

In this section, we discuss a few ball intersection properties and their transitivity which

are closely related to the notion of proximinality in Banach spaces.

We first recall the following result from [44].

Proposition 2.3.1 ([44, Proposition 2.4]). Let Y be an M-ideal in a Banach space X

and let Z be a subspace of Y . If Z has the 11
2
-ball property in Y , then Z has the 11

2
-ball

property in X.

We now prove a similar result for the (strong) n-ball property under a stronger assump-

tion on Y .

Lemma 2.3.2. Let Y be an M-summand in a Banach space X and let Z be a subspace of

Y . For n ∈ N, if Z has the (strong) n-ball property in Y , then Z has the (strong) n-ball

property in X.
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Proof. Let ε > 0 and let {B(xi, ri)}1≤i≤n be a family of n balls in X such that

B(xi, ri) ∩ Z 6= ∅ for all i = 1, . . . , n and
n⋂
i=1

B(xi, ri) 6= ∅.

Let x ∈
⋂n
i=1B(xi, ri) and let P : X → X be an M -projection with range Y . Then

P (x) ∈
n⋂
i=1

B(P (xi), ri) and B(P (xi), ri) ∩ Z 6= ∅ for all i = 1, . . . , n.

Since Z has the n-ball property in Y , there is an element z ∈ Z
⋂

(
⋂n
i=1B(P (xi), ri + ε)).

Hence ‖z − xi‖ ≤ max{‖z − P (xi)‖, ‖xi − P (xi)‖} ≤ ri + ε for 1 ≤ i ≤ n.

Now the strong n-ball property of Z in X follows by taking ε = 0 in the above proof.

Lemma 2.3.3. Let Y be a subspace of a Banach space X. Then Y is a semi M-ideal in

X if and only if Y ⊥⊥ is a semi M-ideal in X∗∗.

Proof. Suppose Y is a semi M -ideal in X. i.e., Y ⊥ is a semi L-summand in X∗. Then, by

Theorem 1.1.16, it follows that Y ⊥⊥ is a semi M -ideal in X∗∗.

Conversely, suppose that Y ⊥⊥ is a semi M -ideal in X∗∗. Let ε > 0. Let B(x1, r1) and

B(x2, r2) be balls in X such that B(xi, ri)∩Y 6= ∅ for i = 1, 2 and B(x1, r1)∩B(x2, r2) 6= ∅.

Let x ∈ B(x1, r1) ∩ B(x2, r2) and let yi ∈ B(xi, ri) ∩ Y for i = 1, 2. Since Y ⊥⊥ is a semi

M -ideal in X∗∗ and is a weak∗-closed subspace of X∗∗, Y ⊥⊥ has the strong 2-ball property

in X∗∗. Hence there exists an element x∗∗ ∈ Y ⊥⊥ such that ‖x∗∗ − xi‖ ≤ ri for i = 1, 2.

Let E = span{x1, x2, y1, y2, x, x
∗∗} and r = max{r1, r2}. Then, by an extended version of

principle of local reflexivity (see [10, Theorem 3.2]), there exists an operator Tε : E → X

such that:

(1) Tε(z) = z if z ∈ E ∩X,

(2) Tε(E ∩ Y ⊥⊥) ⊆ Y ,

(3) ‖Tε‖ ≤ 1 +
ε

r
.

Now take z = Tε(x
∗∗). Then z ∈ Y and ‖z − xi‖ ≤ ri + ε for i = 1, 2. Hence Y is a semi

M -ideal in X.

38



2.4. M -ideals and Ball Proximinality

Our next result gives a sufficient condition for a semi M -ideal Y in a Banach space X

to be a semi M -ideal in X∗∗.

Corollary 2.3.4. Let Y be a semi M-ideal in a Banach space X. Then Y is a semi

M-ideal in X∗∗ if and only if Y is an M-embedded space.

Proof. Suppose Y is a semi M -ideal in X∗∗. Then Y is a semi M -ideal in its bidual

Y ∗∗ = Y ⊥⊥ and hence, by Theorem 1.1.18, Y is an M -ideal in Y ∗∗.

Conversely, suppose that Y is an M -embedded space. Since Y is a semi M -ideal in X, by

Lemma 2.3.3, Y ⊥⊥ is a semi M -ideal in X∗∗. Then, by using the transitivity property of

semi M -ideals, it follows that Y is a semi M -ideal in X∗∗.

Our next result proves the transitivity of semi M -ideals under an M -ideal assumption

on the intermediate space. Even though the transitivity property of semi M -ideal is proved

in [39], we give an alternate proof of this when the intermediate space is an M -ideal.

Theorem 2.3.5. Let Y be an M-ideal in X and let Z be a subspace of Y . If Z is a semi

M-ideal in Y , then Z is a semi M-ideal in X.

Proof. Since Z ⊆ Y ⊆ X, we have Z⊥⊥ ⊆ Y ⊥⊥ ⊆ X∗∗. Thus, by Lemma 2.3.3, Z⊥⊥ is a

semi M -ideal in Y ⊥⊥ and hence, by Lemma 2.3.2, Z⊥⊥ is a semi M -ideal in X∗∗. Then,

by Lemma 2.3.3, Z is a semi M -ideal in X.

2.4 M-ideals and Ball Proximinality

Corollary 2.5 of [25] claims that M -ideals are ball proximinal. In this section, we disprove

this claim by giving an example.

Example 2.4.1. Let X be the disc algebra (i.e., the Banach space of continuous func-

tions on the closed unit disc which are analytic in the open unit disc, equipped with the

supremum norm) and let Y = {f ∈ X : f(1) = 0}. It is known that Y is an M -ideal in X

and hence Y has the 11
2
-ball property in X. It is proved in [49] that Y does not have the

strong 11
2
-ball property. Since, by Theorem 1.1.27, every ball proximinal subspace with the
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Chapter 2. Transitivity of Proximinality Properties in Banach Spaces

11
2
-ball property has the strong 11

2
-ball property, it follows that Y is not ball proximinal

in X.

We now give a class of Banach spaces in which M -ideals are ball proximinal.

Theorem 2.4.2. Let X be a Banach space. If X has the 3.2.I.P., then every M-ideal in

X satisfies the strong 3-ball property. In particular, M-ideals in an L1-predual space have

the strong 3-ball property.

Proof. Let Y be an M -ideal in X and let {B(xi, ri)}3
i=1 be a family of 3 closed balls in X

such that B(xi, ri) ∩ Y 6= ∅ for all i = 1, 2, 3 and
⋂3
i=1B(xi, ri) 6= ∅. Let ε > 0. Since Y is

an M -ideal in X, there exists an element y0 ∈ Y such that y0 ∈
⋂3
i=1 B(xi, ri + ε). Then

{B(xi, ri)}3
i=1 ∪ {B(y0, ε)} is a mutually intersecting family of closed balls in X. Now, for

every i ∈ {1, 2, 3}, {B(xj, rj)}j 6=i ∪ {B(y0, ε)} is a mutually intersecting family of 3 balls

in X. Since X has 3.2.I.P., these three balls have non-empty intersection. Since Y is an

M -ideal, for every i ∈ {1, 2, 3} and for every δ > 0, there exists a point yi = yi(δ) satisfying

‖yi − xj‖ ≤ rj + δ, j 6= i and ‖yi − y0‖ ≤ ε+ δ for all i = 1, 2, 3.

We now follow the technique used in the proof of [36, Lemma 4.2] in the rest of the proof.

Let y = 1
3

∑3
i=1 yi, then ‖y − y0‖ ≤ ε+ δ and ‖y − xj‖ ≤ rj + δ + 2

3
ε.

Now for δ ≤ ε/6, we have

‖y − y0‖ ≤ 2ε and ‖y − xj‖ ≤ rj + 5
6
ε for j = 1, 2, 3.

From the above inequalities, it follows that there exists a sequence (zm) in Y (with z0 = y0)

such that

‖zm+1 − zm‖ ≤ 2(5
6
)mε

and

‖zm+1 − xj‖ ≤ rj + (5
6
)mε for j = 1, 2, 3.

Hence (zm) is a Cauchy sequence in Y . Let z = limm→∞ zm. Then z ∈
⋂3
j=1B(xj, rj)∩Y

and this concludes the proof of the theorem.
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Corollary 2.4.3. Let X be a Banach space. If X has the 3.2.I.P., then every M-ideal in

X is ball proximinal. In particular, M-ideals in an L1-predual space are ball proximinal.

Proof. Suppose X has the 3.2.I.P. and let Y be an M -ideal in X. Then, by Theorem 2.4.2,

Y has the strong 3-ball property. Since, by Theorem 1.1.27, subspaces with strong 11
2
-ball

property are ball proximinal, we can see that Y is also ball proximinal in X.

2.5 Some Examples

Our first example shows that the strong proximinality assumption on a subspace is not

sufficient to guarantee that any proximinal subspace of it is also proximinal in the bigger

space.

Example 2.5.1. There exist two subspaces Z and Y of finite co-dimension in C[0, 1] such

that Z is proximinal in Y and Y is strongly proximinal in C[0, 1], but Z is not proximinal

in C[0, 1].

Proof. Let k ∈ [0, 1] \ {0, 1, 1
2
, 1

3
, . . .}. Now define µ, ν ∈ C[0, 1]∗ as

µ =
∞∑
n=1

1

2n
δ 1

n
and ν =

1

2
(δ0 − δk).

Then ‖µ‖ = ‖ν‖ = 1. Now take Z = ker(µ) ∩ ker(ν) and Y = ker(ν). Since supp(ν)

is finite, by Theorem 1.1.11, ker(ν) is strongly proximinal in C[0, 1]. Since 1 ∈ ker(ν)

and µ(1) = 1, µ|ker(ν) is a norm attaining functional on ker(ν). Hence it follows that

ker(µ) ∩ ker(ν) = ker(µ|ker(ν)) is a proximinal subspace of ker(ν). But ν is not absolutely

continuous with respect to µ on supp(µ). Hence, by Theorem 1.1.2, ker(µ) ∩ ker(ν) is not

proximinal in C[0, 1].

Our next example is a variant of Example 2.5.1. In fact, it shows that the notion of

strong proximinality may not pass through ideals.

Example 2.5.2. There exist two subspaces Z and Y of finite co-dimension in C[0, 1] such

that Z is strongly proximinal in Y and Y is an ideal in C[0, 1], but Z is not proximinal in

C[0, 1].
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Proof. Let µ, ν and k be as in the proof of Example 2.5.1. Take Z = ker(µ) ∩ ker(ν) and

Y = ker(µ). Choose a continuous function g : [0, 1]→ [−1, 1] such that g( 1
n
) = g(0) = 1 for

n ≥ 2 and g(1) = g(k) = −1. Then g ∈ ker(µ) and ν(g) = 1. Since ν|ker(µ) attains its norm

over ker(µ), ker(µ) ∩ ker(ν) = ker(ν|ker(µ)) is proximinal in ker(µ). Let λ = −
∑∞

n=2
1

2n
δ 1

n
.

Then ker(µ) = ker(λ − δ1) and ‖λ‖ ≤ 1 and hence, by Example 1.1.31, ker(µ) is an L1-

predual space. Then, by Theorem 1.1.34, ker(µ) is an ideal in C[0, 1]. Since ν is not

absolutely continuous with respect to µ on supp(µ), by Theorem 1.1.2, it follows that

ker(µ) ∩ ker(ν) is not proximinal in C[0, 1].

Our next example shows that the property of being a semi M -ideal may not pass

through ideals.

Example 2.5.3. There exist a Banach space X and a semi M -ideal Y in X such that Y

is not a semi M -ideal in X∗∗.

Proof. Take X = `1. Then, for the constant sequence 1 ∈ `∞, by Example 1.1.17, it follows

that Y = ker(1) is a semi M -ideal in `1. But ker(1) is not a semi M -ideal in (`∞)∗. For,

if ker(1) were a semi M -ideal in (`∞)∗, then, by Corollary 2.3.4, ker(1) is an M -embedded

space. From [22, Chapter III, Corollary 3.3.C and Theorem 3.4], it follows that a non-

reflexive M -embedded space contains a subspace isomorphic to c0. Since `1 cannot contain

an isomorphic copy of c0, ker(1) is reflexive. But this is a contradiction as `1 cannot have

a reflexive subspace of co-dimension 1. Hence ker(1) is not a semi M -ideal in (`∞)∗.
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Proximinality Properties in

Vector-valued Function Spaces

In this chapter, for a closed subspace Y of a Banach space X, we define a separably

determined property for Y in X. If the property (P) is either proximinality or the strong

11
2
-ball property and if (P) is separably determined for Y in X, then we prove that L1(µ, Y )

has the same property (P) in L1(µ,X). For an M -embedded space X, we give a class of

elements in L1(µ,X∗∗) having a best approximation from L1(µ,X). We also prove that

some of these proximinality properties are stable under polyhedral direct sums of Banach

spaces. As a corollary, we prove that strong proximinality is stable under finite `1-sums.

Moreover, we characterize SSD-points of `1-sums of dual spaces.

Most of the results in this chapter are from [27].

3.1 Separably Determined Properties

We begin this section by defining a separably determined property which plays a major

role in this section.
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Chapter 3. Proximinality Properties in Vector-valued Function Spaces

Definition 3.1.1. Let Y be a non-separable subspace of a non-separable Banach space X

and let (P ) be a property in X. We call (P ) a separably determined property for Y in X

if for every separable subspace Z of Y , there exists a separable subspace Z ′ of X such that

Z ⊆ Z ′ ⊆ Y and Z ′ has the property (P ) in X.

For some of the proximinality properties (P), our next result shows that if (P) is sepa-

rably determined for Y in X, then Y has the property (P) in X.

Theorem 3.1.2. Let Y be a non-separable subspace of a non-separable Banach space X

and let (P) be one of the following properties:

(a) Proximinality.

(b) Ball proximinality.

(c) Strong proximinality.

(d) The 11
2
-ball property.

(e) The strong 11
2
-ball property.

If (P) is separably determined for Y in X, then Y has the property (P) in X.

Proof. (a) Let x ∈ X. Choose a sequence (yn) in Y such that d(x, Y ) = limn→∞ ‖x− yn‖.

Now let Z = span{yn}n≥1. Then there exists a separable subspace Z ′ of X such that

Z ⊆ Z ′ ⊆ Y and Z ′ is proximinal in X. Thus there exists an element z′ ∈ Z ′ such

that d(x, Z ′) = ‖x− z′‖. Now we have

‖x− z′‖ = d(x, Z ′) ≤ lim
n→∞

‖x− yn‖ = d(x, Y ) ≤ d(x, Z ′) = ‖x− z′‖.

Therefore d(x, Y ) = ‖x− z′‖ and hence Y is proximinal in X.

(b) Let x ∈ X. Suppose (yn) is a sequence in BY such that d(x,BY ) = limn→∞ ‖x− yn‖.

Now let Z = span{yn}n≥1. Then there exists a separable subspace Z ′ of X such that
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Z ⊆ Z ′ ⊆ Y and Z ′ is ball proximinal in X. Thus there exists an element z′ ∈ BZ′

such that d(x,BZ′) = ‖x− z′‖. Now we have

‖x− z′‖ = d(x,BZ′) ≤ lim
n→∞

‖x− yn‖ = d(x,BY ) ≤ d(x,BZ′) = ‖x− z′‖.

Thus d(x,BY ) = ‖x− z′‖ and hence Y is ball proximinal in X.

(c) Suppose Y is not strongly proximinal in X. Then there exists an ε > 0 such that

for all n ∈ N, there exists an element yn ∈ PY (x, 1
n
) such that d(yn, PY (x)) > ε.

Now let Z = span{yn}. Then, by assumption, there exists a separable subspace

Z ′ of X such that Z ⊆ Z ′ ⊆ Y and Z ′ is strongly proximinal in X. Therefore

there exists a δ > 0 such that PZ′(x, δ) ⊆ PZ′(x) + εBY . Since yn ∈ PY (x, 1
n
), it

follows that d(x, Y ) = d(x, Z ′) = limn→∞ ‖x− yn‖. Therefore PZ′(x) ⊆ PY (x) and

hence d(yn, PZ′(x)) ≥ d(yn, PY (x)) > ε for all n. Now since ‖x − yn‖ converges to

d(x, Z ′), we have ‖x − yn‖ < d(x, Z ′) + δ for sufficiently large n. Hence for such n,

d(yn, PZ′(x)) ≤ ε. This contradiction proves (c).

(d) Let x ∈ X, y ∈ Y, B(x, r) ∩ Y 66= ∅ and ‖x − y‖ ≤ r + s (r, s > 0). Let

y0 ∈ B(x, r)∩Y and Z = span{y, y0}. Then, by assumption, there exists a separable

subspace Z ′ of X such that Z ⊆ Z ′ ⊆ Y and Z ′ has the 11
2
-ball property in X. Thus

B(x, r+ε)∩B(y, s+ε)∩Z ′ 66= ∅ for all ε > 0. Therefore B(x, r+ε)∩B(y, s+ε)∩Y 66= ∅

for all ε > 0 and hence Y has the 11
2
-ball property in X.

(e) Let x ∈ X, y ∈ Y, B(x, r)∩Y 66= ∅ and ‖x−y‖ ≤ r+s (r, s > 0). Let y0 ∈ B(x, r)∩Y

and Z = span{y, y0}. Then, by assumption, there exists a separable subspace Z ′ of

X such that Z ⊆ Z ′ ⊆ Y and Z ′ has the strong 11
2
-ball property in X. Thus

B(x, r) ∩B(y, s) ∩ Z ′ 66= ∅. Therefore B(x, r) ∩B(y, s) ∩ Y 66= ∅ and hence Y has the

strong 11
2
-ball property in X.

We now give examples of Banach spaces X and their subspaces Y such that proximinal-

ity is separably determined for Y in X. Since subspaces of reflexive spaces are proximinal,

we use reflexive spaces to produce such examples.
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Lemma 3.1.3. Let {Xi : i ∈ N} be a countable collection of reflexive spaces and let

X =
⊕

c0
Xi. Then, for every separable subspace Y of X, there exists a separable proximinal

subspace Z of X such that Y ⊆ Z ⊆ X.

Proof. Since Y is separable, there exists a countable set {yn} ⊆ Y such that Y = span{yn}.

Let Zi = span{yn(i) : n = 1, 2, . . .} and Z =
⊕

c0
Zi. Clearly, Y ⊆ Z ⊆ X. Since each Zi

is a separable proximinal subspace of Xi, Z is a separable proximinal subspace of X.

Theorem 3.1.4. Let {Xi : i ∈ I} be a family of reflexive spaces and let X =
⊕

c0
Xi. If

Y is a proximinal factor reflexive subspace of X, then proximinality is separably determined

for Y in X.

Proof. Since Y is a proximinal factor reflexive subspace of X, by Proposition 1.1.3, every

f ∈ Y ⊥ is norm attaining. Hence there exists an element x ∈ SX such that f(x) = 1 = ‖f‖.

Since f ∈ X∗ =
⊕

1X
∗
i , we have

∑
i∈I f(i)(x(i)) =

∑
i∈I ‖f(i)‖. Hence f(i)(x(i)) = ‖f(i)‖

for all i ∈ I.

Now suppose f(i) 66= 0 for infinitely many i. Then, for these infinitely many i, we have

1 =
f(i)

‖f(i)‖
(x(i)) =

∣∣∣∣ f(i)

‖f(i)‖
(x(i))

∣∣∣∣ ≤ ‖x(i)‖,

which contradicts the fact that x ∈
⊕

c0
Xi. Hence f(i) = 0 for all but finitely many i.

Hence we can find a finite subset A of I such that f(i) = 0 for all f ∈ Y ⊥ and i 6∈ A. For,

if there is no finite subset A of I such that f(i) = 0 for all f ∈ Y ⊥ and i 6∈ A, then we

can construct a Cauchy sequence in Y ⊥ which does not converge to a point in Y ⊥, which

is a contradiction. Thus, by the canonical identification, we can see that Y ⊥ ⊆
⊕

1
i∈A

X∗i .

Hence we get

Y =

(
Y ∩

⊕
∞

i∈A

Xi

)⊕
∞

⊕
c0

i6∈A

Xi

 .

For, let y ∈ Y . Since X =

(⊕
∞

i∈A

Xi

)⊕
∞

⊕
c0

i6∈A

Xi

, there exist y1 ∈

(⊕
∞

i∈A

Xi

)

and y2 ∈

⊕
c0

i6∈A

Xi

 such that y = y1 + y2 and ‖y‖ = max{‖y1‖, ‖y2‖}. Now for f ∈ Y ⊥,
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since f(y) = f(y2) = 0, we get f(y1) = 0. Thus f(y1) = 0 for all f ∈ Y ⊥. Then

y1 ∈ Y and hence Y ⊆

(
Y ∩

⊕
∞

i∈A

Xi

)⊕
∞

⊕
c0

i6∈A

Xi

. Since f(i) = 0 for all i 6∈ A

and f ∈ Y ⊥, we can see that f(z) = 0 for all z ∈

⊕
c0

i6∈A

Xi

 and f ∈ Y ⊥. Hence

Y =

(
Y ∩

⊕
∞

i∈A

Xi

)⊕
∞

⊕
c0

i6∈A

Xi

.

Let Z be a separable subspace of Y and let {zn}n∈N ⊆ Z be such that Z = span{zn}n∈N.

Then, for every n ∈ N, there exist vn ∈ Y ∩
⊕

∞
i∈A

Xi and wn ∈
⊕

c0
i6∈A

Xi such that

zn = vn + wn and ‖zn‖ = max{‖vn‖, ‖wn‖}. Now let V = span{vn}n∈N and also let

W = span{wn}n∈N. Clearly, V ⊆ Y ∩
⊕

∞
i∈A

Xi. Since A is finite,
⊕

∞
i∈A

Xi is a reflex-

ive space and hence V is a separable proximinal subspace of
⊕

∞
i∈A

Xi. For n ∈ N, let

An = {i ∈ I \ A : wn(i) 6= 0}. Then A0 =
⋃∞
n=1An is a countable subset of I \A. Now, by

the canonical identification, we can see that W ⊆
⊕

∞
i∈A0

Xi. Then, by Lemma 3.1.3, there

exists a separable proximinal subspace W ′ of
⊕

∞
i∈A0

Xi such that W ⊆ W ′ ⊆
⊕

∞
i∈A0

Xi.

Since
⊕

∞
i∈A0

Xi is an M -summand in
⊕

∞
i6∈A

Xi, by Corollary 2.1.3, W ′ is proximinal in⊕
c0

i6∈A

Xi. Now let Z ′ = V
⊕
∞W

′. Then Z ′ is a separable proximinal subspace of X such

that Z ⊆ Z ′ ⊆ Y and hence the theorem follows.

Corollary 3.1.5. Let Y be a finite co-dimensional proximinal subspace of c0(I), where I

is a non-empty discrete set. Then proximinality is separably determined for Y in c0(I).

Our next result gives the `1-sum version of Lemma 3.1.3.

Lemma 3.1.6. Let {Xi : i ∈ N} be a countable collection of reflexive spaces and let

X =
⊕

1Xi. Then, for every separable subspace Y of X, there exists a separable proximinal

subspace Z of X such that Y ⊆ Z ⊆ X.
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Proof. Since Y is separable, there exists a countable set {yn} ⊆ Y such that Y = span{yn}.

Let Zi = span{yn(i) : n = 1, 2, . . .} and Z =
⊕

1 Zi. Clearly, Y ⊆ Z ⊆ X. Since

subspaces of reflexive spaces are proximinal, each Zi is a separable proximinal subspace

of Xi. Also, since countable `1-sums of separable spaces are separable and `1-sums of

proximinal subspaces are proximinal, Z is a separable proximinal subspace of X.

The following result gives the `1-sum version of Theorem 3.1.4.

Theorem 3.1.7. Let {Xi : i ∈ I} be any family of reflexive spaces and let X =
⊕

1Xi.

If Y is a subspace of X such that there exists a finite subset A of I with f(i) = 0 for all

f ∈ Y ⊥ and i 6∈ A, then proximinality is separably determined for Y in X.

Proof. Since f(i) = 0 for all f ∈ Y ⊥ and i 6∈ A, by the canonical identification, we have

Y ⊥ ⊆
⊕

∞
i∈A

X∗i . Hence, as observed in the proof of Theorem 3.1.4, we get

Y =

(
Y ∩

⊕
1

i∈A

Xi

)⊕
1

⊕
1

i6∈A

Xi

 .

Let Z be a separable subspace of Y and let {zn}n∈N ⊆ Z be such that Z = span{zn}n∈N.

Then, for every n ∈ N, there exist vn ∈ Y ∩
⊕

1
i∈A

Xi and wn ∈
⊕

1
i6∈A

Xi such that

zn = vn + wn and ‖zn‖ = ‖vn‖+‖wn‖. Now let V = span{vn}n∈N and letW = span{wn}n∈N.

Clearly, V ⊆ Y ∩
⊕

1
i∈A

Xi. Since A is finite, V is a separable proximinal subspace of
⊕

1
i∈A

Xi.

Since W is a separable subspace of
⊕

1
i6∈A

Xi, by a similar argument used in the proof of

Theorem 3.1.4, there exists a countable subset A0 of I \A such that W ⊆
⊕

1
i∈A0

Xi. Then,

by Lemma 3.1.6, there exists a separable proximinal subspace W ′ of
⊕

1
i∈A0

Xi such that

W ⊆ W ′ ⊆
⊕

1
i∈A0

Xi. Since
⊕

1
i∈A0

Xi is an L-summand in
⊕

1
i6∈A

Xi, by Corollary 2.1.3, W ′

is proximinal in
⊕

1
i6∈A

Xi. Now let Z ′ = V
⊕

1W
′. Then Z ′ is a separable proximinal

subspace of X such that Z ⊆ Z ′ ⊆ Y and hence the theorem follows.
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For 1 ≤ p ≤ ∞ and for a subspace Y of a Banach space X, Example 3.1 of [37]

shows that the proximinality of Y in X need not imply the proximinality of Lp(λ, Y ) in

Lp(λ,X), where λ is the Lebesgue measure on [0, 1]. However, for a complete positive

σ-finite measure µ, the following theorem gives a sufficient condition for Lp(µ, Y ) to be

proximinal in Lp(µ,X).

Theorem 3.1.8 ([37, Theorem 3.4]). Let (Ω, Σ, µ) be a complete positive σ-finite measure

space and let 1 ≤ p ≤ ∞. If Y is a separable proximinal subspace of a Banach space X,

then Lp(µ, Y ) is proximinal in Lp(µ,X).

Moreover, Corollary 3.5 of [37] proves that if every separable subspace of Y is proximinal

in X, then Lp(µ, Y ) is proximinal in Lp(µ,X) for 1 ≤ p ≤ ∞. Our next result generalizes

this fact. Even though it is noted in [37, Remark 3.6], we give a proof of it for the sake of

completeness.

Theorem 3.1.9. Let (Ω, Σ, µ) be a complete positive σ-finite measure space. Let X be a

Banach space and Y be a subspace of X such that proximinality is separably determined

for Y in X. Then, for 1 ≤ p ≤ ∞, Lp(µ, Y ) is proximinal in Lp(µ,X).

Proof. Let f ∈ Lp(µ,X). Now suppose that (fn) is a sequence in Lp(µ, Y ) satisfying

d(f, Lp(µ, Y )) = limn→∞ ‖f − fn‖. Since f ′ns are µ-essentially separably valued, without

loss of generality, we can assume that range(fn) is separable for all n ∈ N. Now for n ∈ N,

let Zn = range(fn) and let Z = span{∪∞n=1Zn}. Since Z is a separable subspace of Y ,

there exists a separable proximinal subspace Z ′ of X such that Z ⊆ Z ′ ⊆ Y . Then,

by Theorem 3.1.8, Lp(µ, Z
′) is proximinal in Lp(µ,X). Hence there exists an element

g ∈ Lp(µ, Z ′) such that ‖f − g‖ = d(f, Lp(µ, Z
′)). Then

d(f, Lp(µ, Y )) ≤ ‖f − g‖ = d(f, Lp(µ, Z
′)) ≤ lim

n→∞
‖f − fn‖ = d(f, Lp(µ, Y )).

Therefore Lp(µ, Y ) is proximinal in Lp(µ,X).

In the case of the strong 11
2
-ball property, we recall the following:
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Theorem 3.1.10 ([44, Theorem 3.1]). Let (Ω, Σ, µ) be a non-atomic σ-finite countably

generated measure space. Let Y be a separable subspace of a Banach space X. If Y has the

strong 11
2
-ball property in X, then L1(µ, Y ) has the strong 11

2
-ball property in L1(µ,X).

Our next theorem generalizes this result.

Theorem 3.1.11. Let (Ω, Σ, µ) be a non-atomic σ-finite countably generated measure

space. Let X be a Banach space and let Y be a subspace of X such that the strong 11
2
-ball

property is separably determined for Y in X. Then L1(µ, Y ) has the strong 11
2
-ball property

in L1(µ,X).

Proof. Let f ∈ L1(µ,X). Now suppose that (fn) is a sequence in L1(µ, Y ) satisfying

d(f, L1(µ, Y )) = limn→∞ ‖f − fn‖. Since f ′ns are µ-essentially separably valued, without

loss of generality, we can assume that range(fn) is separable for all n ∈ N. Now let

Zn = range(fn) and let Z = span{∪∞n=1Zn}. Since Z is separable subspace of Y , there

exists a separable subspace Z ′ of X such that Z ⊆ Z ′ ⊆ Y and Z ′ has the strong 11
2
-ball

property in X. Then, by Theorem 3.1.10, L1(µ, Z ′) has the strong 11
2
-ball property in

L1(µ,X). Hence, by Theorem 1.1.25, there exists an element g ∈ PL1(µ,Z′)(f) such that

‖f‖ = ‖f − g‖+ ‖g‖. Since L1(µ, Z ′) ⊆ L1(µ, Y ),

d(f, L1(µ, Y )) ≤ ‖f − g‖ = d(f, L1(µ, Z ′)) ≤ lim
n→∞

‖f − fn‖ = d(f, L1(µ, Y )).

Hence g ∈ PL1(µ,Y )(f) and the result follows.

Theorem 3.1.10 shows that if Y is a separable subspace of a Banach space X having the

strong 11
2
-ball property in X, then L1(µ, Y ) has the strong 11

2
-ball property in L1(µ,X).

But even for a separable M -ideal Y in X, we do not know whether L1(µ, Y ) has the

strong 11
2
-ball property in L1(µ,X). Now since M -embedded spaces are ‘weakly compactly

generated’, we can find a class of elements in L1(µ,X∗∗) having a best approximation from

L1(µ,X). Our next result proves this.

We recall that a Banach space is called weakly compactly generated if it is the closed

linear span of some weakly compact set.

The following theorem gives examples of weakly compactly generated spaces.
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Theorem 3.1.12 ([22, Chapter III, Theorem 4.6]). M-embedded spaces are weakly com-

pactly generated.

We also recall the following important property of weakly compactly generated spaces.

Theorem 3.1.13 ([12, Chapter 5, Section 2, Theorem 3]). Let X be a weakly compactly

generated Banach space and let Z be a separable subspace of X. Then there exists a

separable 1-complemented subspace Y of X containing Z.

We already noted in Example 2.4.1 that M -ideals need not be ball proximinal. There-

fore we add ball proximinality as an additional assumption in our next result.

Proposition 3.1.14. Let X be an M-embedded space and let X be ball proximinal in

X∗∗. Let (Ω, Σ, µ) be a non-atomic σ-finite countably generated measure space. Let

f ∈ L1(µ,X∗∗) be such that range(f) ⊆ Z⊥⊥, where Z is a separable subspace of X. Then

there exists an element f0 ∈ PL1(µ,X)(f) such that ‖f‖ = ‖f − f0‖+ ‖f0‖.

Proof. Let f ∈ L1(µ,X∗∗) and Z be a separable subspace of X such that range(f) ⊆ Z⊥⊥.

Since X is an M -embedded space, by Theorem 3.1.12 and Theorem 3.1.13, there exists

a separable subspace Y of X such that Z ⊆ Y ⊆ X and a projection P : X → X such

that ‖P‖ = 1 and range(P ) = Y . Then Y is ball proximinal in Y ⊥⊥ = Y ∗∗. For, let

x∗∗ ∈ Y ⊥⊥. Since X is ball proximinal in X∗∗, there exists an element x ∈ BX such that

d(x∗∗, BX) = ‖x∗∗ − x‖. Then P (x) ∈ BY and

d(x∗∗, BY ) ≥ d(x∗∗, BX) ≥ ‖x∗∗ − x‖ ≥ ‖P ∗∗(x∗∗ − x)‖ = ‖x∗∗ − P (x)‖ ≥ d(x∗∗, BY ).

Hence Y is ball proximinal in Y ⊥⊥ = Y ∗∗. Moreover, by Proposition 1.1.14(c), we know

that subspace of an M -embedded space is an M -embedded space. Thus Y is an M -

embedded space. Since, by Theorem 1.1.27, a ball proximinal subspace having the 11
2
-ball

property has the strong 11
2
-ball property, we can see that Y has the strong 11

2
-ball property

in Y ⊥⊥. Then, by Theorem 3.1.10, L1(µ, Y ) has the strong 11
2
-ball property in L1(µ, Y ∗∗).

Since Z⊥⊥ ⊆ Y ⊥⊥ = Y ∗∗, it follows that f ∈ L1(µ, Y ∗∗). Hence, by Theorem 1.1.25, there
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exists an element f0 ∈ PL1(µ,Y )(f) such that ‖f‖ = ‖f − f0‖+ ‖f0‖. Now let g ∈ L1(µ,X).

Then, for t ∈ Ω, we have

‖f(t)− g(t)‖ ≥ ‖P ∗∗(f(t)− g(t))‖ = ‖f(t)− P (g(t))‖.

Hence ‖f − g‖ ≥ ‖f − P ◦ g‖ ≥ ‖f − f0‖. Therefore f0 ∈ PL1(µ,X)(f) and the result

follows.

For a probability measure µ, our next theorem gives a necessary condition for Lp(µ, Y )

to be strongly proximinal in Lp(µ,X).

Theorem 3.1.15. Let Y be a subspace of a Banach space X. Let (Ω, Σ, µ) be a probability

space and let 1 ≤ p ≤ ∞. If Lp(µ, Y ) is strongly proximinal in Lp(µ,X), then Y is strongly

proximinal in X.

Proof. Suppose Lp(µ, Y ) is strongly proximinal in Lp(µ,X). Let x ∈ X and ε > 0. Define

f ∈ Lp(µ,X) as f = xχΩ. Then there exists a δ > 0 such that

PLp(µ,Y )(f, δ) ⊆ PLp(µ,Y )(f) + εBLp(µ,X).

Now let y ∈ PY (x, δ). Define g ∈ Lp(µ, Y ) as g = yχΩ. Then ‖x− y‖ = ‖f − g‖.

Case 1. 1 ≤ p <∞.

For h ∈ Lp(µ, Y ),

‖f − h‖p =

∫
Ω

‖f(ω)− h(ω)‖p dµ ≥
∫

Ω

d(f(ω), Y )p dµ = d(x, Y )p.

Hence d(x, Y ) ≤ d(f, Lp(µ, Y )). Therefore g ∈ PLp(µ,Y )(f, δ). Then, by assumption, there

exists an element g′ ∈ PLp(µ,Y )(f) such that ‖g − g′‖ ≤ ε. Now put y0 =

∫
Ω

g′ dµ. Then,

for all h ∈ Lp(µ, Y ),

‖x− y0‖ =

∥∥∥∥∫
Ω

f dµ−
∫

Ω

g′ dµ

∥∥∥∥ ≤ ‖f − g′‖ = d(f, Lp(µ, Y )) ≤ ‖f − h‖.

Now for u ∈ Y , define h′ ∈ Lp(µ, Y ) as h′ = uχΩ. Then ‖x − y0‖ ≤ ‖f − h′‖ = ‖x − u‖.

Hence y0 ∈ PY (x). Since ‖y − y0‖ ≤ ‖g − g′‖ ≤ ε, y ∈ PY (x) + εBX . This completes the
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proof for 1 ≤ p <∞.

Case 2. p =∞.

For h ∈ L∞(µ, Y ), since ‖f(ω)−h(ω)‖ ≤ ‖f −h‖ for almost all ω ∈ Ω, d(x, Y ) ≤ ‖f −h‖.

Hence d(x, Y ) ≤ d(f, L∞(µ, Y )). Therefore g ∈ PL∞(µ,Y )(f, δ). Then, by assumption,

there exists an element g′ ∈ PL∞(µ,Y )(f) such that ‖g − g′‖ ≤ ε. Hence there exists a

measure zero set E such that ‖f(ω) − g′(ω)‖ ≤ d(f, L∞(µ, Y )) and ‖g(ω) − g′(ω)‖ ≤ ε

for all ω 6∈ E. Fix an ω0 6∈ E and define y0 ∈ Y as y0 = g′(ω0). Now for u ∈ Y , define

h′ ∈ Lp(µ, Y ) as h′ = uχΩ. Then ‖x − y0‖ ≤ ‖f − h′‖ = ‖x − u‖. Hence y0 ∈ PY (x).

Since ‖y − y0‖ ≤ ‖g(ω0) − g′(ω0)‖ ≤ ε, y ∈ PY (x) + εBX . This completes the proof for

p =∞.

But the converse of Theorem 3.1.15 is still not known.

Question 3.1.16. Let (Ω, Σ, µ) be a probability space and let Y be a strongly proximinal

subspace of a Banach space X. Let 1 ≤ p ≤ ∞. Is Lp(µ, Y ) strongly proximinal in

Lp(µ,X)?

3.2 Stability of Proximinality Properties Under Direct

Sums

We begin this section with two lemmas which describe the distance function in `p-sums

and `∞-sums of Banach spaces.

Lemma 3.2.1. Let {Xi : i ∈ I} be a family of Banach spaces and let Yi be a proximinal

subspace of Xi. Let 1 ≤ p < ∞. Let X =
⊕

pXi and Y =
⊕

p Yi. Then, for an element

x = (x(i)) ∈ X, d(x, Y ) =
(∑

i∈I d(x(i), Yi)
p
)1/p

.

Proof. Since each Yi is proximinal in Xi, there exists an element y′i ∈ Yi such that

d(x(i), Yi) = ‖x(i)− y′i‖. Define y′ ∈
∏

i∈I Yi as y′(i) = y′i. Since ‖x(i)− y′(i)‖ ≤ ‖x(i)‖ for

all i ∈ I, we have y′ ∈
⊕

p Yi. Then d(x, Y )p ≤
∑

i∈I ‖x(i)− y′(i)‖p =
∑

i∈I d(x(i), Yi)
p.

Now for any y ∈ Y ,
∑

i∈I d(x(i), Yi)
p ≤

∑
i∈I ‖x(i)− y(i)‖p ≤ ‖x− y‖p. Hence the lemma

follows.
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The following result gives the `∞-sum version and c0-sum version of the above lemma.

Lemma 3.2.2 ([31]). Let {Xi : i ∈ I} be a family of Banach spaces and let Yi be a

proximinal subspace of Xi. Let X =
⊕
∞Xi (X =

⊕
c0
Xi) and Y =

⊕
∞ Yi (Y =

⊕
c0
Yi).

Then, for x ∈ X, d(x, Y ) = supi∈I d (x(i), Yi).

As an immediate consequence of Lemma 3.2.1 and Lemma 3.2.2, we have the following

known result.

Theorem 3.2.3. Let {Xi : i ∈ I} be a family of Banach spaces and let Yi be a subspace of

Xi. Let 1 ≤ p ≤ ∞. Then the following are equivalent:

(i) Yi is proximinal in Xi for all i ∈ I.

(ii)
⊕

p Yi is proximinal in
⊕

pXi.

(iii)
⊕

c0
Yi is proximinal in

⊕
c0
Xi.

Proof. (i) =⇒ (ii): Suppose Yi is proximinal in Xi for all i ∈ I. For 1 ≤ p ≤ ∞, let

x ∈
⊕

pXi. Then there exists an element yi ∈ Yi such that d(x(i), Yi) = ‖x(i)− yi‖ for all

i ∈ I. Define y ∈
∏

i∈I Yi as y(i) = yi for all i ∈ I. Since ‖x(i) − y(i)‖ ≤ ‖x(i)‖ for all

i ∈ I, we can see that the element y ∈
⊕

p Yi. Then, by Lemma 3.2.1 and Lemma 3.2.2,

we get d(x,
⊕

p Yi) = ‖x− y‖. Hence
⊕

p Yi is proximinal in
⊕

pXi.

(ii) =⇒ (i): Let
⊕

p Yi be proximinal in
⊕

pXi. Fix an i ∈ I. Let xi ∈ Xi. Now define an

element x ∈
⊕

pXi by

x(j) =

xi if j = i,

0 otherwise.

Then there exists an element y ∈
⊕

p Yi such that d(x,
⊕

p Yi) = ‖x− y‖. Since

‖xi − y(i)‖ ≤ ‖x− y‖ = d(x,
⊕

pYi) = d(xi, Yi),

we get that Yi is proximinal in Xi.

(i) =⇒ (iii): Suppose Yi is proximinal in Xi for all i ∈ I. Let x ∈
⊕

c0
Xi. Then there

exists an element yi ∈ Yi such that d(x(i), Yi) = ‖x(i)−yi‖ for all i ∈ I. Define y ∈
∏

i∈I Yi
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as y(i) = yi for all i ∈ I. Since ‖y(i)‖ ≤ ‖x(i)− y(i)‖+ ‖x(i)‖ ≤ 2‖x(i)‖ for all i ∈ I, we

can see that the element y ∈
⊕

c0
Yi. Then, by Lemma 3.2.2, we get d(x,

⊕
c0
Yi) = ‖x−y‖.

Hence
⊕

c0
Yi is proximinal in

⊕
c0
Xi.

(iii) =⇒ (i): Suppose
⊕

c0
Yi is proximinal in

⊕
c0
Xi. Fix an i ∈ I. Let xi ∈ Xi. Now

define an element x ∈
⊕

c0
Xi by

x(j) =

xi if j = i,

0 otherwise.

Then there exists an element y ∈
⊕

c0
Yi such that d(x,

⊕
c0
Yi) = ‖x− y‖. Since

‖xi − y(i)‖ ≤ ‖x− y‖ = d(x,
⊕

c0Yi) = d(xi, Yi),

we get that Yi is proximinal in Xi.

We now prove the stability of some proximinality properties under polyhedral direct

sums.

For i = 1, 2, . . . , n, ei ∈ Rn is defined by ei(j) = 0 if i 6= j and ei(j) = 1 if i = j.

We first prove the stability of proximinality under polyhedral direct sums.

Theorem 3.2.4. Let X be a polyhedral direct sum of Banach spaces Xi (1 ≤ i ≤ n) and let

Yi be a subspace of Xi (1 ≤ i ≤ n). Let π be the corresponding polyhedral norm and suppose

π(ei) 6= 0 for all i. Then the polyhedral direct sum Y of Yi (1 ≤ i ≤ n) is proximinal in X

if and only if each Yi is proximinal in Xi (1 ≤ i ≤ n).

Proof. Suppose that each Yi is proximinal in Xi (1 ≤ i ≤ n) and let x ∈ X. Then there

exists an element yi ∈ Yi such that ‖x(i)− yi‖ = d(x(i), Yi) (1 ≤ i ≤ n). Now define y ∈ Y

as y(i) = yi (1 ≤ i ≤ n). Then, for z ∈ Y , we have ‖x(i)− y(i)‖ ≤ ‖x(i)− z(i)‖. Since π

is non-decreasing, ‖x− y‖π ≤ ‖x− z‖π for all z ∈ Y . Hence Y is proximinal in X.

Conversely, suppose Y is proximinal in X and let xi ∈ Xi.

Define x ∈ X by

x(j) =

xi if j = i,

0 otherwise.

55



Chapter 3. Proximinality Properties in Vector-valued Function Spaces

Then there exists an element y ∈ Y such that ‖x− y‖π = d(x, Y ). Now, let zi ∈ Yi. Define

z ∈ Y by

z(j) =

zi if j = i,

0 otherwise.

Then

‖x(i)− y(i)‖π(ei) ≤ ‖x− y‖π ≤ ‖x− z‖π = ‖x(i)− zi‖π(ei).

Hence Yi is proximinal in Xi.

Our next lemma characterizes the distance function in polyhedral direct sums of Banach

spaces.

Lemma 3.2.5. Let X be a polyhedral direct sum of Banach spaces Xi (1 ≤ i ≤ n) and let

π be the corresponding polyhedral norm. Let Yi be a proximinal subspace of Xi (1 ≤ i ≤ n)

and let Y be the polyhedral direct sum of Yi (1 ≤ i ≤ n). Then, for an element x ∈ X,

d(x, Y ) = π(d(x(1), Y1), . . . , d(x(n), Yn)).

Proof. Let y′i ∈ Yi be such that ‖x(i)− y′i‖ = d(x(i), Yi) for all i = 1, . . . , n. Then

d(x, Y ) ≤ π(‖x(1)− y′1‖, . . . , ‖x(n)− y′n‖)

= π(d(x(1), Y1), . . . , d(x(n), Yn))

≤ π(‖x(1)− y1‖, . . . , ‖x(n)− yn‖) for all yi ∈ Yi

= ‖x− y‖π for all y ∈ Y.

i.e., d(x, Y ) ≤ π (d(x(1), Y1), . . . , d(x(n), Yn)) ≤ d(x, Y ), which proves the lemma.

Lemma 3.2.6. Let X be a polyhedral direct sum of Banach spaces Xi (1 ≤ i ≤ n) and let

π be the corresponding polyhedral norm. Let Yi be a subspace of Xi (1 ≤ i ≤ n) and let Y

be the polyhedral direct sum of Yi (1 ≤ i ≤ n). Then, for x ∈ X, we get

PY1(x(1))× . . .× PYn(x(n)) ⊆ PY (x)

and equality holds if gj (ei) > 0 for all i = 1, . . . , n and j = 1, . . . ,m, where {g1, . . . , gm}

is a minimal family generating π.
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Proof. Let yi ∈ PYi(x(i)) for all i = 1, . . . , n and let z ∈ Y . Define y ∈ Y as y(i) = yi

(1 ≤ i ≤ n). Then, for any z ∈ Y , ‖x−y‖π ≤ π(‖x(1)−z(1)‖, . . . , ‖x(n)−z(n)‖) = ‖x−z‖π.

Hence y ∈ PY (x).

Now suppose that gj (ei) > 0 for all i = 1, . . . , n and j = 1, . . . ,m. Let y ∈ PY (x).

Suppose that there exists an element j ∈ {1, . . . , n} such that y(j) 6∈ PYj(x(j)). Without

loss of generality, we can assume that j = 1. Now let r1 = min1≤j≤m gj(e1) and let δ > 0

be such that ‖y(1)− x(1)‖ > d(x(1), Y1) + δ. Then

‖x− y‖π = π (‖x(1)− y(1)‖, . . . , ‖x(n)− y(n)‖)

≥ π (d(x(1), Y1) + δ, d(x(2), Y2), . . . , d(x(n), Yn))

= max
j
gj (d(x(1), Y1) + δ, d(x(2), Y2), . . . , d(x(n), Yn))

≥ max
j
gj (d(x(1), Y1), d(x(2), Y2), . . . , d(x(n), Yn)) + δr1

= d(x, Y ) + δr1,

which is a contradiction.

Our next theorem shows that with an additional assumption on the polyhedral norm,

strong proximinality is stable under polyhedral direct sums.

Theorem 3.2.7. Let X be a polyhedral direct sum of Banach spaces Xi (1 ≤ i ≤ n) and

let Yi be a subspace of Xi (1 ≤ i ≤ n). Let π be the corresponding polyhedral norm with

gj (ei) > 0 for all i = 1, . . . , n and j = 1, . . . ,m, where {g1, . . . , gm} is a minimal family

generating π. Then the polyhedral direct sum Y of Yi (1 ≤ i ≤ n) is strongly proximinal in

X if and only if each Yi is strongly proximinal in Xi (1 ≤ i ≤ n).

Proof. Suppose Y is strongly proximinal in X. Now fix an i ∈ {1, . . . , n}. Then, by

Theorem 3.2.4, Yi is proximinal in Xi.

Now let xi ∈ Xi and ε > 0. Define x ∈ X by

x(j) =

xi if j = i,

0 otherwise.
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Then there exists a δ > 0 such that PY (x, δ) ⊆ PY (x) + r0εBY , where r0 = min1≤i≤n π(ei).

Let r = max1≤i≤n π(ei) and yi ∈ PY (x(i), δ
r
). Define y ∈ Y by

y(j) =

yi if j = i,

0 otherwise.

Now ‖x − y‖π = ‖x(i) − y(i)‖π(ei) < d(x(i), Yi)π(ei) + δ
r
π(ei) ≤ d(x, Y ) + δ. Hence

y ∈ PY (x, δ). Then there exists an element z̃ ∈ PY (x) such that ‖z̃ − y‖ ≤ r0ε. Hence

z̃(i) ∈ PYi(x(i)) and ‖z̃(i) − y(i)‖π(ei) ≤ ‖y − z̃‖ ≤ r0ε < π(ei)ε. Then we have

PYi(xi,
δ
r
) ⊆ PYi(xi) + εBYi and hence Yi is strongly proximinal in Xi.

Conversely, suppose that each Yi is strongly proximinal in Xi (1 ≤ i ≤ n). Then, by

Theorem 3.2.4, Y is proximinal in X. Now let x ∈ X and let ε > 0. Then there exists a

δ > 0 such that PYi(x(i), δ) ⊆ PYi(x(i)) + ε
π(1)

BYi for 1 ≤ i ≤ n. Let ri = min1≤j≤m gj(ei)

and let r′ = min1≤i≤n ri. Let y ∈ PY (x, δr′). Then y(i) ∈ PYi(x(i), δ) for all i = 1, . . . , n.

If not, then there exists an element j ∈ {1, . . . , n} such that y(j) 6∈ PYj(x(j), δ). Without

loss of generality, we can assume that j = 1. Then

‖x− y‖π = π(‖x(1)− y(1)‖, . . . , ‖x(n)− y(n)‖)

≥ π(d(x(1), Y1) + δ, d(x(2), Y2), . . . , d(x(n), Yn))

= max
j
gj(d(x(1), Y1) + δ, d(x(2), Y2), . . . , d(x(n), Yn))

≥ max
j
gj(d(x(1), Y1), d(x(2), Y2), . . . , d(x(n), Yn)) + δr1

≥ d(x, Y ) + δr′.

The above contradiction proves that y(1) ∈ PY1(x(1), δ) and hence y(i) ∈ PYi(x(i), δ) for

all i. Then, for every i ∈ {1, . . . , n}, there exists an element y′i ∈ PYi(x(i)) such that

‖y(i) − y′i‖ ≤ ε
π(1)

. Define an element y′ ∈ Y as y′(i) = y′i. Then y′ ∈ PY (x) and

‖y − y′‖ = π(‖y(1) − y′(1)‖, . . . , ‖y(n) − y′(n)‖) ≤ ε
π(1)

π(1) = ε. Hence y ∈ PY (x) + εBX

and the converse follows.

In Theorem 3.2.7, if we take Xi = R (1 ≤ i ≤ n) and π(t) = g(t), where g ∈ Rn is given

by (1, 1, . . . , 1), then we have the following:
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Corollary 3.2.8. Strong proximinality is stable under finite `1-sums.

Since for a Banach space X and for an f ∈ SX∗ , ker(f) is strongly proximinal in X if

and only if f is an SSD-point of X∗, the problem of stability of strong subdifferentiability

under infinite sums of Banach spaces is of great importance. In [16], Franchetti and Payá

proved that the strong subdifferentiability of the norm is preserved under the formation

of arbitrary c0-sums and arbitrary `p-sums (1 < p < ∞). In [16, Theorem 2.5], they also

characterized SSD-points of arbitrary `∞-sums of Banach spaces. In our next theorem, we

characterize SSD-points of `1-sums of dual spaces.

Theorem 3.2.9. Let {Xi : i ∈ I} be a family of Banach spaces and let X =
⊕

c0
Xi. Then

f ∈ SX∗ is an SSD-point of X∗ if and only if f has only finitely many non-zero components

and for all i ∈ I with f(i) 6= 0, f(i)
‖f(i)‖ is an SSD-point of X∗i .

Proof. It is well-known that
(⊕

c0
Xi

)∗
=
⊕

1X
∗
i . Now let f ∈ SX∗ be an SSD-point of

X∗. Since an SSD-point of X∗ is norm attaining, there exists an element x ∈ SX such that

f(x) = 1 = ‖f‖. Hence f(i)(x(i)) = ‖f(i)‖.

Suppose f(i) 66= 0 for infinitely many i. Then, for these infinitely many i, we have

1 =
f(i)

‖f(i)‖
(x(i)) =

∣∣∣∣ f(i)

‖f(i)‖
(x(i))

∣∣∣∣ ≤ ‖x(i)‖

which contradicts the fact that x ∈
⊕

c0
Xi.

Now let A be a finite subset of I such that f(i) 66= 0 for i ∈ A and f(i) = 0 for i 6∈ A. Now

for g ∈ BX∗ and t > 0,

‖f + tg‖ − 1

t
=
∑
i∈A

‖f(i) + tg(i)‖ − ‖f(i)‖
t

+
∑
i6∈A

‖g(i)‖.

Now letting t→ 0+, we get

d+(f)(g) =
∑
i∈A

d+( f(i)
‖f(i)‖)(g(i)) +

∑
i6∈A

‖g(i)‖.

Hence for g ∈ BX∗ and t > 0, we have

‖f + tg‖ − 1

t
− d+(f)(g) =

∑
i∈A


∥∥∥ f(i)
‖f(i)‖ + t

‖f(i)‖g(i)
∥∥∥− 1

( t
f(i)

)
− d+( f(i)

‖f(i)‖)(g(i))

 . (3.2.1)
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Chapter 3. Proximinality Properties in Vector-valued Function Spaces

Now the necessity follows from the fact that

0 ≤

∥∥∥ f(i)
‖f(i)‖ + t

‖f(i)‖g(i)
∥∥∥− 1

( t
f(i)

)
− d+( f(i)

‖f(i)‖)(g(i)) ≤ ‖f+tg‖−1
t

− d+(f)(g)

for all i ∈ A.

Conversely, suppose that there exists a finite subset A of I such that f(i) = 0 for i 6∈ A

and f(i)
‖f(i)‖ is an SSD-point of X∗i for each i ∈ A. We now observe as before that for every

g ∈ BX∗ , (3.2.1) holds. Let ε > 0 and m be the cardinality of A. Since A is finite and

f(i)
‖f(i)‖ is an SSD-point of X∗i for each i ∈ A, there exists a δ > 0 such that∥∥∥ f(i)

‖f(i)‖ + t
‖f(i)‖gi

∥∥∥− 1

( t
f(i)

)
− d+( f(i)

‖f(i)‖)(gi) <
ε
m

for all i ∈ A, gi ∈ BX∗i
and 0 < t < δ.

Then

0 ≤ ‖f + tg‖ − 1

t
− d+(f)(g) < ε for all g ∈ BX∗ and 0 < t < δ.

Hence f is an SSD-point of BX∗ .

By taking Xi = R for all i ∈ I in Theorem 3.2.9, we get:

Corollary 3.2.10. Let I be a non-empty set. Then SSD-points of `1(I) are precisely the

finitely supported points of `1(I).

Proceeding as in the proof of Theorem 3.2.9, we get:

Theorem 3.2.11. Let Xi (1 ≤ i ≤ n) be Banach spaces and let X =
⊕

1Xi. Then

x ∈ SX is an SSD-point of X if and only if for all i ∈ {1, . . . , n} with x(i) 66= 0, x(i)
‖x(i)‖ is

an SSD-point of Xi.
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4
Intersection Properties of

Balls in Banach Spaces

In this chapter, we introduce a weaker notion of central subspace called almost central

subspace and study Banach spaces that belong to the class (GC). In particular, we prove

that if Y is an almost central subspace of a Banach space X such that Y is in the class

(GC), then Y is a central subspace of X∗∗. We also prove that a Banach space X is an

L1-predual space if and only if X is an almost central subspace of every Banach space

that contains it. Using these intersection properties of balls, we obtain some sufficient

conditions for a semi M -ideal to be an M -ideal. For instance, we prove that if Y is a semi

M -ideal in X such that Y ⊥⊥ is an almost central subspace of X∗∗, then Y is an M -ideal

in X. We also obtain some results on 1-complemented subspaces. Moreover, we prove

the stability of some of the ball intersection properties in quotient spaces, direct sums,

vector-valued continuous function spaces and injective tensor product spaces.

Most of the results in this chapter are from [26].
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Chapter 4. Intersection Properties of Balls in Banach Spaces

4.1 Almost Central Subspaces

We begin this section with the definition of an ‘almost central subspace’ of a Banach space

which is a generalization of the concept called central subspace, defined in [6].

Definition 4.1.1. A subspace Y of a Banach space X is called an almost central subspace

if for every finite set {y1, ..., yn} ⊆ Y , x ∈ X and ε > 0, there exists an element yε ∈ Y

such that ‖yε − yi‖ ≤ ‖x− yi‖+ ε for 1 ≤ i ≤ n.

Our next proposition summarizes some observations regarding almost central subspaces.

Proposition 4.1.2.

(a) Central subspaces of Banach spaces are almost central.

(b) A subspace Y of a Banach space X is an almost central subspace of X if and only if for

each finite family {BY (yi, ri)}ni=1 of closed balls in Y having non-empty intersection

in X, the family {BY (yi, ri + ε)}ni=1 of closed balls in Y has non-empty intersection

in Y for all ε > 0.

(c) A weak∗-closed almost central subspace of a dual space is an AC-subspace .

(d) If Z is an almost central subspace of a Banach space Y and Y is an almost central

subspace of a Banach space X, then Z is an almost central subspace of X.

Proof. (a) Let Y be a central subspace of a Banach spaceX and let x ∈ X, y1, . . . , yn ∈ Y

and ε > 0. Since Y is a central subspace of X, there exists an element y ∈ Y such

that ‖y− yi‖ ≤ ‖x− yi‖ for 1 ≤ i ≤ n. Hence Y is an almost central subspace of X.

(b) Suppose Y is an almost central subspace of X. Let {BY (yi, ri)}ni=1 be a family of n

balls in Y such that there exists an element x ∈ X with x ∈
⋂n
i=1BY (yi, ri). Since Y

is an almost central subspace of X, for every ε > 0, there exists an element yε ∈ Y

such that ‖yε−yi‖ ≤ ‖x−yi‖+ε for all i ∈ {1, . . . , n}. Hence yε ∈
⋂n
i=1BY (yi, ri+ε).
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4.1. Almost Central Subspaces

Conversely, suppose that for every family {BY (yi, ri)}ni=1 of closed balls in Y having

non-empty intersection in X,
⋂n
i=1BY (yi, ri + ε) 6= ∅. Now let y1, . . . , yn ∈ Y , x ∈ X

and ε > 0. Consider the family {BY (yi, ‖x − yi‖)}ni=1 of closed balls in Y . Clearly,

x ∈
⋂n
i=1BY (yi, ‖x−yi‖). Then, by assumption, there exists an element yε ∈ Y such

that yε ∈
⋂n
i=1BY (yi, ‖x − yi‖ + ε). Thus ‖yε − yi‖ ≤ ‖x − yi‖ + ε for i = 1, . . . , n.

Hence Y is an almost central subspace of X.

(c) Let X be a Banach space and Y be a weak∗-closed almost central subspace of X∗. Let

{BY (yα, rα)}α∈I be a family of balls in Y having non-empty intersection in X. Now

consider the family {BY (yα, rα + ε)}α∈I, ε>0. Since Y is an almost central subspace of

X∗, any finite subfamily of {BY (yα, rα + ε)}α∈I, ε>0 has non-empty intersection in Y .

Since Y is a weak∗-closed subspace ofX∗, BY (yα, rα+ε) is weak∗-compact for all α ∈ I

and ε > 0. Then there exists an element y ∈ Y such that y ∈
⋂
α∈I, ε>0BY (yα, rα+ε).

Thus y ∈
⋂
α∈I BY (yα, rα) and hence Y is an AC-subspace of X∗.

(d) Let Z be an almost central subspace of a Banach space Y and let Y be an almost

central subspace of a Banach space X. Let {BZ(zi, ri)}ni=1 be a family of n balls in Z

having non-empty intersection in X. Since Y is an almost central subspace of X, by

(b), the family {BY (zi, ri + ε/2)}ni=1 has non-empty intersection in Y for all ε > 0.

Since Z is an almost central subspace of Y , again by (b), the family {BZ(zi, ri+ε)}ni=1

has non-empty intersection in Z for all ε > 0. Hence Z is an almost central subspace

of X.

The following lemma gives examples of almost central subspaces.

Lemma 4.1.3. Let X be a Banach space and Y be an ideal in X. Then Y is an almost

central subspace of X.

Proof. Let {y1, ..., yn} ⊆ Y , x ∈ X and ε > 0. Choose an η > 0 such that η‖x − yi‖ ≤ ε

for all i ∈ {1, . . . , n}. Define F = span{y1, ..., yn, x}. Since Y is an ideal in X, by

Theorem 1.1.20, there exists an operator Tη : F → Y such that

Tη(y) = y for y ∈ F ∩ Y and ‖Tη‖ ≤ 1 + η.
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Chapter 4. Intersection Properties of Balls in Banach Spaces

Now define yη = Tη(x). Then yη ∈ Y and for 1 ≤ i ≤ n,

‖yη − yi‖ = ‖Tη(x)− Tη(yi)‖ ≤ (1 + η)‖x− yi‖ ≤ ‖x− yi‖+ ε.

Hence Y is an almost central subspace of X.

Since every Banach space is an ideal in its bidual, the following result is immediate

from Lemma 4.1.3.

Corollary 4.1.4. Every Banach space is almost central in its bidual.

Since every M -ideal is an ideal, by Lemma 4.1.3, M -ideals are almost central. We now

give an example to show that a semi M -ideal may not be an almost central subspace.

Example 4.1.5. Let `3
1 denote the three dimensional space R3, endowed with the norm

‖x‖ = |x(1)|+|x(2)|+|x(3)| for x = (x(1), x(2), x(3)) ∈ R3. Now consider the subspace G of

`3
1 defined as G = {(x(1), x(2),−x(1)− x(2)) : x(1), x(2) ∈ R} ⊆ `3

1. Then Example 1.1.17

shows that G is a semi M -ideal in `3
1. But G is not a central subspace of `3

1. For, let

g1 = (−1,−1, 2), g2 = (−1, 2,−1), g3 = (2,−1,−1) and let x = (−1,−1,−1). Then

g1, g2, g3 ∈ G and x ∈ `3
1. Clearly, ‖gi − x‖ = 3 for all i = 1, 2, 3. Suppose there is an

element α ∈ G such that ‖α− gi‖ ≤ 3 for all i = 1, 2, 3. Then

|α(1) + 1|+ |α(2) + 1|+ |α(1) + α(2) + 2| ≤3. (4.1.1)

|α(1) + 1|+ |α(2)− 2|+ |α(1) + α(2)− 1| ≤3. (4.1.2)

|α(1)− 2|+ |α(2) + 1|+ |α(1) + α(2)− 1| ≤3. (4.1.3)

But (4.1.1) shows that both α(1) and α(2) cannot be positive simultaneously. But the

symmetric inequalities (4.1.2) and (4.1.3) rule out other possibilities. Thus G is not a

central subspace of `3
1. Then, by a compactness argument, we can see that G is not an

almost central subspace of `3
1.

In [47, Example 5.6], Veselý gave an example of a three-dimensional Banach space X

such that C([0, 1], X) is not a central subspace of its bidual. Since every Banach space

is an ideal in its bidual, the same example shows that an ideal (in particular, an almost
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4.1. Almost Central Subspaces

central subspace) need not be a central subspace. We now give a sufficient condition for

an almost central subspace to be a central subspace.

Theorem 4.1.6. Let Y be an almost central subspace of a Banach space X such that

Y ∈ (GC). Then Y is a central subspace of X.

Proof. Let {y1, ..., yn} ⊆ Y and x ∈ X. Since Y ∈ (GC), by Proposition 1.1.38, it is

enough to show that
⋂n
i=1BY (yi, ‖x− yi‖+ ε) 6= ∅ for all ε > 0.

Now let ε > 0. Also, let η > 0 be such that η‖x − yi‖ ≤ ε for all i ∈ {1, . . . , n}.

Since Y is an almost central subspace of X, there exists an element y ∈ Y such that

‖y − yi‖ ≤ (1 + η)‖x − yi‖ for all i ∈ {1, . . . , n}. Hence ‖y − yi‖ ≤ ‖x − yi‖ + ε for all

i ∈ {1, . . . , n} and the result follows.

Our next result gives a sufficient condition for an almost central subspace to be an

AC-subspace.

Proposition 4.1.7. Let Y be an almost central subspace of a Banach space X such that

Y is isometric to the range of a projection of norm one in some dual space. Then Y is an

AC-subspace of X.

Proof. Let Z be a Banach space and P : Z∗ → Z∗ be a projection of norm one such that Y

is isometric to range(P ). Let φ : Y → range(P ) be the corresponding onto isometry. Now

let {BY (yα, rα)}α∈I be any family of closed balls in Y and x ∈ X be such that ‖x−yα‖ ≤ rα

for all α ∈ I. Consider the family {BY (yα, rα + ε)}α∈I,ε>0. Since Y is an almost central

subspace of X, any finite collection of balls from this family has non-empty intersection

in Y . Hence any finite collection of balls from the family {BZ∗(φ(yα), rα + ε)}α∈I, ε>0 has

non-empty intersection in range(P ). Now, by weak∗-compactness, there exists an element

f ∈ Z∗ such that ‖f−φ(yα)‖ ≤ rα+ε for all α ∈ I and for all ε > 0. Hence ‖f−φ(yα)‖ ≤ rα

for all α ∈ I. Now define y = φ−1(P (f)). Then, for all α ∈ I, we have

‖y − yα‖ = ‖φ−1(P (f))− φ−1(φ(yα))‖ =‖P (f)− φ(yα)‖ = ‖P (f − φ(yα))‖ ≤ rα.

Hence Y is an AC-subspace of X.
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Chapter 4. Intersection Properties of Balls in Banach Spaces

We now give a class of Banach spaces where almost central subspaces are central.

Proposition 4.1.8. Let X be an L1-predual space and let Y be an almost central subspace

of X. Then Y is an L1-predual space. Moreover, Y is a central subspace of X.

Proof. Let {BY (yi, ri)}ni=1 be any family of n balls in Y such that any two of them intersect

in Y . Since X is an L1-predual space, by Theorem 1.1.33, there exists an element x ∈ X

such that ‖x − yi‖ ≤ ri for all i. Also, since Y is an almost central subspace of X, we

have
⋂n
i=1BY (yi, ri + ε) 6= ∅ for all ε > 0. Then, by Lemma 1.1.29 and Theorem 1.1.33,

it follows that Y is an L1-predual space. Now let {BY (yi, ri)}ni=1 be a family of n balls

in Y that has non-empty intersection in X. It is well-known that two balls intersect if

and only if the distance between the centers is less than or equal to the sum of the radii.

Thus {BY (yi, ri)}ni=1 is a pairwise intersecting family in Y . Since Y is an L1-predual space,

by Theorem 1.1.33, it follows that {BY (yi, ri)}ni=1 intersect in Y . Hence Y is a central

subspace of X.

Our next result gives a characterization of L1-predual spaces in terms of almost central

subspaces.

Theorem 4.1.9. A Banach space X is an L1-predual space if and only if X is an almost

central subspace of every Banach space that contains it.

Proof. Let X be an L1-predual space and let Z be a Banach space such that X ⊆ Z. Then,

by Theorem 1.1.40, X is a central subspace of Z∗∗. Thus X is a central subspace of Z and

hence X is an almost central subspace of Z.

Conversely, suppose that X is an almost central subspace of every Banach space that

contains it. In particular, X is an almost central subspace of `∞(Γ) for some non-empty

discrete space Γ. Since `∞(Γ) is an L1-predual space, by Proposition 4.1.8, it follows that

X is an L1-predual space.

Proposition 14 of [43] proves that if Y is an ideal in a Banach space X with Y ∈ (GC),

then Y is a central subspace of X∗∗. Since every ideal is an almost central subspace, our

next proposition generalizes this result.
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Proposition 4.1.10. Let Y be an almost central subspace of a Banach space X. Then Y

is a central subspace of X∗∗ if and only if Y ∈ (GC).

Proof. Let Y be a central subspace of X∗∗. Since Y ⊆ Y ⊥⊥ ⊆ X∗∗ and Y ⊥⊥ = Y ∗∗, Y is

a central subspace of Y ∗∗. Hence Y ∈ (GC).

Conversely, suppose that Y ∈ (GC). Since Y is an almost central subspace of X and

X is an almost central subspace of X∗∗, by Proposition 4.1.2(d), Y is an almost central

subspace of X∗∗. Hence, by Theorem 4.1.6, it follows that Y is a central subspace of

X∗∗.

By a similar transitivity argument, we have the following corollary.

Corollary 4.1.11. Let Y be a subspace of X such that Y ⊥⊥ is an almost central subspace

of X∗∗. Then Y is an almost central subspace of X∗∗. In addition, if Y ∈ (GC), then Y

is a central subspace of X∗∗.

Proof. Since Y is an almost central subspace of Y ∗∗ = Y ⊥⊥ and Y ⊥⊥ is an almost central

subspace of X∗∗, by Proposition 4.1.2(d), Y is an almost central subspace of X∗∗. If

Y ∈ (GC), then, by Theorem 4.1.6, Y is a central subspace of X∗∗.

4.2 Stability Results

Coming to quotient spaces, one can easily observe that if Y is 1-complemented in a Banach

space X, then for any subspace Z of Y , Y/Z is 1-complemented in X/Z. Motivated by

this, we consider the following problem: Let Y be a subspace of a Banach space X having

some property (P) in X. Then for a subspace Z of Y , when can we say that Y/Z has the

property (P) in X/Z ? We study this problem when the property (P) under consideration

is almost constrained, almost central, central and ideal.

For a subspace Y of a Banach space X and x ∈ X, we denote by [x] the equivalence

class in X/Y containing x.

Our next result solves the above problem for AC-subspaces.
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Proposition 4.2.1. Let Y be an AC-subspace of a Banach space X and let Z be a subspace

of Y . Then Y/Z is an AC-subspace of X/Z.

Proof. Let {BY/Z([yi], ri)}i∈I be a family of balls in Y/Z and also let x ∈ X be such that

[x] ∈
⋂
i∈I BY/Z([yi], ri). Then for each ε > 0 and i ∈ I, there exists an element zε,i ∈ Z

such that

‖x− yi + zε,i‖ ≤ ‖[x]− [yi]‖+ ε ≤ ri + ε for all i ∈ I and ε > 0.

We now consider the family {BY (yi − zε,i, ri + ε)}i∈I,ε>0 of closed balls in Y . Clearly,

x ∈
⋂
i∈I,ε>0BY (yi − zε,i, ri + ε). Since Y is an AC-subspace of X, there exists an element

y ∈ Y such that y ∈
⋂
i∈I,ε>0BY (yi − zε,i, ri + ε). Then, for i ∈ I, we have

‖[y]− [yi]‖ ≤ ‖y − yi + zε,i‖ ≤ ri + ε for all ε > 0.

Therefore ‖[y]− [yi]‖ ≤ ri for all i ∈ I and hence Y/Z is an AC-subspace of X/Z.

We now prove the stability of ideals in quotient spaces.

Proposition 4.2.2. Let Y be an ideal in a Banach space X and let Z be a subspace of Y .

Then Y/Z is an ideal in X/Z.

Proof. Since Y is an ideal in X, by Theorem 1.1.20, Y ⊥⊥ is 1-complemented in X∗∗. Then

Y ⊥⊥/Z⊥⊥ is 1-complemented in X∗∗/Z⊥⊥. But X∗∗/Z⊥⊥ is isometric to (X/Z)∗∗ and this

isometry takes Y ⊥⊥/Z⊥⊥ onto (Y/Z)⊥⊥. Hence (Y/Z)⊥⊥ is 1-complemented in (X/Z)∗∗.

Then, again by Theorem 1.1.20, Y/Z is an ideal in X/Z.

Our next result proves the stability of almost central subspaces in quotient spaces.

Proposition 4.2.3. Let Y be an almost central subspace of a Banach space X and let Z

be a subspace of Y . Then Y/Z is an almost central subspace of X/Z.

Proof. Let [x] ∈ X/Z, {[y1], ..., [yn]} ⊆ Y/Z and ε > 0. Then, for 1 ≤ i ≤ n, there exists

an element zε,i ∈ Z such that

‖x− yi + zε,i‖ ≤ ‖[x]− [yi]‖+ ε/2.
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Since Y is an almost central subspace of X, there exists an element yε ∈ Y such that

‖yε − yi + zε,i‖ ≤ ‖x− yi + zε,i‖+ ε/2 for 1 ≤ i ≤ n.

Now, for 1 ≤ i ≤ n, we have

‖[yε]− [yi]‖ ≤ ‖yε − yi + zε,i‖ ≤ ‖x− yi + zε,i‖+ ε/2 ≤ ‖[x]− [yi]‖+ ε.

Hence Y/Z is an almost central subspace of X/Z.

Now, for Banach spaces X, Y , Z with Z ⊆ Y ⊆ X, our next set of results give some

sufficient conditions for Y/Z to be a central subspace of X/Z.

Combining Proposition 4.2.3 and Theorem 4.1.6, we get:

Corollary 4.2.4. Let Y be an almost central subspace of a Banach space X and let Z be

a subspace of Y . If Y/Z ∈ (GC), then Y/Z is a central subspace of X/Z.

As a consequence of the above corollary, we have the following result.

Corollary 4.2.5. Let Y be a subspace of a Banach space X and let Z be a subspace of Y

such that Y/Z ∈ (GC). If Y ⊥⊥ is an almost central subspace of X∗∗, then Y/Z is a central

subspace of X/Z.

Proof. By Corollary 4.1.11, Y is an almost central subspace of X∗∗. Hence Y is an almost

central subspace of X. Since Y/Z ∈ (GC), by Corollary 4.2.4, Y/Z is a central subspace

of X/Z.

Since every reflexive space is in the class (GC), the following corollary is easy to see.

Corollary 4.2.6. Let Y be a subspace of a Banach space X such that Y ⊥⊥ is an almost

central subspace of X∗∗. Then, for any factor reflexive subspace Z of Y , Y/Z is a central

subspace of X/Z.

We now prove the converse of Proposition 4.2.3 under some additional assumptions.
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Proposition 4.2.7. Let X be an L1-predual space, Z be an M-ideal in X and Y be a

subspace of X such that Z ⊆ Y ⊆ X. If Y/Z is almost central in X/Z, then Y is a central

subspace of X.

Proof. Let x ∈ X, y1 . . . , yn ∈ Y and ε > 0. Then, by assumption, there exists an element

yε ∈ Y such that

‖[yε]− [yi]‖ ≤ ‖[x]− [yi]‖+ ε/2 ≤ ‖x− yi‖+ ε/4.

Let zε,i ∈ Z be such that ‖yε − yi − zε,i‖ ≤ ‖x − yi‖ + ε/2 for all i ∈ {1, . . . , n}. Now

consider the finite family of balls {BX(yε − yi, ‖x − yi‖ + ε/2)}ni=1 in X. Since this is a

pairwise intersecting family of balls in X and X is an L1-predual space, by Theorem 1.1.33,⋂n
i=1BX(yε−yi, ‖x−yi‖+ ε/2) 6= ∅. Also, since Z is an M -ideal in X, by Theorem 1.1.22,

it follows that Z has the n-ball property in X. Then there exists an element zε ∈ Z such

that ‖zε − yε + yi‖ ≤ ‖x− yi‖+ ε for all i ∈ {1, . . . , n}. Therefore Y is an almost central

subspace of X and hence, by Proposition 4.1.8, Y is a central subspace of X.

The following corollary is the converse of Proposition 4.2.2 under some additional as-

sumptions.

Corollary 4.2.8. Let X be an L1-predual space, Z be an M-ideal in X and Y be a subspace

of X such that Z ⊆ Y ⊆ X. If Y/Z is an ideal in X/Z, then Y is an ideal in X.

Proof. Since Y/Z is an ideal in X/Z, by Lemma 4.1.3, Y/Z is an almost central subspace of

X/Z. Thus, by Proposition 4.2.7, Y is a central subspace of X. Then, by Proposition 4.1.8,

Y is an L1-predual space. Hence, by Theorem 1.1.34, Y is an ideal in X.

Remark 4.2.9. It is easy to observe that for any family {Xα : α ∈ Γ} of Banach spaces,

if Yα is an almost central subspace of Xα, then
⊕
∞ Yα is an almost central subspace of⊕

∞Xα.

We now prove the stability of almost central subspaces in vector-valued continuous

function spaces.
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Let K be a compact Hausdorff space and X be a Banach space. Then, for f ∈ C(K)

and x ∈ X, an element f ⊗ x ∈ C(K,X) is defined as (f ⊗ x)(k) = f(k)x for k ∈ K.

Proposition 4.2.10. Let Y be an almost central subspace of a Banach space X and K be

a compact Hausdorff space. Then C(K,Y ) is an almost central subspace of C(K,X).

Proof. Let f1, . . . , fn ∈ C(K,Y ), f ∈ C(K,X) and ε > 0. Then, by the proof of

[36, Page 43, Corollary 2], for the finite family {f1, . . . , fn}, there exists a partition of

unity {ϕj}mj=1 and a closed subspace B of C(K,Y ) spanned by the elements of the form∑m
j=1 ϕj ⊗ yj with yj ∈ Y such that d(fi, B) < ε/4 for 1 ≤ i ≤ n and B is isometric to

(Y
⊕

. . .
⊕

Y )`m∞ . Similarly for f , there exists a partition of unity {ϕ′l}kl=1 and a closed

subspace B′ of C(K,X) spanned by the elements of the form
∑k

l=1 ϕ
′
l ⊗ xl with xl ∈ X

such that d(f,B′) < ε/4 and B′ is isometric to (X
⊕

. . .
⊕

X)`k∞ . Now let f̃ ∈ B′ be such

that ‖f − f̃‖ < ε/4 and f̃i ∈ B be such that ‖fi − f̃i‖ < ε/4 for 1 ≤ i ≤ n.

Case 1. m ≤ k.

Since B is isometric to (Y
⊕

. . .
⊕

Y )`m∞ , B is an M -summand in (Y
⊕

. . .
⊕

Y )`k∞ .

Since M -summands are central subspaces, by Remark 4.2.9 and Remark 4.1.2(d) , it follows

that B is an almost central subspace of B′. Then there exists an element g ∈ B such that

‖g − f̃i‖ ≤ ‖f̃ − f̃i‖+ ε/4 for 1 ≤ i ≤ n. Hence we have

‖g − fi‖ ≤ ‖g − f̃i‖+ ‖f̃i − fi‖

≤ ‖f̃ − f̃i‖+ ε/4 + ε/4

≤ ‖f̃ − f‖+ ‖f − fi‖+ ‖fi − f̃i‖+ ε/2

≤ ‖f − fi‖+ ε.

Case 2. k < m.

In this case, we can isometrically embed B′ into (X
⊕

. . .
⊕

X)`m∞ . Since B is isometric

to (Y
⊕

. . .
⊕

Y )`m∞ , by Remark 4.2.9, B is an almost central subspace of (X
⊕

. . .
⊕

X)`m∞ .

Then there exists an element g ∈ B such that ‖g − f̃i‖ ≤ ‖f̃ − f̃i‖ + ε/4 for 1 ≤ i ≤ n.
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Hence we have

‖g − fi‖ ≤ ‖g − f̃i‖+ ‖f̃i − fi‖

≤ ‖f̃ − f‖+ ‖f − fi‖+ ‖fi − f̃i‖+ ε/2

≤ ‖f − fi‖+ ε.

Thus in all cases there exists an element g ∈ B ⊆ C(K,Y ) such that ‖g−fi‖ ≤ ‖f−fi‖+ε

for 1 ≤ i ≤ n. Hence C(K,Y ) is an almost central subspace of C(K,X).

For a central subspace Y of a Banach space X and for a compact Hausdorff space K, it

is not known whether C(K,Y ) is a central subspace of C(K,X). But if C(K,Y ) ∈ (GC)

and Y is an almost central subspace of X, then, by Proposition 4.2.10 and Theorem 4.1.6,

C(K,Y ) is a central subspace of C(K,X). Now for a Banach space X, Theorem 3.6 of

[48] gives a sufficient condition for C(K,X) to be in the class (GC). Precisely, if X is

a polyhedral Banach space such that X ∈ (GC) and {f ∈ BX∗ : f(x) = 1}
⋂

ext(BX∗)

is finite for each x ∈ SX , then C(K,X) ∈ (GC) (by ext(BX∗), we denote the set of all

extreme points of BX∗ and a Banach space is called polyhedral if the closed unit ball of

each of its finite dimensional subspace is a polytope). Since dual of a finite dimensional

polyhedral space is polyhedral, this will imply that if X is a finite dimensional polyhedral

space, then C(K,X) ∈ (GC). This information together with Proposition 4.2.10 give the

following corollary.

Corollary 4.2.11. Let Y be an almost central subspace of a Banach space X and K

be a compact Hausdorff space. If Y is a polyhedral Banach space such that Y ∈ (GC)

and {g ∈ BY ∗ : g(y) = 1}
⋂

ext(BY ∗) is finite for each y ∈ SY , then C(K,Y ) is a central

subspace of C(K,X). In particular, if Y is a finite dimensional polyhedral central subspace

of X, then C(K,Y ) is a central subspace of C(K,X).

We now discuss the stability problem in injective tensor product spaces. We first recall

the following:

Lemma 4.2.12 ([41, Lemma 2]). Let X and Z be Banach spaces and let Y be an ideal in

Z. Then the injective tensor product Y
∨⊗
X is an ideal in Z

∨⊗
X.
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We now discuss the stability of almost central subspaces under injective tensor product.

Proposition 4.2.13. Let K be a compact Hausdorff space and let A be an almost central

subspace of C(K). Then, for any Banach space X, the injective tensor product A
∨⊗
X is

almost central in C(K,X).

Proof. Since A is an almost central subspace of C(K), by Proposition 4.1.8, it follows

that A is an L1-predual space. Then, by Theorem 1.1.34, A is an ideal in C(K). Hence,

by Lemma 4.2.12, A
∨⊗
X is an ideal in C(K)

∨⊗
X. Since C(K,X) = C(K)

∨⊗
X, by

Lemma 4.1.3, A
∨⊗
X is almost central in C(K,X).

Theorem 4.2.14. Let K be a compact Hausdorff space and let A be an almost central

subspace of C(K). If Y is an almost central subspace of a Banach space X, then the

injective tensor product A
∨⊗
Y is an almost central subspace of C(K)

∨⊗
X. In particular,

A
∨⊗
Y is an almost central subspace of A

∨⊗
X.

Proof. By Proposition 4.2.13, A
∨⊗
Y is almost central in C(K)

∨⊗
Y = C(K,Y ). Then, by

Proposition 4.2.10 and Remark 4.1.2(d), it follows that A
∨⊗
Y is an almost central subspace

of C(K,X) = C(K)
∨⊗
X. Since A

∨⊗
Y ⊆ A

∨⊗
X ⊆ C(K,X), A

∨⊗
Y is an almost central

subspace of A
∨⊗
X.

Corollary 4.2.15. Let Z be an L1-predual space. Then, for any almost central subspace

Y of a Banach space X, the injective tensor product Z
∨⊗
Y is an almost central subspace

of Z
∨⊗
X.

Proof. Since Z is an L1-predual space, by Theorem 1.1.33, Z∗∗ is isometric to C(K) for

some compact Hausdorff space K. Then, by Theorem 4.1.9, Z is an almost central subspace

of C(K). Therefore, by Theorem 4.2.14, Z
∨⊗
Y is an almost central subspace of Z

∨⊗
X.

In [6], Bandyopadhyay and Rao raised the following question: for a family {Xα : α ∈ I}

of Banach spaces, is
⊕

c0
Xα a central subspace of

⊕
∞Xα? In [43], Rao proved that if

Xα ∈ (GC) for all α ∈ I, then this question has an affirmative answer. But our next result
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shows that the above question has an affirmative answer even without any additional

assumption.

Proposition 4.2.16. Let Γ be a non-empty set and Xα (α ∈ Γ) be Banach spaces. Then⊕
c0
Xα is a central subspace of

⊕
∞Xα.

Proof. Let x ∈
⊕
∞Xα and y1, ..., yn ∈

⊕
c0
Xα. Let r = min1≤i≤n ‖x − yi‖. Since

y1, ..., yn ∈
⊕

c0
Xα, there exists a finite set A such that ‖yi(α)‖ ≤ r whenever α /∈ A.

Define z ∈
⊕

c0
Xα as

z(α) =

x(α) if α ∈ A,

0 if α /∈ A.

Now for 1 ≤ i ≤ n,

if α ∈ A, then ‖z(α)− yi(α)‖ = ‖x(α)− yi(α)‖ ≤ ‖x− yi‖ and

if α /∈ A, then ‖z(α)− yi(α)‖ = ‖yi(α)‖ ≤ r ≤ ‖x− yi‖.

Hence ‖z − yi‖ ≤ ‖x− yi‖ for all i.

Corollary 4.2.17. The class (GC) is stable under c0-direct sum of Banach spaces.

Proof. Let Γ be a non-empty set and let Xα ∈ (GC) for all α ∈ Γ. Then
⊕

c0
Xα is a central

subspace of
⊕

c0
X∗∗α . Since

⊕
c0
X∗∗α is a central subspace of

⊕
∞X

∗∗
α = (

⊕
c0
Xα)∗∗, the

result follows from the transitivity property of central subspaces.

We now prove the stability of some ball intersection properties under polyhedral direct

sums.

Our next theorem proves that the property of being a central subspace is stable under

polyhedral direct sums.

Theorem 4.2.18. Let X be a polyhedral direct sum of Banach spaces Xi (1 ≤ i ≤ n)

and Yi be a subspace of Xi (1 ≤ i ≤ n). Let π be the corresponding polyhedral norm and

suppose π(ei) 6= 0 for all i. Then the polyhedral direct sum Y of Yi (1 ≤ i ≤ n) is a central

subspace of X if and only if Yi is a central subspace of Xi for all i.

74



4.2. Stability Results

Proof. Suppose Y is a central subspace of X. Fix an m ∈ {1, . . . , n}. Let xm ∈ Xm and

ym,k ∈ Ym (1 ≤ k ≤ p). Define x ∈ X and yk ∈ Y (1 ≤ k ≤ p) as

x(i) =

xm if m = i,

0 otherwise.

and yk(i) =

ym,k if m = i,

0 otherwise.

Then there exists an element y ∈ Y such that ‖y − yk‖π ≤ ‖x − yk‖π for 1 ≤ k ≤ p.

Therefore, for 1 ≤ k ≤ p, we have

‖y(m)− yk(m)‖π(em) =π(‖y(m)− yk(m)‖em)

≤π(‖(y(1)− yk(1)‖, . . . , ‖y(n)− yk(n)‖)

≤π(‖(x(1)− yk(1)‖, . . . , ‖x(n)− yk(n)‖)

=‖x(m)− yk(m)‖π(em).

Since π(ei) 6= 0 for all i, we get ‖y(m)− ym,k‖ ≤ ‖x(m)− ym,k‖ for 1 ≤ k ≤ p. Hence Ym

is a central subspace of Xm.

Conversely, suppose that Yi is a central subspace of Xi for 1 ≤ i ≤ n. Let x ∈ X and

yk ∈ Y (1 ≤ k ≤ p). Then, for 1 ≤ m ≤ n, there exists an element ym ∈ Ym such that

‖ym − yk(m)‖ ≤ ‖x(m) − yk(m)‖ for 1 ≤ k ≤ p. Define y ∈ Y as y(i) = yi (1 ≤ i ≤ n).

Now using the monotonicity of π, we get

‖y − yk‖π ≤ π(‖(x− yk)(1)‖, . . . , ‖(x− yk)(n)‖) = ‖x− yk‖π for 1 ≤ k ≤ p.

Hence Y is a central subspace of X.

Similarly we can prove the following:

Theorem 4.2.19. Let X be a polyhedral direct sum of Banach spaces Xi (1 ≤ i ≤ n) and

Yi be a subspace of Xi (1 ≤ i ≤ n). Let π be the corresponding polyhedral norm and suppose

π(ei) 6= 0 for all i. Then the polyhedral sum Y of Yi (1 ≤ i ≤ n) is an AC-subspace of X

if and only if Yi is an AC-subspace of Xi for all i.
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Proof. Suppose Y is an AC-subspace of X. Fix an m ∈ {1, . . . , n}. Let xm ∈ Xm and

{ym,α}α∈I ⊆ Ym. Define x ∈ X and yα ∈ Y (α ∈ I) as

x(i) =

xm if m = i,

0 otherwise.

and yα(i) =

ym,α if m = i,

0 otherwise.

Then there exists an element y ∈ Y such that ‖y− yα‖π ≤ ‖x− yα‖π for α ∈ I. Therefore,

for α ∈ I, we have

‖y(m)− yα(m)‖π(em) =π(‖y(m)− yα(m)‖em)

≤π(‖(y(1)− yα(1)‖, . . . , ‖y(n)− yα(n)‖)

≤π(‖(x(1)− yα(1)‖, . . . , ‖x(n)− yα(n)‖)

=‖x(m)− yα(m)‖π(em).

Since π(ei) 6= 0 for all i, we get ‖y(m) − ym,α‖ ≤ ‖xm − ym,α‖ for α ∈ I. Hence Ym is an

AC-subspace of Xm.

Conversely, suppose that Yi is an AC-subspace of Xi for all i ∈ {1, . . . , n}. Now let

x ∈ X and {yα}α∈I ⊆ Y . Then, for m ∈ {1, . . . , n}, there exists an element ym ∈ Ym such

that ‖ym − yα(m)‖ ≤ ‖x(m) − yα(m)‖ for α ∈ I. Define y ∈ Y as y(i) = yi (1 ≤ i ≤ n).

Now using the monotonicity of π, we get

‖y − yα‖π ≤ π(‖(x− yα)(1)‖, . . . , ‖(x− yα)(n)‖) = ‖x− yα‖π for α ∈ I.

Hence Y is an AC-subspace of X.

4.3 1-complemented Subspaces of C(K)

In this section, we first recall the notion of orthogonality in Banach spaces. We also recall

the characterization of 1-complemented subspaces in terms of this orthogonality notion.

Definition 4.3.1. Let X be a Banach space and let x, y ∈ X. We say that x is orthogonal

to y, denoted by x ⊥ y, if ‖x‖ ≤ ‖x + λy‖ for every scalar λ. For subspaces M and N of

X, if x ⊥ y for all x ∈M and y ∈ N , then we write M ⊥ N .
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For any non-empty set I and for any i, j ∈ I, δi,j is defined by

δi,j =

1 if i = j,

0 otherwise.

We now recall some results from [8] regarding orthogonality and 1-complemented subspaces.

Lemma 4.3.2. Let Y be a subspace of a Banach space X. Then we have the following:

(a) Y is 1-complemented in X if and only if there exists a subspace Z of X such that

Y ⊥ Z and X = Y
⊕

Z.

(b) If Y is of co-dimension n in X, then for any projection P from X onto Y there exist

f1, . . . , fn ∈ X∗ and z1, . . . , zn ∈ X such that:

(1) Y =
⋂n
i=1 ker(fi),

(2) P (x) = x−
∑n

i=1 fi(x)zi,

(3) fi(zj) = δi,j for all i, j = 1, . . . , n.

In [7], Baronti and Papini characterized finite co-dimensional 1-complemented sub-

spaces of c0.

Theorem 4.3.3 ([7, Theorem 6.3]). Let Y be a subspace of co-dimension n in c0. Then Y

is 1-complemented in c0 if and only if there exist n different indices t1, . . . , tn and a basis

{f1, . . . , fn} of Y ⊥ such that

‖fi‖ ≤ 2|fi(ti)| for i = 1, . . . , n.

Our next theorem extends this result to the non-separable case, c0(Γ).

Theorem 4.3.4. Let Γ be a non-empty discrete set and Y be a subspace of co-dimension

n in co(Γ). Then Y is 1-complemented in co(Γ) if and only if there exist n different indices

t1, . . . , tn ∈ Γ and a basis {f1, . . . , fn} of Y ⊥ such that

‖fi‖ ≤ 2|fi(ti)| for i = 1, . . . , n.
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Proof. Let Y be a 1-complemented subspace of c0(Γ) of co-dimension n. Let P be a norm

one projection from c0(Γ) onto Y with kernel V . i.e., c0(Γ) = Y ⊕ V .

Let {v1, . . . , vn} be a basis of V and let A1 =
⋃n
i=1{t ∈ Γ : vi(t) 6= 0}. Then A1 is

countable. Since vi(t) = 0 for t 6∈ A1 and i ∈ {1, . . . , n}, we can consider each vi as an

element of c0(A1). Also, we can suppose that there exist n distinct indices t1, . . . , tn such

that vi(tj) = δij (in fact, there exist n distinct indices t1, . . . , tn such that det(vi(tj)) 6= 0

and so we can choose n2 scalars aij (1 ≤ i, j ≤ n) such that the elements ṽi =
∑n

i=1 aijzj

satisfy the condition ṽi(tj) = δij for 1 ≤ i, j ≤ n).

Now, by Hahn-Banach theorem, choose f1, . . . , fn ∈ c0(Γ)∗ = `1(Γ) such that fi|Y = 0

and fi(vj) = δij for 1 ≤ i, j ≤ n. Now let A2 =
⋃n
i=1{t ∈ Γ : fi(t) 6= 0} and A = A1 ∪ A2.

Then, for 1 ≤ i, j ≤ n, we have vi ∈ c0(A), fi ∈ `1(A), vi(tj) = δij and fi(vj) = δij. Also,

P (x) = x−
∑n

i=1 fi(x)vi. Let A = {s1, s2, . . .}.

For j,m ∈ N, define

xmj (sk) =


sgn

(
δjk −

n∑
i=1

fi(sk)vi(sj)

)
if k ≤ m,

0 otherwise.

Then ‖xmj ‖ ≤ 1 for every j, m ∈ N. Also, for j, m ∈ N, we have

P (xmj )(sk) =xmj (sk)−
n∑
i=1

(∑∞
l=1 fi(sl)x

m
j (sl)

)
vi(sk)

=xmj (sk)−
∞∑
l=1

(
∑n

i=1 fi(sl)vi(sk))x
m
j (sl)

=
∞∑
l=1

δlkx
m
j (sl)−

∞∑
l=1

(
∑n

i=1 fi(sl)vi(sk))x
m
j (sl)

=
m∑
l=1

(δlk −
∑n

i=1 fi(sl)vi(sk))x
m
j (sl).

1 = ‖P‖ ≥|P (xmj )(sj)|

=
m∑
l=1

(δlj −
∑n

i=1 fi(sl)vi(sj))sgn (δlj −
∑n

i=1 fi(sl)vi(sj))
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=
m∑
l=1

|δlj −
∑n

i=1 fi(sl)vi(sj)|.

Hence for j ∈ N, we have

1 ≥
∞∑
l=1

|δlj −
∑n

i=1 fi(sl)vi(sj)|. (4.3.1)

From (4.3.1) we have∣∣∣∣∣1−
n∑
i=1

fi(sj)vi(sj)

∣∣∣∣∣+
∞∑
l=1

|
∑n

i=1 fi(sl)vi(sj)| −

∣∣∣∣∣
n∑
i=1

fi(sj)vi(sj)

∣∣∣∣∣ ≤ 1.

Hence
∞∑
l=1

|
∑n

i=1 fi(sl)vi(sj)| ≤ 2

∣∣∣∣∣
n∑
i=1

fi(sj)vi(sj)

∣∣∣∣∣ for all j ∈ N.

If sj = tj (1 ≤ j ≤ n), then
∑∞

l=1 |fj(sl)| ≤ 2 |fj(tj)|. Hence ‖fj‖ ≤ 2|fj(tj)| for 1 ≤ j ≤ n.

Conversely, suppose that there exist t1, . . . , tn ∈ Γ and a basis {f1, . . . , fn} of Y ⊥ such

that ‖fi‖ ≤ 2|fi(ti)| for 1 ≤ i ≤ n. Let A =
⋃n
i=1{t ∈ Γ : fi(t) 6= 0} = {s1, s2, . . .}.

Claim 1. If y ∈ Y \{0} and ‖y‖ = |y(ti)| for some i ∈ {1, . . . , n}, then |y(sp)| = ‖y‖

whenever fi(sp) 6= 0.

For, suppose |y(sp)| < ‖y‖ and fi(sp) 6= 0. Since fi(t) = 0 for t 6∈ A and i ∈ {1, . . . , n},

we can consider each fi as an element of `1(A). Then we have

|f(ti)y(ti)| =|
∞∑
k=1
sk 6=ti

fi(sk)y(sk)|

≤
∞∑
k=1
sk 6=ti

|fi(sk)| |y(sk)|

=|fi(sp)||y(sp)|+
∞∑
k=1

sk 6=ti,sp

|fi(sk)| |y(sk)|

<‖y‖ (‖fi‖ − |fi(ti)|)

≤|y(ti)| |fi(ti)|,

which is a contradiction.
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Claim 2. If y ∈ Y \{0}, then ‖y‖ = |y(sp)| for some sp 6∈ {t1, . . . , tn}.

For, let y ∈ Y \{0}. Assume that ‖y‖ = max{|y(t1)|, . . . , |y(tn)|} > |y(sp)| for every

sp 6∈ {t1, . . . , tn}. Without loss of generality, we assume that y attains its norm only at

the components t1, . . . , tm (m ≤ n). i.e., ‖y‖ = |y(tj)| for every j ∈ {1, . . . ,m}. Then, by

Claim 1, fj(h) = 0 for h 6∈ {t1, . . . , tm} and j = 1, . . . ,m. Hence

fj(y) = 0 =⇒
m∑
i=1

fj(ti)y(ti) = 0 for 1 ≤ j ≤ m.

Since f1, . . . , fn are linearly independent, this system has only trivial solution. i.e., y(tj) = 0

for 1 ≤ j ≤ m. Hence y = 0. This contradiction proves Claim 2.

For s ∈ Γ, es ∈ c0(Γ) is defined by es(t) = 1 if s = t and es(t) = 0 if s 6= t. Then it

follows that eti 6∈ Y . For, if eti ∈ Y , then fi(ti) = fi(eti) = 0 and hence ‖fi‖ = 0, which is

a contradiction.

Now let Z = span{et1 , . . . , etn}. Then c0(Γ) = Y ⊕Z. Let P : c0(Γ)→ c0(Γ) be defined

by P (y+z) = y for y ∈ Y and z ∈ Z. Then P is a projection onto Y . For each y ∈ Y \{0},

define gy : Γ→ R by gy = sgn(y(sp))esp , where sp 6∈ {t1, . . . , tn} is such that ‖y‖ = |y(sp)|.

Then gy ∈ `1(Γ), ‖gy‖ = 1, gy(y) = ‖y‖ and gy(z) = 0 for all z ∈ Z and hence

‖P (y + z)‖ = ‖y‖ = gy(y) = gy(y + z) ≤ ‖y + z‖ for y ∈ Y and z ∈ Z.

Therefore Y is 1-complemented in c0(Γ).

The following result by Baronti characterizes finite co-dimensional 1-complemented

subspaces of `∞.

Theorem 4.3.5 ([8, Theorem]). A subspace Y of co-dimension n in `∞ is 1-complemented

if and only if there exist n distinct elements t1, . . . , tn and n linearly independent functionals

f1, . . . , fn in (`∞)∗ such that:

(a) fi = hi + gi with hi ∈ l1, gi ∈ c⊥0 , i = 1, . . . , n;

(b) Y =
⋂n
i=1 f

−1
i (0);

(c) ‖gi‖ ≤ 2|hi(ti)| − ‖hi‖, i = 1, . . . , n.
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Our next result extends Theorem 4.3.5 to `∞(Γ), for any non-empty discrete set Γ.

Theorem 4.3.6. Let Γ be any infinite discrete set and Y be a subspace of co-dimension n

in `∞(Γ). Then Y is 1-complemented in `∞(Γ) if and only if there exist n distinct elements

t1, . . . , tn in Γ and n linearly independent functionals f1, . . . , fn in (`∞(Γ))∗ such that :

(a) fi = hi + gi with hi ∈ l1(Γ), gi ∈ c0(Γ)⊥, i = 1, . . . , n;

(b) Y =
⋂n
i=1 f

−1
i (0);

(c) ‖gi‖ ≤ 2|hi(ti)| − ‖hi‖, i = 1, . . . , n.

Proof. Let Y be 1-complemented in `∞(Γ). Then there exist n linearly independent el-

ements z1, . . . , zn of `∞(Γ) such that Y ⊥ span{z1, . . . , zn}. We can suppose that there

exist n distinct indices t1, . . . , tn such that zi(tj) = δi,j for i, j = 1, . . . , n. Let P be a norm

one projection from `∞(Γ) onto Y with kernel span{z1, . . . , zn} . Then there exist n lin-

early independent functionals f1, . . . , fn ∈ (`∞(Γ))∗ such that P (x) = x−
∑n

i=1 fi(x)zi for

x ∈ `∞(Γ); fi(zj) = δi,j for i, j = 1, . . . , n and fi = hi + gi with hi ∈ `1(Γ) and gi ∈ c0(Γ)⊥

for i = 1, . . . , n.

Let supp(hi) denote the set of all non-zero co-ordinates of hi. Since hi ∈ `1(Γ), supp(hi)

is countable. Let supp(hi) = {i1, i2, . . .}.

Claim 1. ti ∈ supp(hi) for i = 1, . . . , n.

For, suppose there exists an element i ∈ {1, . . . , n} such that ti 6∈ supp(hi). Now for

k ∈ N, define xk ∈ `∞(Γ) as

xk(p) =


− sgn(hi(p)) if p = i1, . . . , ik;

1 if p = ti;

0 otherwise.

We now observe that xk ∈ c0(Γ) and so gi(xk) = 0. Then we have

fi(xk) = hi(xk) = −
k∑
j=1

|hi(ij)| and

81



Chapter 4. Intersection Properties of Balls in Banach Spaces

1 ≥ |P (xk)(ti)| = |1− hi(x)| ≥ 1 +
k∑
j=1

|hi(ij)|.

Hence
∑k

j=1 |hi(ij)| = 0. Now letting k →∞, we get ‖hi‖ = 0. Thus hi = 0.

We note that gi 6= 0. For, if gi = 0, then fi = 0, which is a contradiction. Since gi 6= 0, for

every ε > 0, there exists an element xε ∈ `∞(Γ) such that ‖xε‖ = 1 and −gi(xε) > ‖gi‖−ε.

Now for k ∈ N, define xεk ∈ `∞(Γ) as

xεk(p) =


− sgn(hi(p)) if p = i1, . . . , ik;

1 if p = ti;

xε(p) otherwise.

We now observe that xεk − xε ∈ c0(Γ) and so gi(x
ε
k) = gi(x

ε). Then we have

1 ≥ |P (xεk)(ti)| = |1− gi(xεk)| = |1− gi(xε)|.

Thus gi(x
ε) ≥ 0 and hence ‖gi‖− ε ≤ −gi(xε) ≤ 0. Now letting ε→ 0, we get gi = 0. This

contradiction shows that ti ∈ supp(hi) for all i ∈ {1, . . . , n}.

Now fix i ∈ {1, . . . , n}. Let ti = ik0 . Now for k > k0, define xk ∈ `∞(Γ) as

xk(p) =


− sgn(hi(p)) if p = i1, . . . , ik; p 6= ti,

1 if p = ti,

0 otherwise.

We now observe that xk ∈ c0(Γ) and so gi(xk) = 0. Then we have

fi(xk) = hi(xk) = hi(ti)−
k∑
j=1
j 6=k0

|hi(ij)| and

1 ≥ |P (xk)(ti)| = |1− hi(xk)| ≥ 1− hi(ti) +
k∑
j=1
j 6=k0

|hi(ij)|.

Thus
∑k

j=1
j 6=ti
|hi(ij)| ≤ hi(ti) and hence ‖hi‖ ≤ 2|hi(ti)|.

We can suppose that gi 6= 0 (in fact, if gi = 0 we have the required conclusion). Then, for
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every ε > 0, there exists an element xε ∈ `∞(Γ) such that ‖xε‖ = 1 and −gi(xε) > ‖gi‖−ε.

Now for k > k0, define xεk ∈ `∞(Γ) as

xεk(p) =


− sgn(hi(p)) if p = i1, . . . , ik; p 6= ti,

1 if p = ti,

xε(p) otherwise.

Then we observe that xεk − xε ∈ c0(Γ) and so gi(x
ε
k) = gi(x

ε). Hence we have

1 ≥ |P (xεk)(ti)| = |1− (hi(x
ε
k) + gi(x

ε
k))|.

Thus hi(x
ε
k) ≥ −gi(xεk) ≥ ‖gi‖ − ε. Since hi(x

ε
k) ≤ |hi(ti)| −

k∑
j=1
j 6=k0

|hi(ij)| +
∞∑

i=k+1

hi(j)x
ε(j),

we have

‖gi‖ ≤ |hi(ti)| −
k∑
j=1
j 6=k0

|hi(ij)|+
∞∑

i=k+1

hi(j)x
ε(j) + ε.

Now letting k →∞ and ε→ 0, we get (c).

Conversely, suppose that there exist n distinct elements t1, . . . , tn in Γ and n linearly

independent functionals f1, . . . , fn in (`∞(Γ))∗ such that :

(a) fi = hi + gi with hi ∈ l1(Γ), gi ∈ c0(Γ)⊥, i = 1, . . . , n;

(b) Y =
⋂n
i=1 f

−1
i (0);

(c) ‖gi‖ ≤ 2|hi(ti)| − ‖hi‖, i = 1, . . . , n.

Claim 2. Let y ∈ Y \{0}. If there exists an element i ∈ {1, . . . , n} such that ‖y‖ = |y(ti)|,

then we get:

(1) gi = 0 if hi(y) = 0,

(2) ‖y‖ = |y(p)| if hi(p) 6= 0,

(3) y ⊥ c0(Γ) if hi(y) 6= 0.
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To prove this claim, we first see that

|hi(y)| =

∣∣∣∣∣∑
s∈Γ

hi(s)y(s)

∣∣∣∣∣
≥ |hi(ti)y(ti)| −

∣∣∣∣∣∑
s 6=ti

hi(s)y(s)

∣∣∣∣∣
≥ |hi(ti)||y(ti)| −

∑
s 6=ti

|hi(s)||y(s)|

= ‖y‖|hi(ti)| −
∑
s 6=ti

|hi(s)||y(s)|

≥ ‖y‖(2|hi(ti)| − ‖hi‖)

≥ ‖y‖‖gi‖ ≥ |gi(y)| = |hi(y)|.

Hence all the above inequalities are equalities. Therefore

|hi(y)| = ‖y‖‖gi‖ = ‖y‖(2|hi(ti)| − ‖hi‖) = ‖y‖|hi(ti)| −
∑
s 6=ti

|hi(s)||y(s)|. (4.3.2)

We now prove the Claim 2.

(1) Now if hi(y) = 0, then, by (4.3.2), ‖gi‖ = 0.

(2) Let p ∈ Γ be such that hi(p) 6= 0 and |y(p)| < ‖y‖. Then, by (4.3.2), we get

‖y‖(‖hi‖ − |hi(ti)|) =
∑
s 6=ti

|hi(s)||y(s)|

= |y(p)||hi(p)|+
∑
s 6=ti,p

|hi(s)||y(s)|

< ‖y‖|hi(p)|+
∑
s 6=ti,p

|hi(s)||y(s)|

≤ ‖y‖(‖hi‖ − |hi(ti)|).

This contradiction proves (2).

(3) Let hi(y) 6= 0. Since fi(y) = 0, gi(y) = −hi(y). Let F ∈ (`∞(Γ))∗ be defined by

F = − ‖y‖
hi(y)

gi. Since gi ∈ c0(Γ)⊥, F ∈ c0(Γ)⊥. Also, since F (y) = ‖y‖, from the first

equation in (4.3.2), we get ‖F‖ = 1. Then for w ∈ c0(Γ), we have

‖y‖ = F (y) = F (y + tw) ≤ ‖y + tw‖.
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Hence y ⊥ c0(Γ). This completes the proof of Claim 2.

For 1 ≤ i ≤ n, eti ∈ `∞(Γ) be defined as eti(s) = δs,ti . Clearly, eti 6∈ Y for 1 ≤ i ≤ n.

Thus `∞(Γ) = Y
⊕

span{et1 , . . . , etn}.

Now let y ∈ Y \ {0}. We split the proof into two cases.

Case 1. Suppose ‖y‖ > max{|y(t1)|, . . . , |y(tn)|} = t̄.

Let k be an integer larger than 2. Then there exists an element t0 ∈ Γ such that

|y(t0)| > ‖y‖ − ‖y‖ − t̄
k

≡ ‖y‖ − t̄k.

Now let t, a1, . . . , an be real numbers. Then

‖y + t(a1et1 + . . .+ anetn)‖ ≥ |y(t0)| > ‖y‖ − t̄k.

Then for k →∞, we have ‖y‖ ≤ ‖y+ t(a1et1 + . . .+anetn)‖. Hence y ⊥ span{et1 , . . . , etn}.

Case 2. Suppose ‖y‖ = max{|y(t1)|, . . . , |y(tn)|}.

Let t, a1, . . . , an be real numbers. We consider the following subcases.

Subcase 1. ‖y‖ = |y(t)| for some t ∈ Γ \ {t1, . . . , tn}.

In this case, we get

‖y + t(a1et1 + . . .+ anetn)‖ ≥ |y(t)| = ‖y‖.

So y ⊥ span{et1 , . . . , etn}.

Subcase 2. Suppose ‖y‖ > |y(t)| for all t ∈ Γ \ {t1, . . . , tn}.

In this case, without loss of generality, we can suppose that t1, . . . , tp are the only

components at which y attains its norm.

If hi(y) 6= 0 for some i ∈ {1, . . . , p}, then, by Claim 2, we have y ⊥ span{et1 , . . . , etn}.

Now suppose hi(y) = 0 for any i ∈ {1, . . . , p}. Then, by Claim 2, we have gi = 0 for

every i ∈ {1, . . . , p} and also hi(t) = 0 for t 6∈ {t1, . . . , tp} and for i = 1, . . . , p. So the

linear system hi(y) = 0, i = 1, . . . , p is a Cramer’s system. Since h1, . . . , hp are linearly

independent, this linear system has no non-trivial solution. Therefore yk = 0 for 1 ≤ k ≤ p.

Hence y = 0. This contradiction proves that the last subcase is not possible. Therefore, in

any case, we have y ⊥ span{et1 , . . . , etn} and hence Y is 1-complemented in `∞(Γ).
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The following result shows that the space `∞(Γ) cannot have a finite co-dimensional

1-complemented subspace containing c0(Γ).

Corollary 4.3.7. Let X be a Banach space such that c0(Γ) ⊂ X ⊂ `∞(Γ) for some infinite

discrete space Γ. If X is a finite co-dimensional subspace of `∞(Γ), then X cannot be a

1-complemented subspace of `∞(Γ).

Proof. Suppose X is 1-complemented in `∞(Γ). Then, by Theorem 4.3.6, there exist n dis-

tinct elements t1, . . . , tn in Γ and n linearly independent functionals f1, . . . , fn in (`∞(Γ))∗

such that :

(a) fi = hi + gi with hi ∈ l1(Γ), gi ∈ c0(Γ)⊥, i = 1, . . . , n;

(b) X =
⋂n
i=1 f

−1
i (0);

(c) ‖gi‖ ≤ 2|hi(ti)| − ‖hi‖, i = 1, . . . , n.

Since X⊥ ⊆ c0(Γ)⊥, fi ∈ c0(Γ)⊥ for all i ∈ {1, . . . , n}. Hence hi = fi − gi ∈ c0(Γ)⊥ for all

i ∈ {1, . . . , n}. Since `∞(Γ)∗ = `1(Γ)
⊕

1 c0(Γ)⊥, we get hi = 0 for all i ∈ {1, . . . , n}. Then,

by (c), gi = 0 and hence fi = 0 for all i ∈ {1, . . . , n}. This contradiction proves that X

cannot be 1-complemented in `∞(Γ).

Let K be a compact Hausdorff space and E be a closed subset of K. Also, let B(K)

be the class of Borel subsets of K. Now, for µ ∈ C(E)∗, we define µ̃ ∈ C(K)∗ as

µ̃(B) =

µ(B) if B ∈ B(K) and B ⊆ E,

0 if B ∈ B(K) and B
⋂
E = ∅.

Lemma 4.3.8. Let K be a compact Hausdorff space and E be a closed subset of K such

that there exists a continuous map ϕ : K → E which is identity on E. For 1 ≤ i ≤ n, let

µi ∈ C(E)∗ . If
⋂n
i=1 ker(µ̃i) is a 1-complemented subspace of C(K), then

⋂n
i=1 ker(µi) is

a 1-complemented subspace of C(E).
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Proof. Suppose P : C(K)→ C(K) is a projection of norm one with range
⋂n
i=1 ker(µ̃i).

Now define P ′ : C(E)→ C(E) by

P ′(f) = P (f ◦ ϕ)|E for f ∈ C(E).

Since ∫
E

P ′(f) dµi =

∫
E

P (f ◦ ϕ)|E dµi =

∫
K

P (f ◦ ϕ) dµ̃i = 0 for all f ∈ C(E),

we get P ′(f) ∈
⋂n
i=1 ker(µi) and hence P ′ is well-defined. Clearly, P ′ is a linear map.

Now let f ∈
⋂n
i=1 ker(µi). Since ϕ is identity on E, we have∫

K

P (f ◦ ϕ) dµ̃i =

∫
E

f dµi = 0 for 1 ≤ i ≤ n.

Thus f ◦ ϕ ∈
⋂n
i=1 ker(µ̃i) and P (f ◦ ϕ) = f ◦ ϕ. Therefore P ′(f) = f and hence P ′ is a

projection onto
⋂n
i=1 ker(µi). Since ‖P ′(f)‖ = ‖P (f ◦ϕ)|E‖ ≤ ‖P (f ◦ϕ)‖ ≤ ‖f ◦ϕ‖ = ‖f‖,

‖P ′‖ = 1. Hence P ′ is the required projection.

We now recall the following property of an extremally disconnected space which will

be used in our next proposition.

Lemma 4.3.9 ([29, Section 7, Lemma 3 and Theorem 3]). Let K be an extremally discon-

nected space. Then there exists a topological space T , a continuous map r : T → K and a

homeomorphic embedding s : K → T such that r ◦ s is the identity map on K and T is the

Stone-Čech compactification of its isolated points.

In our next result, we observe a simple proof for the implication (iii) =⇒ (ii) of

Theorem 1.1.43 when K is an extremally disconnected space.

Proposition 4.3.10. Let K be an extremally disconnected space. If there exist measures

µ1, . . . , µn on K and distinct isolated points k1, . . . , kn of K such that ‖µi‖ ≤ 2|µi({ki})|,

then
⋂n
i=1 ker(µi) is a 1-complemented subspace of C(K).

Proof. Let Γ be a dense subset of K. Since each ki is an isolated point of K, ki ∈ Γ

for all i ∈ {1, . . . , n}. Now consider Γ with the discrete topology and its Stone-Čech
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compactification β(Γ). Then, by Lemma 4.3.9, K is homeomorphically embedded into

β (Γ) and also there exists a continuous map ϕ : β (Γ)→ K such that ϕ is identity on K.

Now consider measures µ̃i on β (Γ) such that µ̃i (D) = 0 for any Borel set D disjoint from

K and µ̃i (D) = µi (D) for any Borel set D ⊆ K. Since ki ∈ Γ, 2|µi({ki})| ≥ ‖µi‖ = ‖µ̃‖.

Since C(β (Γ)) is isometric to `∞ (Γ), by Theorem 4.3.6,
⋂n
i=1 ker(µ̃i) is 1-complemented in

`∞(Γ). Then, by Lemma 4.3.8,
⋂n
i=1 ker(µi) is 1-complemented in C(K).

In an L1-predual space, we do not know whether every AC-subspace of finite co-

dimension is the range of a norm one projection and/or is the intersection of AC-subspaces

of co-dimension one.

4.4 Some Applications

Example 1.1.17 shows that a semi M -ideal need not be an M -ideal. In this section, we

give some sufficient conditions for a semi M -ideal to be an M -ideal in terms of the relative

intersection properties of balls.

The following result by Rao gives a sufficient condition for a semi M -ideal to be an

M -ideal in terms of ideals.

Proposition 4.4.1 ([43, Proposition 23]). Let Y be an ideal in a Banach space X. Then

Y is a semi M-ideal in X if and only if Y is an M-ideal in X.

Our next theorem gives a sufficient condition for a semi M -ideal to be an M -ideal in

terms of almost central subspaces.

Theorem 4.4.2. Let Y be a semi M-ideal in a Banach space X such that Y ⊥⊥ is an

almost central subspace of X∗∗. Then Y is an M-ideal in X.

Proof. Since Y is a semi M -ideal in X, by Lemma 2.3.3, Y ⊥⊥ is a semi M -ideal in

X∗∗. Also, since Y ⊥⊥ is a weak∗-closed almost central subspace of X∗∗, Y ⊥⊥ is an AC-

subspace of X∗∗. Hence for any x∗∗ 6∈ Y ⊥⊥, by Theorem 1.1.42, Y ⊥⊥ is 1-complemented

in span{Y ⊥⊥, x∗∗} and hence is an ideal in span{Y ⊥⊥, x∗∗}. Now, for every x∗∗ 6∈ Y ⊥⊥,

since Y ⊥⊥ is a semi M -ideal in span{Y ⊥⊥, x∗∗}, by Proposition 4.4.1, it follows that Y ⊥⊥
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is an M -ideal in span{Y ⊥⊥, x∗∗}. Hence, by Proposition 1.1.13(a), Y ⊥⊥ is an M -ideal in

X∗∗. Since Y ⊥⊥ is a weak∗-closed M -ideal in X∗∗, by Proposition 1.1.14(a), Y ⊥⊥ is an

M -summand in X∗∗ . Hence, by Proposition 1.1.14(b), there exists an L-summand V in

X∗ such that X∗∗ = Y ⊥⊥
⊕
∞ V

⊥. Then, by the duality between L- and M -projections,

we get X∗ = Y ⊥
⊕

1 V and hence Y is an M -ideal in X.

The following result gives a sufficient condition for an M -ideal to be an M -summand.

Theorem 4.4.3 ([22, Chapter I, Corollary 1.3]). Let X be a Banach space and let Y be

an M-ideal in X. If Y is 1-complemented in X, then Y is an M-summand in X.

Our next result gives a sufficient condition for a semi M -ideal to be an M -summand

and it also improves Theorem 4.4.3.

Theorem 4.4.4. Let Y be an AC-subspace of a Banach space X. Then Y is a semi

M-ideal in X if and only if Y is an M-summand in X.

Proof. Suppose Y is a semi M -ideal in X and is an AC-subspace of X. Since Y is an AC-

subspace of X, by Theorem 1.1.42, Y is 1-complemented in span{Y, x} for all x ∈ X. Also,

since Y is a semi M -ideal in X, Y is a semi M -ideal in span{Y, x} for all x ∈ X. Thus, by

Proposition 4.4.1, Y is an M -ideal in span{Y, x} for all x ∈ X. Then, by Theorem 4.4.3,

Y is an M -summand in span{Y, x} for all x ∈ X. Hence, by Proposition 1.1.13(b), Y is

an M -summand in X.

Our next theorem gives another sufficient condition for a semi M -ideal to be an M -ideal.

In fact, this result improves Proposition 4.4.1.

Theorem 4.4.5. Let Y be a subspace of a Banach space X such that Y is an ideal in

span{Y, x} for all x ∈ X. Then Y is a semi M-ideal in X if and only if Y is an M-ideal

in X.

Proof. Suppose Y is a semi M -ideal in X and is an ideal in span{Y, x} for all x ∈ X.

Then, by Proposition 4.4.1, Y is an M -ideal in span{Y, x} for all x ∈ X. Hence, by

Proposition 1.1.13(a), Y is an M -ideal in X.
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Remark 4.4.6. For a subspace Y of a Banach space X, it is not known whether Y is an

ideal in X even if Y is an ideal in span{Y, x} for all x ∈ X.
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