TESTING AND SIMULATION INVOLVED
IN THE CIRCUIT DESIGN

A dissertation submitted in partial fulfilment of the requirements for the
M. Tech. (Computer Science) degree of the Indian Statistical Institute

Gomathi Nayagam N.

Under The Supervision of

Dr. Bhargab Bhattacharya
Electronics Unit.

INDIAN STATISTICAL INSTITUTE
203, Barrackpore Trunk Road,
Calcutta-700035

July 24, 1996

Indian Statistical Institute
203, B.T. Road,
Calcutta- 700 035.

Certificate of Approval

This is to certify that the thesis titled TESTING AND SIMULATION
INVOLVED IN THE CIRCUIT, DESIGN submitted by N.Gomathi
Nayagam , towards partial fulfillment of the requirements for the degree of
M. Tech. in Computer Science at the Indian Statistical Institute, Calcutta,
embodies the work done under my supervision.

Bhorsed B Bhalls d\msj;
¢

Dr. Bhargab Bhattacharya 3p.7."
Electronics Unit,
Indian Statistical Institute,

Calcutta-700 035.

Acknowledgements

First I would like to thank my guide Prof.Bhargab Bhattacharya who
provided me with an industrially interesting problem. I would also like to
thank him for his excellent guidance.

I would like to thank my classmates Mr .M.Y .Patnaik and Subhasis Ma-
jumdar for the fruitful sessions I had with them regarding my dissertation.

Finally I thank sincerely my classmate Mr.Kausik Dutta who helped me
in latexing the report.

July 10,1996 (Gomathi Nayagam)

The best way of overcoming a
difficult problem is to solve 1t in
some particular easy cases. This
gives much light into the general

solution. By this way Newton.says
he overcame the most difficult things.

David Gregory

Contents

1 Basics and Reviews

1.1 VLSIDesignCycle
1.1.1 System Specification
1.1.2 Functional Design
1.1.3 LogicDesign
1.1.4 Circuit Design
1.1.5 Physical Design
1.1.6 Design Verification
1.1.7 Fabrication
1.1.8 Packaging, Testing and Debugging
1.2 Design Styles e e
1.3 MOS Logic Synthesis - A Review
1.3.1 Some n-MOS BasicCircuits
1.3.2 NAND AND NOR GATES
1.3.3 FunctiontoCircuit

lllllllllllllllllll

About the Problem

2.1 Motivation @ . e e e e e e
2.2 Problem Specification 000 0.,
23 Definitions.t e e e e e e e e
2.4 Mode Of Attacking the Problem.

Proposed Data Structures

3.1 TYPE 1 e e e e e e e e e e
3.1.1 Initialization Phase
3.1.2 ConnectionsPhase

3.2 TYPE 2 e e e e e e e e e e e e e e

3.3 TYPE 3 e e e e e e e e e e e e e e

34 TYPE 4 e e e e e e e e e e e e e e e e e

3.4.1 Initialization Phase(Interactive Mode)

3.4.2 Connection Phase(Interactive Mode)
343 Analysis. oo
4 Algorithm Proposed and Applications
4.1 The Case of Passmode Transistor
4.2 Proposed Algorithm
43 Applications. e
5 Results And Conclusions
51 Implementationu.....
5.2 Details of VariousFunctions
5.3 Conclusions and Future Work

6 REFERENCES

Chapter 1

Basics and Reviews

1.1 VLSI Design Cycle

In this chapter, we briefly review the VLSI Design Cycle. 1t starts with
a formal specification of a VLSI chip, follows a series of steps and finally
produces a packaged chip. A typical design cycle is represented in the
diagram 1.1.

1.1.1 System Specification

The first step is to formulate the specifications of the system to be designed.
It will be basically a high level representation of the system. The factors to
be considered are: performance, functionality and the physical dimensions.
The choice of fabrication technology and design techniques are also consid-
ered here. The end results are specifications for the size, speed, power and
functionality of the VLSI system to be designed.

1.1.2 Functional Design

The behavioral aspects of the system are considered here. The result is usu-
ally a timing diagram or other relationships between subunits to improve the
overall design process and to reduce the complexity of the subsequent phases.

1.1.3 Logic Design

Hexe, the logic structure that represents the functional design is derived and
tested. Usually, logic design is represented by boolean expressions. This

logical design of the system is simulated and tested to verify its correctness.

1.1.4 Circuit Design

Here, the circuit representation based on the logic design is developed. The
circuit design is usually expressed in a detailed circuit diagram. Here also,
the circuit design is simulated and tested to verify its correctness and to
reduce the complexity which might arise in subsequent phases.

1.1.5 Physical Design

In this step, the circuit representation of each component is converted into
a geometric representation. This geometric representation of a circuit is
called a layout. The physical design is a complex process, and is split up

into various units like partitioning, placement, floorplanning, routing and
compaction.

1.1.6 Design Verification

The layout is verified to ensure that it meets the system specifications and
the fabrication requirements. Design verification consists of Design Rule
Checking (DRC) and Circuit Extraction. DRC is a process which verifies
that all geometric patterns meet the design rules imposed by the fabrication
process. Then the functionality of the circuit is verified by circuit extrac-

tion. This is a reverse engineering process and generates the circuit from
the layout. |

1.1.7 Fabrication

After the verification, fabrication is done. This consists of preparation of
wafer, deposition and diffusion of various materials on the wafer according
to layout description.

1.1.8 Packaging, Testing and Debugging

Finally the wafer is fabricated and diced in a fabrication facility. Each chip is
then packaged and tested to ensure that it meets all the design specifications.

The present work is concerned with Circuit and Logical design
phases of the VLSI design cycle.

1.2 Design Styles

In order to achieve the quick time to market, high yield and reducing the
complexity of physical design, restricted models and design styles are used.
The design styles can be broadly classified as either full-custom or sermi-
custom. In a full-custom layout, different blocks of a circuit can be placed at
any location on a silicon wafer as long as all the blocks are non-overlapping.
On the other hand, in semi-custom layout, some parts of a circuit are pre-
designed and placed on some specific places on the silicon wafer. Full cus-
tom is a preferred style for mass produced chips keeping in mind the time
to market. To design an Application Specific Integrated Circuit(ASIC), a
semi-custom layout style is usually preferred.

1.3 MOS Logic Synthesis - A Review

Integrated systems in metal-oxide semiconductor (MOS) actually contain
three or more layers of conducting materials separated by intervening layers
of insulating material. The symbol of a n-MOS transistor is shown in
diagram 1.2. There are three terminals gate, source and drain. The tran-
sistors that are non-conducting with zero gate bias(gate to source voltage)
are called enhancement mode transistors. Most MOS IC’s use transistors
of enhancement type. The transistors that conduct with zero gate bias are
called depletion mode transistors.

CMOS : MOS circuits dissipate i°R power when the output is low. The
heat generated is hard to remove and impedes the performance of these cir-
cuits. To overcome this, a combination of pMOS and nMOS transistors can
be used in building structures which dissipate power only while switching.

This type of structure is called CMOS(complementary metal oxide semicon-
ductor).

CMOS is an inherently low power circuit technology with the capability of
providing a lower power-delay product comparable in design rule to nMOS
and pMOS technologies. For all inputs, there is always a path from ‘1’ or ‘0’
to the output and the full supply voltage appears at the output. Another
advantage of cMOS is that there is no direct path between VDD and GND
for any combination of inputs. This is the basis for the low static power
dissipation in cMOS.

The Table below illustrates the main differences between nMOS and cMOS
technology.

[~ CMOS] — NMOS
Zero Static Power Power is dissipated in the
dissipation circuit with output of gate at ‘0’
Power dissipated during ' Power dissipated during
logic transition logic transition
| requires 2N devices for N inputs Requires{(N+1)devices for
for complementary static gates for N inputs
c-MOS encourages | Depletion,load and different driver |
regular layout transistors create irregularity in
styles layout

We tackle our problem for the n-MOS case with the same solution being
applicable to ¢-MOS also.

1.3.1 Some n-MOS Basic Circuits

Before going into our problem of function extraction which is essentially
travelling from the direction of circuit to that of function, let’s see the other
way round first. i.e., constructing circuit corresponding to given boolean
function.

The general structure of n-MOS circuit is shown in the diagram
1.3.

n-MOS Inverter The basic function of an n-MOS inverter is to produce
an output that is complement of it's input. The logic table and logic symbol
of a basic inverter are shown in diagram 1.2. If the inverter input voltage
is less than the transistor threshold voltage v,then the transistor is switched
off and the output is pulled up to the positive supply voltage VDD. In this
case the output is complement of the input. Refer diagram 1.2.

1.3.2 NAND AND NOR GATES

NAND and NOR logic circuits may be constructed in MOS systems as a
simple extension of the basic inverter circuit. Truth tables and logic
symbolic diagrams are shown in the diagram 1.4. In the NAND cir-
cuit,the output will be low only when both of the inputs A and B are high.
The NAND gate simply consists of a basic inverter with an additional en-
hancement mode transistor in series with the pull-down transistor. NAND
gates with more inputs may be constructed by adding more transistors in
series with the pull-down path.

In the NOR circuit,the output is low if either of the inputs,A and B (or both)
is(are) high. The diagram 1.4 shows a two input NOR gate through a
basic inverter with an additional enhancement mode transistor in parallel
with the pull-down transistor.

Some basic n-MOS circuits and their corresponding outputs as boolean ex-
pressions are given in diagrams 1.5 and 1.6.Circuits in diagrams 1.6a and
1.6b are isomorphic(equivalent). In the second case,the total cost = 5+1 = 6
transistors.Almost 50% savings is achieved in the second case through the
transistor I which is called a bridge type transistor. In the bridge transistor

E,the role of drain and source can be swapped sothat we get paths passing
through E in both the directions.

1.3.3 Function to Circuit

Suppose that we want to implement a function (whose boolean expression is
given as a sum of product) through n-MOS . Then the following procedure
is adapted to construct the circuit.

1. First Invert the function(i.e., findout f)using boolean laws (De Mor-
- gan’s Law).

2. construct the series-parallel portion for it and then attach the load
transistor above it. i.e., while constructing series-parallel portion,each
AND term in f is constructed using a series of transistors and finally
these sequences of series are attached in parallel mode to make the

final sum.

Chapter 2

About the Problem

2.1 Motivation

The purpose of circuit design is to develop a circuit representation
based on the logic design. The boolean expressions(formed during logi-
cal design)are converted into a circuit representation. The speed and power
requirements of original design are also considered here. The circuit design
might be at the gate level or switch(MOS transistors)level.

The testing phase here is the reverse engineering process of extracting
the function from the circuit. The goal is to check whether the circuit is
doing what it is supposed to do. This process in a way,is analogous to circuit
extraction as a part of design verification after the physical design.

I TeRTT =R E — -

Logic design
Sinulate

and
Test

Circuit design

Physical design

Suppose that we replace a portion of the circuit by a component from
VLSI library. The first necessary condition we have to ensure is that both
the circuits are equivalent. The objective for such replacement is

2.2

2.3

. Area Optimization.

Minimization of Gate Delays.

. Better Performance in terms of speed and other Power requirements.

Problem Specification

. First | to devise a method for creating user interface of dealing with

MOS circuits and simulate the whole operation of the circuit.

. To automate the testing process of circuit design through devising a

strategy for exiracting the function out of the circuit at the switch
level. In our problems we specialize for series-parallel circuits.

. To findout a method to systematize the problem of circuit Isomorphism

i.e., to findout a systematic procedure for equality comparison between
two functions.

Definitions

To clear out the certain terms in the above problem specification we pro-
pose the following definitions.
Assumptions : First we deal with undirected connected graphs inwhich
two vertlices are designated as 1. source and 2. sink(or target) and they are
fixed afterwards. The following definitions depend on this assumption.

9

Series-Parallel Edge: In an undirected connected graph with the above
assumption an edge uv is called a series - parallel edge ifl every path from
source to sink passing through the edge uv has the same order of u occuring
first and v following it or vice-versa(i.e., every path through the edge has
reverse ordering). ,

Note: A path from source to sink passing through uv is a directed one.
Hence we call the edge uv as a directed edge. Note that uv is a series -
parallel edge iff vu is not.

Series-Parallel Graph: Series parallel graph is a graph in which every
edge is a series parallel edge. Similiarly we can define series-parallel notion
for the directed graph also.

Alternative Deflnition: This is the alternate way of defining series- par-
allel graph recursively.

Definition: The following graph only with two vertices one designated as
source(s) and the other as target(t),is series parallel.

source target.

If (81C1ty) and (83C5t) are series parallel graphs,then (88;C11t) and (
387C5tat) connected in parallel or series is also a series parallel graph, where
s is the source and t is the target in the above graph.

Series Parallel Circuit: Series parallel circuit(at the switch level) is a cir-
cuit of MOS transistors (n-MOS) whose underlying graph is series parallel.
Circuit Isomorphism: Two circuits are said to be isomorphic iff the fol-
lowing conditions hold.

1. No of primary inputs of circuitl is equal to no of primary inputs of
circuit 2.

2. There exists a one-one & onto function f: from primary inputs of
circuitl, say {a1,as,...,an} to the primary inputs of circuit 2, say {
b1,ba,. . . ,bs }such that two circuits produce the same output when both
e1,a3,. . .,a, and f(a1),f(a2),...,f(a,) are given the same binary n-bit
input string, in the same order.

Problem Of Circuit Isomorphism For switch level Circuits : Prob-
lemn of Circuit Isomorphism is : Given two circuits at the switch level, to
say decisively whether they are isomorphic or not?

10

2.4 Mode Of Attacking the Problem.

We transform MOS level circuit description into a graph for simplest

representation and for further ma.nlpulatmn The graph is constructed as
follows: ’

Each edge in the graph represents a transistor in the circuit and vertices rep-
resent the junction between the transistors. Some examples are given
in the diagram 2.1 .

Edges are named by the signal names applied to the transistors. The above
Circuit transformation graphs can be broadly classified into two categories.

1. Interconnect of Switch-Mode Transistors

(a) Series Parallel Graphs

(b) Non Series Parallel Graphs

2. General Interconnect (includes passmode transistors)

(a) Series Parallel Graphs

(b) Non Series Parallel Graphs

Examples are shown in the diagram 2.2.

A gate level specification(as a sum of product) is essentially a ser:es—paralle]
structure. A MOS Network supports a general structure.

Suppose an n-MOS circuit is given. We specialize in the case of series par-
allel types of circuits.

1. First we have to find an efficient way of encoding the circuit into the
computer so that we can take the circuit as the input from the user and
do further necessary manipulations on it. The data structures which
we choose must be linear order in the no of transistors in the n-MOS
circuit, as far as the space complexity is concerned. Another point to
be noted in this scheme is that we should check for the consistency of
the circuit. ie., false specifications of a circuit (such as specifying less
no of connections) by the user must be trapped.

11

2. We have to simulate the operation of the circuit to check the proper
functionality of the circuit.

3. From the given circuit, we have to build the corresponding series par-
allel graph. '

4. From the graph, we have to extract the product terms by choesing an
appropriate path traversing algorithm from the source to sink. Each
path will give rise to one product term. The set of all possible paths in

the graph from vdd to earth will depict the fuctionality of the whole
circuit.

12

Chapter 3

Proposed Data Structures

3.1 TYPE 1

The first type of data structures is the following,

struct connection

{

int codel;
int code2;
struct connection *next;

}

typedef struct connection connection,

struct voltage

{

int value;
connection *next;

}

typedef struct voltage voltage,

struct transistor

{

13

voltage gale;
voltage source;
voltage drain;

}

typedef struct transistor transistor;

Now through malloc n transistors can be created.

To understand the structure involved in the above formulations let’s work
it on this specific example.

consider diagram 3.1

transistor tl;
transistor t2;
transistor t3;

Now 3 transistors will be created through malloc.

3.1.1 Initialization Phase

Input

give the no of transistors in the circuitory
3

give the no of transistors connected to 1 th transistor source
2

give the no of transistors connected to 1 th transistor drain
1

give the signal name for the gate of 1 th transistor
1

give the no of transistors connected to 2 th transistor source

14

2

give the no of transistors connected to 2 th transistor drain
1

give the signal name for the gate of 2 th transistor
2

give the no of transistors connected to 3 th transistor source
1

give the no of transistors connected to 3 th transistor drain
2

give the signal name for the gate of 3 th transistor
3

give the total no of transistors to be grounded
1

give the transistors to be grounded & terminate by -1
3

-1

give the total no of transistors to be connected to vdd
2

give the transistors to be connected to vdd & terminate by -1
1

2
-1

output

Printing the trans connected to vdd ...
1
2

15

Printing the trans connected to earth ...
3

For the output please refer the diagram 3.2 .

1. Purpose of 'value’ in voltage is to store the logic values of all gate,
source and drain.
For drainsource we keep in mind the operation of the circuit. i.e.,
When the gate value is 1, the transistor gets short circuited and logic
value of drain becomes as the logic value of source.

2. In the initialization phase, if a transistor is connected to vdd, the
value in voltage of transistor’s drain is made 1 and is fixed for ever.
Similiarly, if a transistor is connected to ground, the value in voltage
of that transistor’s source is made 0 and is fixed for ever.

3.1.2 Connections Phase

Next to the Initialization phase is the stage of making actual connections.

Input

give the next transistor to which the source of the 1 th transistor is con-
nected.

2

give the code
1.source 2.drainl

give the next transistor to which the source of the 1 th transistor is con-
nected.
3

give the code
1.source 2.drain2

give the next transistor to which the drain of the 1 th transistor is con-
nected.

16

2

give the code
1.source 2.drain2

give the next transistor to which the source of the 2 th transistor is con-
nected.

3

give the code
1.source 2.drain2

give the next transistor to which the source of the 2 th transistor is con-
nected.
1

give the code
1.source 2.drainl

give the next transistor to which the drain of the 2 th transistor is con-
nected.

1

give the code
1.source 2.drain?2

give the next transistor to which the source of the 3 th transistor is con-
nected.

99

give the code
1.source 2.drain99

give the next transistor to which the drain of the 3 th transistor is con-
nected.

1

give the code
1.source 2.drainl

17

give the next transistor to which the drain of the 3 th transistor is con-
nected.

2

give the code
1.source 2.drainl

For the output consider the diagram 3.3.

While making connections,codes 1 and 2 are used for the terminals source
and drain respectively. When code2 of connection of some transistor is -1,it
means that it corresponds to the gate of that transistor. Value field in volt-
age is kept, keeping in mind the operation of the circuit. Also ‘99’ means
that the pariticular terminal is connected to ground.

Advantages Data structures are chosen in such a way that we can straight-
away do some ’dfs’ kind of path tracing algorithm on it. i.e., Take the trans
whose initial drain voltage value is 1(connected to vdd) and continue some
suitable path tracing algorithm on it until we find a transistor whose source

voltage is 0. Then we will get a path from vdd to the ground.
Disadvantages

1. There is a lot of redundancies in the circuit. i.e., Both the informations
‘a’ is connected to ‘b’ and ‘b’ is connected to ‘a’ are kept. This is
a trade off for the fact that we will be able to travel in both the
directions. i.e., vdd to the ground as well as ground to the vdd.

2. Tt takes a lot of space,though it seems to be linear in the space com-

plexity. Much space is wasted for the pointers, incase no of transistors
in the circuit is large.

3.2 TYPE 2

The second type of data structures we propose, reduces the space for the

pointers. It is simply an n * 3 grid where n is the total no of transistors in
the circuitory.

18

]

-

Gate Source Drain

struct transtype {

tnt no;
char terminalcode;

}
typedef transtype transtype;

Now we declare the grid as

transtype transistor(]{3];

1 where

o transistor[i}[0] will contain the info regarding gate of i+1 th transistor.

o transistor[i]{1] will contain the info regarding source of i+1 th transis-
tor.

o transistor{i}[2] will contain the info regarding drain of i+1 th transistor.

For an example, let’s consider the following circuit.

Refer the diagram 3.4a

Through malloc 6 transistors(i.e., 6*3 grid)will be created & the following
info is entered in the grid to specify the connections of the circuit.

Refer the diagram 3.4b

In C, the things in 2 dimensional array are mapped to 1 dimensional physical array in
row-majorized fashion. Hence column no should get specified for the compiler to resolve
references.

19

In the above grid, code ‘s’stands for source & ‘d’ stands for drain. Further
info ‘1v' means connected to vdd and info ‘og’ means connected to ground.
In this data structure junction points are identified. In a junction, the no of
terminals which meet together is finite. This data structure travels around
these terminals of transistors meeting at that junction in a cyclic manner. In
the above example, at the junction ‘a’ 1s 2d 3d & 4d meet together. Hence
corresponding to 1s location(i.e.,transistor[0][1}) 2d is entered, correspond-
ing to ‘2d’ location(i.e.,transistor[1][2]) 3d is entered, corresponding to ‘3d’
location(i.e.,transistor[2][2]) 4d is entered and finally to complete the cycle
corresponding to ‘4d’ location(i.e., transistor{3][2]) 1s is entered. Likewise
junction ‘b’ is also completed. After filling the junctions, the remaining lo-
cations are 1d which being connected to vdd has the info ‘1v’, 58 & 6s which
being connected to ground, have the infos as Og, Og respectively.

3.3 TYPE 3

The third type of data structure we propose is the best one in terms of
space complexity.But it has one major assumption that the user is able to
visualize his circuit by drawing it in a paper. The user has to identity all
the different junction points of the circuit. It is just n*2 int array.

int transistor(/[2];

Now after plotting the junction points,each transistor will be between the
unique junctions. Those junction points are entered.The junction point
above the transistor i is entered in transistor[i]{0] and the junction point
below the transistor i is entered in tramsistor|i|[1]. If the bridge types of
transistor are also allowed(i.e.,in the case of non-series parallel), we can at-

tach a 1 bit information for every transistor regarding decision yes or no(1
or 0).

Consider this example in diagram 3.5.

There are only two junction points in the above circuit which are labelled
1, 2 & 3. Then data structure looks like,

first transistor - transistor[0][0] = 1, transistor[0][1] = 2

20

Second transistom transistor(1]{0] = 1, transistor[1/[{1] = 2
Third transistor— transistor[2][0] = 2, transistor(2][1] = 3
Fourth transistoss transistor[3][0] = 2, transistor[3[{1] = &
Fifth transistor — transistor[{/[0] = 2, transistor{4/{1] = 3

Space Complexity It takes just 2n integer locations in case of series-
parallel circuits and 2n integer 4+ n bits in case of circuits supporting bridges
also.

Advantages It is also optimal in the sense of space complexity. Further
we can extract the underlying graph of the circuit from the data structures
quite easily through the following algorithm. We will construct the graph
in terms of adjacency list of edges rather than vertices.

The pseudo algorithm is given below,

do for all 1 & 7 such that 37
if(transistor[i/{1] == transistorfj/fo])
then

the transistor i points to j
i.e. 7 ig included in the adjacency list of ¢

The above algorithm has quadratic time complexity with respect to n,
the number of transistors in the circuit.

There is another data structure which is analogous to the above one. Here
to every transistor a link list is maintained in which, all the other transistors
immediately up and down that particular transistor are entered. Each node
of the link list has two informations,

¢ The transistor number
o 1 bit info (1 or 0) saying whether it is up or down

For example corresponding to the above circuit, we have the list as shown
in the diagram 3.5.

21

3.4 TYPE 4

The following 4** type of data structure is the one we are going to implement.
It contains dynamically allocated n arrays. Further each array is dynamic.

inl * xsource;

is declared. And then through malloc source{1], source[2], ..., source[n] are
created where sourceli] is a pointer to an integer array of size m, where m is
the number of transistor connected with the source of #*». Through further

malloc during runtime, source[i][0}], sourceli]{1], ..., source[i][m] are created.
Note that m depends on i.

V4 is assumed to be fixed ever for the drain terminals of some transis-
tors. Then ground will be connected to source terminals of few transistors.
Because there is an inherent directions from drain to source in series-parallel
graph, we attach informations regarding source of each transistor. This data
structure is advantageous over the first type in the sense that many redun-
dancies are removed here. While entering informations codes ‘s’ and ‘d’ are

used for source and drain respectively.

We depict the insight of the above data structures through the following
example as shown in the diagram 3.7 .

3.4.1 Initialization Phase(Interactive Mode)

InEut

give the no of transistors in the circuitory
3

give the no of transistors connected to'l th transistor source
2

give the no of transistors connected to 2 th transistor source
1

give the no of transistors connected to 3 th transistor source
1

22

give the total no of transistors to be grounded
2

give the transistors to be grounded & terminate by -1
2

3
-1

give the total no of transistors to be connected to vdd
1

give the transistors to be connected to vdd & terminate by -1
1 ~
-1

QOutput

For output consider the diagram 3.6 .

3.4.2 Connection Phase(Interactive Mode)

InEut

give the next transistor to which the source of the 1 th transistor is con-
nected.

2

give the terminal code "s.for source d.for drain”
d

give the next transistor to which the source of the 1 th transistor is con-
nected.

3

give the terminal code "s.for source d.for drain”
d

give the next transistor to which the source of the 2 th transistor is con-

23

nected..
99

give the terminal code "s.for source d.for drain"”

d

give the next transistor to which the source of the 3 th transistor is con-

nected.
99

give the terminal code "s.for source d.for drain"
d

Output

For output consider the diagram 3.7 .

3.4.3 Analysis

Space Complexity Since a pointer takes 4 bytes, initially 4n bytes are
allocated. And then 2n integer loctions are allocated for entering the infor-
mations. Hence this is having the linear order in space complexity where

constant is better than the first type.

Disadvantages Here we can travel in only one direction from V) to earth
and not the other way round. This data structure is more near to path
tracing algorithm which is preferred in our work.

24

Chapter 4

Algorithm Proposed and
Applications

4.1 The Case of Passmode Transistor

The case of passmode transistors is quite an interesting one. A passmode
transistor is the one where signal can be applied to source or drain.

We propose a pseudo algorithm to simulate the effect of passmode tran-
sistors through series-parallel circuits.

Suppose that the circuit contains n transistors out of which m transistors
are passmode type. Then we convert it to an equivalent series-parallel cir-
cuit with n+m transistors. The following algorithm(pseudo) is used here for
that purpose.

Input Circuit with passmode transistors.
Output Equivalent circuit of series-parallel type.

Algorithm

1. Start branching out backwards from the output point towards the
other ends where passmode transistors will be present.

2. For every series-parallel block which we come across draw the corre-
sponding (same) block in the new circuit.

25

3. When we finally reach the free ends i.e., passmode transistors, include
that transistor in series with the previous (immediately preceding)
series- parallel block. And then include one more transistor in series
in which you apply the signal as Z where x is the signal applied to one
end of passmode transistor.

4. Do the above step, till all the free ends (i.e. passmode transistors) are
covered.

This is illustrated through the following example (ref diagram 4.1)

Both the circuits in the diagram are equivalent as can be seen from the
fact,

AB + AB
= (A "E?')(B)
AB+

f

H

Note that we are not extracting the function straightaway from the circuit
with passmode transistors but we are trying to transform the circuit to
series-parallel form which in turn will be taken as the input for the function
extraction.

4.2 Proposed Algoi'ithm

We use this basic algorithm repeatedly for the purpose of function extrac-
tion and operation of the circuit.

The input to the following algorithm will be an adjacency list of transis-
tors. This is a recursive algorithm.

A global stack is used, which grows and shrinks accordingly as we travel
in the graph. no_of.paths is also a global variable which is used to count the

no of paths from v to ground

Algorithm

26

}

all_paths(source)

{

if(source == ground) then

{

if(no_of.paths == 0) then
{
print stack;
no_of-paths++;

pop stack;
- return,
}
}
else
{
P?‘fﬂt(“-}- rr);

print stack;

no_of_paths++;
pop stack;
return,

}

for all nodes C which is in the adjacency list of source

{

if(¢ != stack[top-1])

push stack(source);
all_paths(c);

}

pop stack;
refurn;

/¥ end of Algorithm */

Finally call all_paths(start) is invoked where start points to all transis-
tors connected to Vpp.

Illustrative Example is given in the diagram 4.4.

Analysis

The above algorithm is output sensitive i.e., any algorithm trying to find all
paths from Vg to ground will have complexity at least n,, where n, is the
total number of paths.

Time Complexity

The complexity of above algorithm is precisely n, for, if a path from Vg
to ground is traced, it is never traced again. The above algorithm has an-
other advantage that if a portion of a path is common to many other paths,
that particular portion is travelled only once. .

Space Complexity

There are two stacks involved here. Orne is the user defined stack for main-
taining a path and another is the system defined stack [or maintaining the
recursion. Both the stacks grow according as a path from Vyy grows. Hence
the worst case space complexity is the length of the longest path from Vg
to ground. The number of automatic variables is also very less (one used in
for loop and other things are global).

4.3 Applications

BDD (Binary Decision Diagrams)

Function extraction is applied in Circuit isomorphism problems i.e., From
the two given input circuits, We have to at first extract functions. We can'’t
compare the boolean functions just like that, since even minimal SOP(Sum
of Product) form is not unique.

In general given,

f:{0,1}* — {0,1}

28

g:{0,1}* — {0,1}

is f = g? is NP complete. i.e., operating the circuit for all input vectors and
observing the logical value is not practically feasible. Hence we must have
an efficient way by which verification (comparison) can be done. For that
we go for the tool what is known as Binary Decision Diagrams.

A BDD is a directed acyclic graph with 2 paths directed away from itself,
one for the node asserted true and one for the node asserted false. These
approaches define a digital function in terms of a diagram which represents
the fucntion and contains the information necessary to implement the func-
tion. Nodes of BDD are either variables or subfunctions. Ultimately nodes
will be reduced to single variables. The root of the tree is the function to
be implemented and leaves are either 0’s or 1’'s. We can construct BDD’s
either from boolean expressions or from the truth table.We formally define
it as follows.

Deflnition A Binary Decision Diagram(BDD) over a set {x;,z3,...,z,.}
of boolean variables is a directed acyclic graph with one source and at-
most two sinks labelled 0 and 1. Each non-sink node v is labelled with a
boolean variable from z!s and has two outgoing edges,one labelled with 0
and the other with 1. The then-son of v is reached via 1-edge , the else-son
-is reached via the 0 edge. (In pictural representations, we do not indicate
the edge labels if the 0-edge is drawn left of the 1-edge.) The computation
path for an input ¢ = (ay,...,a,) starts at the source. At an inner node
with label z;, the outgoing edge with label a; is chosen. Size(P) denotes
the number of non-sink nodes of P. A BDD P represents a boolean function
f € B, if the computation path for each input a leads to the sink labelled
f(a). A BDD is called ordered binary decision diagram(OBDD) if, on each
path, the variables are tested consistently with the natural order of variales
r < z72 < .., < z,. Fact

1. Each boolean function f over x, can be represented by means of an
OBDD, i.e., OBDD'’s provide a universal representation scheme.

2. The reduced OBDD for f is uniquely determined, i.e., it provides a
canonical representation.

3. Let f1,f2 be boolean functions represented by the OBDDs P, P; re-

spectively. For every binary operation *, the reduced OBDD P for
f = f1* fz can be constructed in O(size(P,).size(Pz)).

29

Factored Form

A factored form is a boolean formula with the restriction that complement
operation is allowed only on variables. A factored form is represented as a
labelled leaf-DAG where the 4+ and . operations alternate on all paths. If
a function has a factored form which is a tree (i.e., each variable appears
only once in the factored form), the function is said to be series-parallel. De-
riving a factored form for a function is called factoring. Refer diagram 4.2.

Reduced Ordered BDDs and Properties

It represents a function with a directed acyclic graph (as told earlier) where
paths to 1 node define the cubes for which the function is 1. ‘Ordered’ means
that each paths visits the variables in the same order. ‘Reduced’ means that
isomorphic subgraphs are maximally shared. It is conceptually similiar to
full shannon decomposition tree, except that subtrees which are identical
are shared and redundant nodes are deleted. Refer diagram 4.2.

Properties of BDD : Reduced ordered BDD’s exactly satisfy a very impor-
tant property that two functions are equal if and only if their representations
as ROBDD’s are isomorphic DAGs (for the same variable ordering). Graph
isomorphism for a DAG is a linear-time operation. For this reason ROBDD'’s
are sometimes called a canonical form. Because this property is so impor-
tant, the term BDD almost always means a reduced ordered BDD. It is to
be noted that the size of the DAG for a function is strongly dependent on
the ordering of the variables in the BDD.

30

Chapter 5

Results And Conclusions-

5.1 1mplementati0n

The function extraction and circuit operation have been implemented for
the case of series-parallel circuit at the switch level. We use the data struc-
tures as mentioned in the type 4 of chapter4. |

The Whole objective of this program is to create some user interface for spec-
ifying circuits at the switch level, operating the circuits and finally making a
provision to test the circuit by doing function extraction. The Input circuits
are shown in the diagrams 5.1 and 5.2. The source files and the outputs are
appended with this project report.

There are 5 files to be included(or linked)with the main program.

1. setup.c This deals with setting up initial base for specifying the circuit.

2. construction.c This deals with building up valid circuit and removing
- redundancies.

J. extract.c This contains functions responsible for function extraction.

4. print.c This contains all support files for outputting the circuit in var-
ious formats. |

31

5. stack.c This contains all support files for a stack to be used in the
main program as well as in a function in the file extract.c.

5.2 Details of Various Functions

" The following is the brief information about various functjons.

1. function input

Input | : void
Returnvalue : void
Function : It takes the total number of transistors

in the circuitory

2. function initialize

Input : int

Returnvalue : void

Function : It creates an initial base for building
a circuit

3. function get_signal_names

Input : void
Returnvalue : void
Function : It gets the signal names of all the

primary inputs

4. function vdd_earth

32

input
Returnvalue
Function

void

void

It takes the transistors connected to vdd and
earth and sets pointers to them

. function output_initial_configuaration

Input
Returnvalue
Function

int

void

it outputs the initial configuaration of the

the circuit before making respective connections

. function create_valid_circuit

Input
Returnvalue
Function

int

void

It makes connections to each transistor and che-
cks for consistency of the circuit.

. function is_circuit_complete

Input
Returnvalue
Function

void

void

It checks whether the circuit connections
are complete

. function compress._circuit

Input
Returnvalue
Function

int

void

It checks and removes any redundancy involved
in the connections of the circuitory

33

9. function output.vdd_earth

Input
Returnvalue
Function

void

void

It outputs all the transistors connected to
earth and vdd respectively.

10. function output_circuit

Input
Returnvalue
Function

int

void

It outputs the circuit input as such by the
user, in some prespecified form

11. function output_compressed_circuit

Input
Returnvalue
Function

12. function initialise

Input
Returnvalue
Function

13. function all_paths

void

void

It outputs the finalised circuit in some pre-
specified format after removing
redundancies in the connections.

void
void
It is a stack routine which initialises the
stack

Input : a pointer to an int
Returnvalue : void

Function : It helps in finding all possible paths
from vdd to ground.

The functions in the file ‘stack.c’,used in all_paths.

1. function empty

Input : void

Returnvalue : int

Function : returns 1 if the stack is empty, O
otherwise

2. function pop_stack

Input : void

Returnvalue : int

Function : It pops one item off the stack and
returns it.

3. function push_stack

Input : int
Returnvalue : void
Function : It pushes the given item into the stack.

4. function stack_top

Input : void
Returnvalue : int
Function : It returns the top element of the stack.

6. function print_stack

Input : void
Returnvalue : void
Function : It prints all the elements in the stack.

5.3 Conclusions and Future Work

We genaralise the problem for the case of non-series parallel types of cir-
cuits at the switch level. We can define the bridges to be those minimal
set of transistors in the circuit the removal of which makes the underlying
graph(undirected, connected) as series-parallel. In non-series parallel cir-
cuits at the switch level, finding out the bridges can be taken as another
challenging problem. Similiarly implementing ROBDD’s from the boolean

expression (function) can be taken as another problem. Methods of con-
structing ROBDD from the function are known. First we try constructing

BDD from the funtion using shannon’s decomposition recursively. From
P

there, we can reduce it further, by applying specific set of rules. Implemen-
tation issues involved in this direction is an open problem.

Chapter 6

REFERENCES

1. R.E.Bryant: Graph-based algorithms for boolean function manipula-
tion , IEEE Trans. comput. ¢-35,6(Aug.), 677-691, 1986.

2. R.E.Bryant : Symbolic Boolean Manipulation with Ordered Binary

Decision Diagrams, ACM computing surveys, vol.24, no.3(sep.), 293
318,1992

3. 32nd Design Automation Conference Proceedings Sanfrancisco, CA
Mosco Center, june 12-16, 1995.

4. VLSI Design Conference-1996,Bangalore. Tutorial. Register transfer
level synthesis: from theory to practice. By K.Keutzer and S.Malik.

5. Algorithms For VLSI Physical Design Automation-Naveed Sherwani.

37

AGRAM 1.1

System
specification

Functional

de=sign

Logic design

Circuit design

i Phusical design

Fabricatinn

Packaging

-
I
N
juoed

{7

I

|
Sounce .] l . o DUHAIM
D0
I
? |
| H
| % Pl
| i |

' ; o 18
VoD (Pouse?; - 5

out PL(JL '7{ (x X1,

N-MOS

ol a’twaﬂk

Yy
3
-

LX)

1 B O

Puwux 1l 1 w >

Paal i A0 wWn

Gyyowung

fig nmos NAND gate

A | B |c
o 1

A 1 l +

1. 1 @

SIAGRAM 1 4o

. GND
-
= L S i
3 3 h
I b 3
1 3 L
1 1 «“

-

1

DIAGRAM 1:40b

, upD

F=CA+B) (B4CY CCHR Y

=AB+RC+CH By DeNorgan’ s] auw,

DIAGRAM 1-5

- ydd

fzabtcdtaedtbec
Total cost= 10+1z11 transistors.

DIAGRAM 1€ a

DIAGRA™M 1:-650

Corresponding graph { refer diagram 1.5)

1

A B
2

B C
3

C A
4

Corresponding graph { refer diagram 1.6)

Diagram 2.1

Series paralle! structure

A N

NoOn series parallel strture

Diagram 2.2

Diagram 3.1

Output

Transistor 1

Gate —»| .1 -j—> : 1 '—f—>Null

Source-»{ -1 - >| -1 -1 . > -1 I -1 I_-]-—>Nuil
Drain —>| 1_|-|—> 1 4| e— Nl

Transistor 2

Gate — -1 [.)I Z -1 . > Nuli

Source-» -1 > | < -] . > -1 I -1 E——>Nuﬁ
Drain—>{ 1 |et—s 1 | 1 | e—snul

Transistor 3

Gate —»{ -1 ——f— 3 -1 . > Null

Source» O I'—l—-——b - -1 . > Null

Drain — .1

Diagram 3.2

Qutput

Transistor 1

Geto —»| -1 | o+ 1 | 1| e—>Nur
souces] 4 |ef—s 2 [1 Jof—| 3 [2 [f——nu
Drain— 1 ‘:l—) 2 2 . > Null

Transistor 2

Gate—)| 1 l._____.._,. > Nl

Source—»[-1 F > ————> 1 \ _ZE——HMI
Drain —» 1 r-—l————> 1 2 . > Null

P
1

—_—
»

(N
ho

Transistor 3

Gate —» -1 —f—

€13
1

i
»

> Nuli

Source->‘ 0 *-‘——> 18 g9 . > NUl
oron—{ 7 T4 [{2 [1 [F—w

Diagram 3.3

B
-
p| : D

2 —-IE 3—IE 4

S:_ S 5

Ttil

D D
5 —6

S S

Diagram 3.4

Transistor 1 [vdd| 1

Output

Transistor 2 , vVdd

1 |e

p——

Transistor 3 | 1 [1

Transistor 4 L 1

1 >

13
. 5
s [oft—{afofg—158]0 [
. 5 o—s
{5 Y L4109 0 Nuil

Transistor 5 1] 1

Diagram 3.6

> fﬂ-gﬂ am 3 &
Ovﬂm

ff’ﬁH:fﬂI fgrn-pfjuarq‘];;a'n Dr-}: Aie Ciﬂc‘uf‘l’

Souvig S . — - - . |
I: i . . h
A . ,- > -1 CS— 4 L
| | | !
S | J | , .,

TYITL "B

_Cﬂ‘..rf (& '

-1 e | EERAE

(57 0§ty #

-

. 1 - — : >

T — -
]

(7]

Diagram 3.7

~ang Stav 4

s — 1 ~ 3 ’{ ' . P
ot P ! -~ 1 B e ML
r

_'::'w*l = 4 o _ ; . e
,! !
! . "t og! |
2% 4. +——— va A

| |
N | :

Fig 4.1 B
| _]0 Circ;lj:awni;?sﬁﬁssmode
E_.I__'— A B Output
0 0 1
[A 0 1 0
= 1 0 0
f=AB + AB " . 1
DD
Corresponding Series-
Paralliel Circuit
B _| I_A

A_I I__'ﬁ' f="AB + AB

= Ground

Fig 4.2
factored leaf-DAG for

X5 (Bt xg). xgxg+ x5 [x+ X] + X5

. @ 0 Binary Decision Tree

1|] lﬂ
-|u @'@@' 0
OROJORONORCRORO

STACK STATUS

Input Adjacency List

start— 1

1—2,3

2— 4

33— 5

4 — 99

5 — 99

Diagram 4.4a

STACK

-1 -1

-1 -11
-1 —-11 2
-1 -112 4
-1 -1124
-1 -112 4
-1 —1 1 2
-1 —-11
-1 -113
-1 —-113 5
-1 —-11325
-1 -113 2o
-1 -113
-1 -11
-1 -1

Diagram 4.4b

99

99

DIAGRAM 5.2 : Number of Transistors = 6

