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Abstract

Suppose there are n no. of nodes(i.e junctions) in a city out of
which there are m number of dumping nodes (m < n) where newspa-
pers are to be supplied from the vehicle. The problem is to find the
shortest route in terms of cost of edges where the starting node is the
newspaper office itself & is required to traverse every dumping node

at least once. ( this total cost does not include the cost of the edges
from the last dumping nodes to the newspaper office).
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1 Introduction.

Heuristic algorithms with polynomial rates of growth in the number of
variables can be used to provide approximate solutions to combinatorial
problems. The question then arises as to what is the worst possible ratio of
the value of the answer obtained by the heuristic to the value of the optimal

solution. We will denote this worst-case ratio by R,

In this Dissertation paper we describe a heuristic algorithm for News-
paper Distribution Problem (NDP) with O(n®) growth rate and for which
R, < 2 for all n. The algorithm involves as substeps the computation of
a minimun spanning tree of the graph G formed by the shortest path al-

gorithm among dumping nodes and the finding of a minimum cost perfect

matching of a certain induced subgraph of G.

This problem was posed as an integer linear programming problem and

was partially solved by Achutan et el[1].

2 Euler and Hamilton Graphs.

Let u,v € V be the vertices of the graph G = (V,E)

Definition -2.1 A u-v walk in G is (u = ug, e, u;, e, uq,...0,, U, = v)
where u; € V , 0 < i < n are vertices ; ¢, € E, 1 < i < n are edges and
e; = {ug-1, Ui}

u-v walk is closed if u=v; otherwise open.

definition -2.2 A u-v walk in which all the cdges are distinct is called a



TRAIL. A trail that traverses every edges of G is called Euler trail of G.
A Euler tour is a closed Euler trail. A graph is Eulerian if it contains an

Euler tour.

Theorem -2.1 A nonempty connected graph is Eulerian iff it has no ver-

tices of odd degree.

Corollary -2.1 A connected graph has an euler trail iff it has two vertices

of odd degree.

Definition -2.3 A u-v walk in which all the vertices are distinct 15 called
a PATH.

Definition -2.4 A cycle is a closed u-v walk in which all the vertices (except

u=v) are distinct.

Definition -2.5 A cycle containing all the vertices of the graph is called a
HAMILTONIAN CIRCUIT.

A graph is Hamiltonian if it contains a Hamilton circuit.

3 Matching.

A subset M of E is called a matching in G = (V,E) if its elements are links
and no two are adjacent in G; the two ends of an edge in M are said to

be matched under M. In the graph of figure - 3.1(a) , for example M,=

{[va, va],[v4, ‘Ufi]r[t'?a Us],[vﬁ, V9] } (shown as heavy lines in fig -3.1(a) ) & M, =



{[v1, va),{vs, v4],|vs, Ug),[v7, vs],[vg, v10]} are matching.

V_
3
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(a) (b)
figure - 3.1

A matching M saturates a vertex v and v is said to be M saturated, if
some edge of M is incident with v. A node v is said to be exposed reletive
to M if no edges of M meets v.

M is a maximum matching if G has no matching M’ with |M’| > [M].
Clearly M; is maximum matching but M, is not. If every vertex of G is M
saturated, then the matching M is perfect. So M, is also perfect matching
but M; is not. Notice that matching in fig - 3.1(b) is maximum but not

perfect. Clearly every perfect matching are maximum but not the converse.

Definition -3.1 Let G = (V,E) be a graph and M be a matching. An
alternating path with respect to M is a path such that the first and last
edges of the path are not matched and such that every second edge on the

path is matched.



If the first and last vertices on the path are unmatched ,then the alter-
nating path is called an augmenting path. So in Fig -3.1(a) {v;, vy, v3, vy, s,
Us, U9, V1o} iS an augmenting path and {v,, vy, v3, vy, vg, Vg, Vs, vs} is an alter-

nating path but it is not augmenting path.

Lemma - 3.1 Let P be the set of edges on an augmenting path p =
[uy, ug, ug, ....., uz.) in a graph G with respect to the matching M. Then M
= M @ P is a matching with cardinality |M| + 1.

Theorem - 3.1 A matching M in a graph G is maximum if and only if

there is no augmenting path in G with respect to M.

4 Weighted Matching.

Given a graph G = (V,E) and a weight for each edge w : E ->R*, In

weighted matching we have to find a matching of minimum weight.

o The classes NP_hard and NP _complete.

In measuring the complexity of an algorithm we shall use the input length
as the parameter. An algorithm A is of polynomial complexity if there exits

a polynomial P() such that the computing time of A is O(P(n)) for every

input of size n.

Definition - 5.1 P is the set of all decision problem solvable by a determin-

istic algorithm in polynomial time. NP is the set of all decision problems



solvable by a nondeterministic algorithm in polynomial time.

For a problem to be in NP, we simply require that if x is a yes instance
of the problem, then there exists a concise ( ie, of length bounded by poly-
nomial in the size of x) certificate for x, which can be checked in polynomial
time for validity.

We are now ready to define NP_hard and NP_complete classes of prob-

lems, first we define the notion of reducibility.

Definition - 5.2 Let 4, and A; be recognition (ie, yes _ no) problems. We
say that A; reduces in polynomial time to A, (denoted as A; x? A,) iff
there exits a polynomial time algorithm a, for A, that uses several times
as a subroutine at unit cost a (hypothetical) algorithm a, for A,. We call

a; a polynomial time reduction of 4, to A,.

proposition - 5.2 If A; polynomially reduces to A, and there is a polyno-

mial time algorithm for A,, then there is a polynomial time algorithm for

A

Definition -5.3 We say that a recognition problem A, polynomially trans-
forms to another recognition problem A, if, given any string x, we can

construct a string y within polynomial (in |x|) time such that x is a yes

instance of A, iff y is a yes instance of A,.

Definition - 5.4 A problem A is NP_hard iff for all A' € NP , 4' «? A.
A problem is NP_ complete iff A is NP_hard and A € NP.

By proposition - 5.1 if a problem A is NP.complete , then it has a
formidable property: If there is an efficient algorithm for A, then there is

an efficient algorithm for every problem in NP.



Definition - 5.5 Two problems A; and A, are said to be polynomially
equivalent iff A; xP A, and A; &P A;.

6 Triangle_Inequality.

Deflnition -6.1 Consider an nxn distance matrix [d;;] with positive real
entries. As usual we assume that [d;;] is symmetric ie, d;; = dj; for all i,j_
and that d;; = 0, for all j. We say that [d;;] satisfies triangle inequality iff
di; + djx 2 dix

What the triangle inequality constraints essentially says is that going
from city i to k through j can not be cheaper than going directly from i to
k. This is very reasoable since the imposed visit to city ] appears to be an

additional constraints,which increases the cost.

0235 0233
2071 2041
3703 3403
9130 3130

(a) (b)

The matrix in (a) does not satisfy the triangle ineuality because for
example dyz > dyg + dy3. The matrix in (b) does. In fact this matrix is the

closure of the previous one.

One inportatent class of distance matrices that automatically satishty

the triangle inequality are closure matrices. We say that the matrix [d

i;‘] 1S

the closure of [d;;] if d;j is the length of the shortest path from i to j in the



commplete graph of n nodes {1,2,3,....,n} where the length of the edge [i,j]

1S d:j

Definition -6.2 The triangle inequality (or metric) TSP (abbreviated
ATSP) is the TSP restricted to matrices satisfying the triangle inequal-

ity:.

Theorem - 6.1 The (recognition version of) ATSP is NP_complete.

proot : - Given a graph (V,E) we construct an instance ([di;],V) of
\V|x|V| TSP with d;; = 1 if lv;,v;] € E and 2 Otherwise. It is immidiate
that this instance had a tour of cost V| or less iff G is hamiltonian. Qbserve
that any distance matrix with all entries either 1 or 2 such as [d;;], satisfies
the triangle inequality. Thus HAMILTON CYCLE pollynomially transform
to ATSP. &

Definition - 6.3 Let [d;;] be an nxn distance matrix satisfying the triangle
inequality. An Eulerian spanning graph is a Eulerian multigraph (graph
with repetions of edges allowed ) G = (V,E) with V ={ 1,2,3...n}. The
cost of G is C(G) = ¥ d;; over [i,j] € E.

Theorem - 6.2 If G = (V,E) is an Eulerian spanning graph, then we can
find a Hamiltonian path 7' of V with C(T' ) < C(G) in O(|E}) time.

proof :- By hypothesis G has an Eulerian tour w, because w visits all
nodes at least once , we can write w = o, 1, @, 29, ..., 4, o, |, where T =
(43, 99, i3, .., Iy) 1S a tour and Qg, 01, ..., &y, are sequences(possibly empty)
of integers in { 1,2,3...,n} ( We say that T is embeded in Q ). Now, the
triangle inequality implies that

dig < dij, +dj5 + ... + dj(mu_l}jm +d;



for any m > 1. Consequently , the total length of w which is exactly C(G)

can be no smaller than
diyi + daiyiy + ... +di;, = C(T). &

7 TSP for Complete graph satisfying trian-
gle_inequality.

Consider the n_city TSP deﬁﬁed on the complete graph G=(V,E) where V
is the set of vertices and E is the set of edges. Let the edge cost matrix
be [C;;] which satisfies the triangle inequality. Let T = (X, At ) be the
minimum spanning tree of the graph G & Let C(T ) be the cost of T . Let
XNT ) ={ ;|d(T) is odd } where d;(T" ) is the degree of vertex z; € X
w.r.to the tree T . The cardinality |X°(T )| of the set X°(T ) is always
even. Let My = (X*(T ), Aum,) be the minimun cost perfect matching of

<X°T )> & C(M,) be its cost.

Theorem - 7.1 A Hamiltonian circuit ¢y of G can be found with cost
C(®y) SC(T )+ C(M,) < 3/2C(®*) where C(®*) is the optimal value of
the TSP tour ®°.

Lemma - 1 For an n_city TSP with n even, we have C({Mo) < 1/2C(d"),

where M, is the minimum cost perfect matching of the graph G defining
the TSP and ®* is the optimal TSP tour.



8 Newspaper distribution problem (NDP)
in a city network.

In order to tackle the problem we will do the following:-

8.1 > We will show that the given problem (NDP) is NP_complete.
8.2> We will give some heuristic algoritm for NDP.

8.3> Also we will establish the worst case upper bound of the heuristic

algorithm.

Before proving 8.1 we will show that finding minimum cost hamiltonian
path from a weighted complete graph whose weight matrix satishfies the tri-
angle inequality ( CHPT ) is NP_complete . The proof that we will present
here is simillar to the proof that TSP is NP_complete from Hamiltonian
Circuit [4].

We know that Hamilton path problem ( HP ) for a general graph is
NP _complete. In the proof we will reduce HP to CHPT.

8.1(a) : The (recognition version of) CHPT is NP_complete.

proof :- We will transform from HP to CHPT. Take any instance of HP i.e,
Arbitrary graph G = (V,E). We will now construct an instance for CHPT
from HP in two steps.

step - 1 Construct a weighted complete graph G = (V,|d;;]) where

d;; = 1if [v;,0,) € E, d;; = 2 if [vi,v;] € E.

step - 2 Add a new node say v,,; to G and connect V.1 to all other nodes
with weight 2. ie, d;,,,; =2for1 <i < n.

Let this new graph be G = (V, [‘{u]) where V' = V U {v,4,}.

9



Clearly, G" is a complete graph which satisfies the triangle inequality,
because weights are either 1 or 2.

Suppose that there is a solution of CHPT in polynomial time. Then
we find the solution of CHPT from each vertex v € V' — {vn+1} and we
take minimum weight hamiltonian path among them. Let it be C. This can
be done in polynomial time. Notice that value of C can never be < (n+1)

(clear from the construction of G" ). So C may be either (n+1) or > (n+1).

If C = n+1, iff there is a hamiltonian path for the original graph G. So
we can find a polynomial time algorithm for HP which is most unlikely.

if C > n+1, iff there is no hamiltonian path for the original graph G.
S0 in this case also we find a polynomial time algorithm for HP.

S0 from above discussion we can conclude that CHPT has a hamiltonian
pat:h of cost n+1 iff original graph G has a hamiltonian path. So HP is
polynomially transform to CHPT. &

8.1 : The (recognition version of ) NDP is NP_complete.

proof :- Given a weighted complete graph G = (V,E) whose weight matrix
satishfies triangle inequality where V = {1,2,3,...,n}. Now construct an
instance of NDP which contains V| number of dumping nodes & shortest
distance between any two dumping nodes is taken as the distance between
the corresponding nodes in the complete graph. So it is immidiate that
NDP has a tour of length < L (some constant number ) iff the complete
graph has a hamiltonian path of length < L. Thus CHPT polynomially
transform to NDP. &

10




8.2 Proposed Heuristic Algorithm.

Input :- Adjacency matrix C[i,j] (edge cost) of a weighted graph having n

number of nodes {1,2,3........ n} of which m number of nodes are dumping.

Output :- Approximation to the minimum cost traversal where each dump-
ing node has to be traversed at least once and not required to go back to

the starting node.

step-1 > Find the all pairs of shortest path among dumping nodes. (so
that we will get complete graph of size equals to number of dumping nodes

with weight matrix D(i,j]).

step-2 > Find the minimum spanning tree T where input is the weight

matrix D(i,j].

step-3 > Find the nodes of T having odd degree & find the complete match-
ing M with minimum weight in the complete graph consisting of these nodes
only. Let G be the multigraph(i.e, repetation of edges are allowed) with
nodes {1,2,3......m} and edges those of T and those in M.

step-4 > Find an eulerian tour {1,2,3,.....m, 1} & then find the embeded

tour {1,2°,3",...,m", 1} ( ie, hamiltonian circuit )}

step-5 > Take either {1,2",3", ....., m' } or {1,m’, ....... ,3",2"} depending on
whether edge (1,2") or edge (m’, 1) is minimum & calculate the total cost.
&

11




8.3 WORST CASE UPPER BOUND.

A graph of n number of nodes {1,2,3....,n} are given out of which m
number of nodes are dumping . Our problem is to find the order of traversal
to each dumping node so that total cost is minimum.

Let {1,2,3,....,m} be the order of traversal (1 = 1') so that total
cost C = Yi<T ... Cli, 5] (where C[i,j] is the minimum sum of cost of the
edges from i to j and {2,3',...,m'} is the some permutation of {2,3,....,m}
) is minimum. In step -1 of our algorithm we find the all pairs of shortest
path among m dumping nodes so that we get a weightfcomplete graph of
size m whose weight matrix satisfies the triangle inequality. Now we claim
that if we are going to find the minimum cost hamiltonian path to this
weighted complete graph then we have to traverse this graph in the same
order {1',2,3,...,m'} and same cost C will be obtained as in case of our

problem in hand and vice versa.

Proof of the claim.

—> Suppose not

then let {1,2°,3,....., m’" } be the order of traversal of the weighted com-
plete graph for finding the minimum cost hamiltonian path for which the
total cost ' < C . Sinceitoj(i=1,2",3",..m"~landj =23, ..., m")
is the shortest distance between dumping nodes i & j and also our target
is to obtain minimum cost for our problem, so that {1, 2" 3" m} is also
the order of traversal for our problem at hand. which is a contradiction to
our initial assumtion ( i,e {1,2,3,....,m'} is the order of traversal to our

problem)

<— similar argument.

12



So from here we reach to the conclusion that the reletive error in finding
minimum cost traversal in our problem is exactly same as the relative error
of finding the hamiltonian path from a weighted complete graph whose

weight matrix satisfies the triangle inequality.

Step-2,3,4,5 of the algorithm are for finding a minimum cost hamiltonian
path from a weighted complete graph[6]. Let C(T) be the minimum cost
hamiltonian path . In step-2 we find the minimum spanning tree T. Let
C(T) is the total edge cost of the minimum spanning tree . Then it is easy
to show that C(T) < C(T). Instead of step-3 if we replace it by creat a
multigraph G by using two copies of T. Then we have C(G) = 2C(T) <
2C(T)

In step-4 since after finding Eulerian tour , we are embedded it to get the
hamiltonian circuit ( we use triangle inequality here) , so that the output

result at step-5 of our algorithm that we get C(R) £ 2C(T) < 20(D).
Therefore relative error = C(R)-C(T)/C(T) < 1. '

l,e the result is guarenteed to be not farther than 100 percent from

optimal.
Result can be improved if we take maximum matching with minimum

weight among odd no. of nodes in the tree T as in the case of step-3
of our algorithm. &
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9 Illustration of the proposed Heuristic Al-
gorithm.

Let us apply the heuristic algorithm to the input graphs G = (V,E) shown

below (Cost of edges [v;,v,] is taken as infinity if there is no direct edge

between v; & v;) .

example - 1 0 o) @
0 3 o oo 17 | - |
13 0 5 oo oo I 5
oo b 0 4 1 |
loco oo 4 0 2 ()T 7 (3
1 © 1 2 0 - e
: - N N
D

Fig - 9.1 Input Graph.

Suppose node 2 is not Dumping node. So all pair of shortest path among

dumping nodes {1 3 4 5 } is given below :

12 0 3 1 P

3 3 0 2 B P p— BN

1 1 2 0 S 5
2.7

NP
Fig- 9.2 shortest path among dumping node.

Minimum spanning tree of figure - 9.2 is shown below :

0 0 0 1 W
|
0 0 0 1 f,/
0 0 0 2 ) ) (3)
1 1 2 0] )
A
\. . (fﬂ
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weight_matrix of MST Fig - 9.3 MST.

Apply Step - 3 of our algorithm to the graph in Fig- 9.3 we get the
diagram shown below :

®
ya
1 i
"- . . .

e

Fig - 9.4.
Eulerian tour of the Fig- 9.4 is shown below :

{135451)

Embeded hamiltonian circuit (by using triangle inequality) is given be-
low :

{13541)

So total cost of the traversal { 1 3 5 4 }found by our algorithm = 5.
Note that optimal cost is also = 5.
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example - 2

8888 wo

Q8 B o

o oo w8 R
oo B 883

c::mm,n-gnga—t

Fig - 9.1 Input Graph.

Suppose node 7 is not Dumping node. So all pair of shortest path among

dumping nodes {123 45 6 } is given below :

ro
5
7
| 5
>
L3

-] &1 = b O O

=] W WO N

9

OO W

4

B O S L

3

7
7
6
4
0

(0
2UNTE
R (L

¢

|

..@

Fig- 9.2 shortest path arﬁong dumping node.

Minimum spanning tree of figure - 9.2 1s shown below :

k

0

L O

o O = O

O WO O

o O D

o T v B v I O S v I

2
0

e B e S o B e

weight_matrix of M5T

()

- ., 6

© \
,

O
"_./ 2

Fig - 9.3 MST.

16



Apply Step - 3 of our algorithm to the graph in Fig- 9.3 we get the

diagram shown below :

(i

@ L

6 “L
L

M .

a T

€
Fig - 9.4

Eulerian tour of the Fig- 9.4 is shown below :

{1532461}
Embeded hamiltonian circuit is given below :

{1532461}
So total cost of the traversal { 1642 3 5 } found by our algorithm =
15.

Note that optimal cost = 13 (order - 16 5 3 2 4).
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example - 3 ()

‘0 5 3 1 o0 o0 o L o
5 0 4 o0 o0 2 oo @ d | b % @
3 4 0 2 o0 o0 o | N I
l oo 2 0 3 o0 o 2 pa ﬂ.\,/
© o0 00 3 0 1 4 ‘ © ’
oo 2 oo oo 1 0 3 @L | I
oo oo oo oo 4 3 0 > z R 1
o P

Fig - 9.1 Input Graph.

Suppose nodes 2,4, 7 are not Dumping node. So all pair of shortest
path among dumping nodes { 1 3 5 6 } is given below :

0
‘0 3 4 5 o T
. o B
3 0 5 6 / .
4 5 0 1 © . __éx @)
5 6 1 0. »o . -
I /

Fig- 9.2 shortest path among dumping node.

Minimum spanning tree of figure - 9.2 is shown below :

0 3 4 0 © &

4 0 0 1 -3

00 1 0. ’\/ _#
() o

weight_matrix of MST Fig - 9.3 MST.

Apply Step - 3 of our algorithm to the graph in Fig- 9.3 we get the

18



diagram shown below :

) "
Fig - 9.4,

Fulerian tour of the Fig- 9.4 is shown below :
{13651}

Embeded hamiltonian circuit is given below :

{13651}

So total cost of the traversal { 13 6 5 } found by our algorithm = 10.
Note that optimal cost = 9 ( order - 1 3 5 6)
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