o2 e 2

PERMUTATION ROUTING ON MESH AND
MULTIMESH

July 1997

M. Tech. (Computer Science) Dissertation Series

PERMUTATION ROUTING ON MESH AND
MULTI-MESH

a dissertation submitted in partial fulfilment of the
requirement for the M. Tech (Computer Science)
degree of the Indian Statistical Institute

By

Monoj Kumar Baruah

under the supervision of

Prof. Bhabani Prasad Sinha
Advanced Computing and Microelectonics Unit

INDIAN STATISTICAL INSTITUTE
203 Barrackpore Trunk Road

Calcutta-700035 |
-\ C AL I"

- !
r
!

July , 1997 ;;‘; '{J_ C 2 3 7 9 7
(2 2 ﬁ 15 6P 1991231

*

L0 SEP 1391

Indian Statistical Institute

203 ,B. T. Road
Calcutta - 700035

Certificate of Approval

This is to certify that the thesis titled , PERMUTATION ROUTING ON MESH AND
MULTI-MESH submitted by Monoj Kumar Baruah , towards partial fulfillment of the

requirement of the degree of M.Tech . in Computer Science at the Indian Statistical Institute ,
Calcutta , embodies the work done under my supervision .

Prof. Bhabani P. Sinha
Advanced Computing and Microelectonics Unit

Indian Statistical Institute
Calcutta - 700035.

Acknowledgments

I express my deep gratitude to Prof. Bhabani Prasad Sinha for his guidance, advice and constant
encouragement throughout the period this dissertation was in progress .

My sincere thanks goes to everyone in Advanced Computing and Microelectronics Unit for their
advice and help whenever I wanted them most .

I thank Rekha Menon , Debashis Sarkar , Manas R. Jagadev , Arijit Laha and Piyush R. Kumar
who have helped me a lot in preparing this report .

Lastly , I take the opportunity to thank all my classmates who have made my two years stay here
a nice experience .

Calcutta Monoj Kumar Baruah
July , 1995

Abstract

Fast communication between the processors in a parallel machine is very critical to efficient
performance of parallel algorithms . The time-space trade-off involved in solution of the
permutation routing problem on mesh has been studied . Few algorithms for permutation
routing on Multi-Mesh has been proposed . The first among these re quires large buffers to be
present in each processor . Another algorithm which requires no buffers has been proposed .
Yet another algorithm which uses buffers of constant size has been proposed . An off-line

algorithm which precomputes the paths to be taken by each packet off-line so as to route them
without requirement of buffers in the processors has been proposed .

Contents

Chapter 1
Introduction

Chapter 2
Muiti-Mesh Topology

2.1 Introduction
2.2 The Multi-Mesh (MM) Network
2.3 Topological Properties

2.3.1 Cycle Structures
2.3.2 Diameter of MM network

Chapter 3

Permutation Routing on Mesh

3.1 Introduction
3.2 Greedy Algorithms

3.3 A Deterministic Algorithm with Queue Size 1
3.4 A modified Algorithm

3.5 Deterministic Algorithm with Constant Queue Size
3.6 Randomized Algorithms

3.7 A Heuristic Algorithm
3.8 Off-line Algorithms

Chapter 4
Permutation Routing on Multi-Mesh

4.1 Introduction
4.2 A Greedy Algorithm
4.3 Deterministic Algorithm with Queue Size 1

4.4 A Deterministic Algorithm with Constant Queue Size
4.5 An Off-line Algorithm

Chapter 5

Conclusion and Further Work

Appendix
References

NN Ww w

10

10
11
11
12
12
12
13
13

16

16

16
19
22
25

29

30
31

Chapter 1

Introduction

In quest of finding better ways for performing tasks , man has invented newer and newer
devices — wheel , gear , vacuum tube . transistor and modern computer in that order , to name
a few . Need for fast and correct computation has given birth of one of the greatest inventions
of this century — computer , which has been the subject of lot of research work in the last few
decades . This has resulted in rapid evolution of computer in terms of speed . At this point of
time , the speed of single-processor computer is on the edge of limit imposed by physics of
building materials . Designing computers with more than one processor are the recent area of
research . The development of VLSI technology has expedited the research work in this field .
This fast speed of computation also proves insufficient in coping up with even faster spread-
ing application fields like image processing | computer vision , intelligence processing ,
pattern recognition etc .

Designing of multi-processor computer is a highly challenging task because even though
the overall speed is highly increased , because of communication overheads between the
individual processors it may not be possible to achieve the expected performance . Based on
how the processors in a multi-processor computer communicates among themselves , they can
be categorized into two classes : tightly coupled , where the processors share a common lock
and/or memory and loosely coupled | where each processor runs independently with a local :
clock and local memory . The interprocess communication in such computer systems plays a
vital role in the overall performance .

Two ways of effecting interprocessor communication is through the use of shared memory
and an interconnection network . Thus | the interconnection network has become a critical
component in such system .

Interconnection networks can be classified into two categories : static and dynamic . In a
static network , links between two processors are fixed once for all and cannot be reconfigured
for direct connection to other processors . Ring, star, mesh . hypercube etc. are exampies of
static networks . In dynamic networks the links can be reconfigured by setting the active
switch elements of the network . Examples of such dynamic topologies are baseline, reverse
baseline, banyan , omega, Benes | shuffle-exchange , etc.

A static network topology should have the following desirable properties
(1) Low number of links : This is to keep the cost of the network small .
(1) Low degree : The maximum degree of a node should be small . This requirement helps to
keep the number of I/O ports of a processor to a small value
(1) Regularity : The network graph should preferably be regular | i.e. every node should have
same number of connections or uniform degree .
(iv) High bisection width : The bisection width is the minimum number of edges along a cut

which divides the network into two equal halves . Thus the bisection width provides a good
indication of the maximum communication bandwidth along the bisection of the network .
(v) Low diameter : To minimize the message-passing over-head , the diameter of the network
graph should be as small as possible .

(vi) High degree of fault-tolerance : The network should remain operational even in the pres-
ence of node / link failures . A common measure of fault-tolerance is the node (edge) connec-
tivity of the graph , which is the minimum number of node (edge) faults that makes the net-
work disconnected . Another useful measure is the f -fault-diameter which is the maximum
diameter of the network in the presence of f node / link faults .

(vii) Ease of mapping of algorithms : The versatility of the network for efficient implementa-
tion of different kinds of parallel algorithm is another desirable feature .

(viii) Incremental Extensibility : Ideally , the network should be extensible by one node at a
time , or at least by a small group of nodes .

Many of the above requirements are mutually conflicting with each other . For example ,
although low degree and low number of links are desirable they effect the diameter and fault-
tolerance properties of the network graph . Design of a network topology optimizing all the
above features is almost intractable . One common approach is to optimize some of the desir-
able features of the network |, keeping other parameters within the acceptable limits .

Among various topologies available in literature , mesh , torus , ring , hypercube are
popular . Recently , a new architecture , Multi-Mesh(MM) is proposed in [4,5] which is a
simple variant of mesh . A Multi-Mesh has n* blocks each containing n?> processors con-
nected as simple n x n mesh . The interconnections among the blocks are made in such a way
that each node has a uniform degree of 4 . It has a diameter of 2n . Various algorithms like
sorting , matrix multiplication run faster on this architecture than on a 2D mesh .

Fast communication between processors in a netwiork is very critical to efficient implemen-
tation of many algorithms . In many applications , it is required that the preessors communicate
the results of computations among themselves . Various routing algorithms — point-to-point

communication ,broadcast {4,5], and complete exchange [16] have been already implemented
for MM network .

In this dissertation , algorithms for another important communication problem —
permutation routing — have been developed on the Multi-Mesh network . First, a greedy
algorithm has been presented which requires buffer of large size to be present in each Processor.
Next , an algorithm which run in O(n) time in a network of size n* without any extra buffer at
any processor for queueing . This algorithm has close resemblance with that of sorting . Another
algorithm which requires buffers of constant size to be present in each processor has been
presented .The algorithms similar in nature with this algorithm runs in better time than the
corresponding total sorting based algorithms in two-dimensional and multi-dimensional mesh .
An off-line algorithm in which the routes to be taken by the packets are computed before the

actual routing is done is also presented . This algorithm routes the packets without requirement
of buffers in the processors .

The organization of this dissertation is as follows :

In Chapter 2 , the Multi-Mesh network is described along with some important topological
properties . In Chapter 3 , an overview of the various type of existing algorithms for
permutation routing has been given. In Chapter 4 | algorithms for permutation routing on
Multi-Mesh network are presented .

Chapter 2

Multi-Mesh Topology

2.1 Introduction

Mesh is one of the simplest and most popular network topology . In a two-dimensional
mesh with n* processors can be identified by two co-ordinates x and y with respect to some
chosen origin . Let the processor at the position (x,y) be denoted by P(x,y) where 0<x,y<
n-1. The processor P(x,y) 1s connected to P(x + 1, y + 1), if they exist . The diameter of this
simple mesh is 2(n-1) . Here , (n-2)* number of processors have degree 4 , 4(n-2) number of
them have 3 and four corner processors have degree 2 . The interconnection scheme in
ILLIAC IV type processors is a bit complicated with additional wrap-around and end-around
connections , bringing down the diameter to n- 1 . The degree of each processor in this case is
4 . Since the diameter of the of the mesh is Q(N'?) ,where N is the total number of processor ,
a lower bound on the time to solve non-trivial problems that involve manipulation of data
residing in processors farthest apart in a mesh of size N(=n?) is W (N'?) . In search of an
architecture capable of providing faster solutions to such problems , yet retaining the attractive
features of a mesh, researchers have studied related interconnections like pyramid [11,12],
mesh-of-trees [13], meshes with broadcast buses [14,15] etc .

In this chapter , we discuss about Multi-Mesh (MM) network topology [4] . The MM
network is different from multi-dimensional mesh discussed in [7,8] . An MM network having
n* processors is built around n* meshes of size n x n each . The degree of each processor in
MM network is 4 . The diameter of an MM network with n* processor is 2n . A Hamiltonian
cycle exists in the network . Algorithms for point-to-point communication , single node broad-
cast , multicast and wormhole routing for complete exchange have been developed for this
network . Point-to-point communication needs 2n communication steps while one-to-all broad-
cast and multicast for n* processors can be effected in 2n + 8 steps and n* + n® + n+n -1 steps
of data communication respectively . The diameter under single node failure is 2n + 6 .

It is shown that ann® x n’ mesh can be emulated on MM in O(1) time . Thus , any algorithm
that runs in O(f{n)) time in an n’ x n® mesh, can always be solved in less than or equal to O (f{n))
time . However, the result gives merely an upper bound on the running time of an algorithm on MM
network . In practice , many real life problems can be solved on MM network more efficiently than
on the corresponding mesh with same number of processors Specifically , the problems whose time

complexity are governed by the diameter of the network , the MM network offers a distinct

2.2 The Multi-Mesh (MM) Network

The Multi-Mesh network is an extension over the simple mesh . In an n x n mesh , the
processors are arranged in n rows and n columns . In MM network , such a mesh is used as the
building block where n* number of such meshes are arranged in the form of an n x n matrix .

processors on the four outer boundaries each of which has 3 neighbors within the block .
These processors are referred to as boundary processors Also , in each block there are 4
corner processors which have one neighbor within the block = These processors are referred to
as corner processors . The rest (n-1)* processors in every block , each having 4 neighbors are
referred to as the internal processors . Different blocks are interconnected by inserting suitable
links among the boundary processors so that each processors will uniformly have four links in
the final topology .

A processor inside a given block can be uniquely identified using two co-ordinates . As the
blocks in turn are organized as a matrix , each block can also be uniquely identified using two
co-ordinates o and f as B(a,8) . Thus , each of the n* processors can be uniquely identified
using a 4-tuple of the co-ordinate values . The first two co-ordinates are used to describe the
in which the processor lies and the rest two co-ordinates are used to specify the position of the
processor inside that specified block . For example , P (o, B, x, y) is the processor lying at the
x-th row and the y-th column of the block B(a, B) . Each of the se co-ordinates may assume a
value between 0 and n -1.

A special symbol * isused for any one ofthese 4 co-ordinates to denote the set of all processors
with all possible values of the respective co-ordinates . For example , P(*, * 0, 0) signifies the set
of the top left corner of all the n> blocks .

If the processors P(c , .» X, , Y,)are connected to P(xt , B, ,x ,» Y,) for all values of a,
0 <a<n-1, these set of links are denoted by interconnection between the sets P(*, B,.x.y)
and P(*, B, ,x,,y,) . Ina similar manner , a set of blocks can be represented by putting a * in one
or both of'the two co-ordinates of B(a,).

Interblock connections among the boundary processors are given by the following rules:

1. VB,0< B<n-1,P(a,B,0,y) are connected to Py, B, n-1, @), where 0 <y, o« <n-1,
2. Vo ,0<a<n-1,P(a, B, x, 0) are connected to P(o, x, B,n-1), where 0 <x, B<n-1 .

All these links are two-way connections . Hence, in the MM network all processors have a
uniform degree of 4 . These interblock connections among the boundary processors are referred to
as the interblock links . Rule 1 interconnects two blocks in the vertical direction , and so the
corresponding links are called vertical interblock links Similarly | rule , defines the horizontal
interblock links .

It 1s notable that the processors P(a,*, 0, o) are connected to P(a, *,n-1, o) whichlie in the
same block by means of interblock links Similarly , the processors P(*, B, B3,0) are connected to
P(*, B, B, n-1) again in the same block by interblock links . Thus , four of the boundary processors
ineach block are connected to some boundary processors in the same block . It should also be noted
that one of these two connections is in the horizontal direction and while the other is in the vertical
directton .

An example of an MM network for n = 3, is given in Fig. 2.1 | where interblock connections
in the Oth row of blocks and the Oth column of blocks are only shown . The interblock connections
in the rest of the rows of blocks are same as those in the Oth row and the interblock connections

in the rest of the column of blocks are same as those in the Oth column .

_‘

Fig. 2.1. An Example of a Multi-Mesh Network forn =3

(All interblock links are not shown)

2.3 Topological Properties
Some important properties of the MM network are discussed in this section

2.3.1 Cycle Structures

The interblock links induce some cycles in the MM network .

Cycles of length n

Every wrap-around link in a block induce a cycle of length n . There are two such cycles in
each block , one in horizontal direction and the other in the vertical direction . There are 2n? such
cycles of length n in the whole network . The vertical cycles in the ith column of blocks is induced
by wrap-around connection in the ith column of processors | Similarly , the horizontal cycles in
the ith row of blocks is induced by the wrap-around connections in the ith row of processors .

Cycles of length 2n

Due to horizontal interblock connections of the MM network | there is a cycle of length 2n
between the k-th row of the block B(i,j) and the j-th row of the block B(i,k)forj#k,0<it<n-1
. Thus, there are n(n-1)/2 such horizontal cycles of length 2n in a particular row of blocks . Similarly
, due to the vertical interblock connections , there is a cycle of length 2n between the k-th column
of block B(i, j) and the i-th column of block (k , j) fork #1,0< j< n- 1. There are n(n-1)/2 such
vertical cycles in a particular column of blocks . In total there are n® (n-1) cycles of length 2nin the -
MM network .

Presence of these cycles leads to the following results

Result 1 : Foragivena, if the data elements in B(a ,*) are shifted through n positions along the
horizontal cycles , then the i-th row elements of B(c, j) will move to j-th row of B(«, i) .

Result 2 : For a given 8 , if the data elements in B(¥, $8) are shifted through n positions along the
vertical cycles , then the i-th column of B(j,) will move to the j-th column of B(i, B) .

An example of data movements along the horizontal cycles in a single row of processors is
shown 1n Fig.2.2 for n=3 .

2.3.2 Diameter of MM network

There exists more than one path between any two processors in the network . However | there
exists a path of length less than or equal to 2n between any two processors in the network .

Let the source processor be numbered as and the destination processor be numbered as P(a, ,
B,, X, ,y,) ,while all co-ordinates may assume values between O andn - 1 .

Let the block (c, , B,) ,1n which the source processor lies, be referred to as source block and block
(o, , B,) be referred to as the destination block . Each of the blocks represented by B(x, , ¥)
and B(*, 3,) 1s directly connected to the source the source block by one interblock link . Similarly
, each of the blocks represented by (o, , *) and B(*, 3,) is directly connected to the destination block
by one interblock link . Thus, if o, # o, and B, # 3, , the path from the source to the destination
must have to pass through at least one intermediate block . For example , either B(c,, B,) or
B(a, , B,) can be the intermediate block . The situation is clearly depicted in Fig. 2.3 .

Fig. 2.3 shows that there exist 16 different paths between the source and the destination block
, each using only one intermediate block . One of these path is of length less than or equal to 2n
. To find this , the processors P(a, , 3, ,0, o,)and P(a, , B, ,n - 1, o,) by an imaginary vertical
line and processors P(a, , B3, ,8,,0)and P(,, B, , B, , n- 1) by an imaginary horizontal line in
the source block . These two lines divide the block into four quadrants SQ1, SQ2,8Q3, SQ4 in
Fig. 2.3 . These four boundary processors are referred to as source block exits . These are chosen
as exit points as they are connected to either of the intermediate biocks B(c, , B,) or B(x, , B,)
via one interblock link . Similarly , imaginary lines are drawn in the destination block also , as shown
in Fig 2.3 . Those lines divide the destination block into four quadrants DQ1 , DQ2 , DQ3 , DQ4
. The tour boundary processors through which these imaginary lines are drawn are referred to as
destination block entries . Each of these destination block entries are connected to one of the
intermediate block by one interblock link . From fig 2.3 | it is apparent that there are four processor
in an intermediate block , out of which two are connected to the source block and are termed as
‘intermediate block entries, while the other two are connected to the destination block and are termed
as intermediate block exits . Also, if the intermediate block entries for a certain path are in horizonta
boundaries of the intermediate block , then the corresponding intermediate block exits are in vertica
boundaries and vice versa .

The source processor P(a.,, B, , X, y,) is contained in one of the quadrants SQ1, SQ2 , SQ3

, 8Q4 1n the source block . It is to be noted that each of these quadrants contain exactly two exit
points which are two diagonally opposite vertices of the quadrants . Similarly , the destination
processor 1s also coniained in one of the four quadrants DQ1, DQ2, DQ3, DQ4 of the destination
block . The quadrants in the destination block also have exactly two entry points . The quadrant in
which the source processor lies is referred to as source quadrant and the quadrant in which the
destination processor lie is referred to as destination quadrant . 1t can be shown that one of the
two paths that uses only those entry and exit points which are vertices of the source quadrant and
the destination quadrant is of length less than or equal to 2n . For example , referring to Fig. 2.3
if the source lies in SQ1 and the destination lies in DQ1 , then one of the two paths :

) P(a,,B,,x,,y)—> Pla,,B,,B,,0)>Pla,, 3., B,,n-1)> P, ,B,,n-1,a,)>

C Py, B, 0, 1) > Play, By, %, y,)

n) P(ae,, B,,x,,y) > Pla,,B,, 0,0,) > P(o,, sn-1,0)—> Pl ,B,, B,,n-1)>
P(%?Bzi B] ﬂ(’))d_} P({I_’ga Bj=x1:ryj_)

oo
C, IR Z
3 3 3
R
KoK K
Inifial Setup After Ist step After Step 2 After Step 3

Fig. 2.2. Three Steps of Data Movements in
the First Stage of T Operation

Fig 2.3 Possible Paths .. o

DQ1 ‘JQ
l
_____ (B,
(Bl’ 1) DQ4 FQ
(l'l, al I

> the Source and the Destination

Chapter 3

Permutation Routing on Mesh

3.1 Introduction

In a network of processors , each processor initially contains one packet destined for some
processor in the network . Let v, denote the packet originating in processor i ; we denote its
destination by d(i) . Every processor is destination of one packet . The permutation routing
problem is to transport v, to d(1) . In some cases , not all processor has packet to send and
hence some-processors are not destination of any packet . This kind of permutations are referred
to as partial permultafions . |
The algorithms for permutation routing problem can be classified as oblivious and non-oblivi-
ous algorithms . The property of oblivious algorithms is that : the route followed by v
depends on d(i) alone , and not on d(j) for any j #1.

Another way of classifying the algorithms is as on-/ine and off-line algorithms . In off-line
algorithms routes to be taken by the packets are determined off-line and some intermediate
destination addresses are appended to each packet so that the packets can be routed to their
corresponding destinations without getting queued in intermediate processors .

The permutation routing problem in an n x n mesh is solved by a variety of algorithms .
The algorithms that runs with best time are greedy algorithms where the packets are routed
through the shortest path . But these algorithms need extra space to be present in each of the
processors . The non-oblivious algorithms which permutes the packets using efficient sorting
algorithms needs no extra bufter to be present in the processors . But their running time 1s
higher . In between these two extremes are the algorithms which use sorting algorithm to sort
sub-meshes . These algorithms need smaller size buffers to be present in the processors . In
fact . the buffer size can be increased to decrease the running time and vice versa .

To reduce running time as well as buffer size , efforts have been made by researchers . In
fact , existence of a simple , deterministic . oblivious algorithm which solves the permutation

10

routing problem in optimal time with small buffer size is unknown . Different randomized ,
oblivious algorithms[9,10] has been proposed which routes the packet in near optimal time
using small size queues with high probability . Recently , an efficient heuristic algorithm has
been proposed{3] which routes the packets in optimal time in most of the cases . This heuristic
is non-oblivious in nature . A recursive algorithm has also been proposed in [2] which routes
the packet in optimal time . !"

In case the permutation to be routed is known in advanced , the routes of each packet
can be found out such that the routing needs no buffer to be present in the processors .

In this chapter , we make a study of various types of existing algorithms for permutation
routing on mesh .

3.2 Greedy Algorithms

Among the algorithms for solving permutation routing problem, the greedy algorithms run
fastest . The idea behind greedy algorithms is to route the packet along a shortest path from its
source to the destination . One example of this class of algorithms is an algorithm which routes
the packet to its column destination and then to its destination in that column. But the limitation of
this class of algorithms is that they require large buffer size . This problem arises because two or
more packets might be contending for use of the same edge (in the same direction) at the same time
. In that case one of these contending packet will have to be forwarded through that edge and the
other(s) will have to be buffered at that node . For example, in the above mentioned algorithm , this
kind of a situation can occur when two packet one moving from left to right and another from right
to left reaches their column destination in the same step and in the next step both of them has to travel
in the same direction (say, upward) . In that case , one of them is selected for forwarding through
the upward link and the other is queued in that node . There are many strategies for arbitrating
between packets that are contending for the same edge (e.g. , the packet that has to go further goes
first) and for preventing the buildup of large queues (e.g., presetting a maximum threshold q, and
not advancing a packet forward into a processor with a queue that is at or near the threshold). It
can be shown that this algorithm completes routing in 2n - 2 steps in worst-case which is optimal
considering the fact that the diameter of meshis2n-2 .

3.3 A Deterministic Algorithm with Queue Size 1

This is a sorting based algorithm which routes the packets in three phases . In Phase 1 .
packets are sorted into column-major order according to the column destination of each packet
. Ties are broken by row destination . Phase 1 takes 5n + o(n) time in SIMD machine (4n +
o(n) time for sorting into column-major snake-like ordering using shear-sort algorithm [17] and
n steps to rearrange it to column-major order) and 4n + o(n) time in MIMD machine since in
MIMD model shear-sort algorithm takes 3n + o(n) time to sort into column-major ordering .
This phase can be completed without requirement of any extra buffer in the processors . If the
permutation is complete , then the routing is completed after this phase itself,

& F""SETL RPN

& C 23797 2

11

Otherwise , in Phase 2 , packets are routed to their correct column destination . This
takes n - 1 steps and can be completed without use of buffer space , since after Phase 1 , in
each row there are at most one packet destined for each column . In phase 3 , the packets are
routed to their destination . This also takes n - 1 steps to complete .

This algorithm takes 7n - 2 + o(n) steps in SIMD machine and 6n - 2 + o(n) in MIMD
machine . This algorithm can handle partial permutations also . |

3.4 A modified Algorithm

A better performing algorithm can be consiructed where dummy packets are introduced in
case of apartial permutation . In this algorithm a tag is added to each packet before running the
shear-sort algorithm according to this tag so that after the end of sorting the packets reaches its
correct destination . The tag is assigned to each packet in such a way that if the value of the tag
isi, thenthe destination address contains ._th smailest element in the snake-like row-major indexing
scheme .

Let the rows and columns be numbered from 0 to n - I . If (r,c) is the destinationof a
packet , then a tagis assigned to it with valuer*n+c, if riseven and r*n+t(n-c)ifris
odd . After running shear-sort algorithm according to this tag with respectto snake-like row-major
ordering , the packet reaches their corresponding destination .

This algorithm takes 4n + o(n) steps . SIMD machine and 3n + o(n) steps in MIMD
machine.

3 § Deterministic Algorithm with Constant Queue Size

The running time can be decreased by allowing the processors to have bufler of constant
size . Let the processors have buffer of size g . This algorithm {7] consists of three phases . In
Phase 1 , the mesh is partitioned into q° number of blocks of size n/ q x n/ q and packets are
sorted in row-major snake-like order inside these blocks according to the row destinations of
the packets . Using shear sort algorithm this step can be completed in 4n / q + o(n/q) steps . In
Phase 2 , each packet is routed to its row destination . In Phase 3 , packets are routed to the
destination . The last two steps take 2n -2 steps . Hence,, the entire algorithm takes (2+ 4/q)n
+ o{n/q) steps . The bufter requirement in each processor is2q- 1,

3.6 Randomized Algorithms

The randomized algorithms attempt divide a worst-case routing problem 1nto two aver-
age-case routing problem and solve it with small queue size with high probability . A random-
ized algorithm presented in [9,10] completes permutation routing in three phases . In Phase 1,
each column is partitioned inton /logn intervals and each packet is routed to a randomly
selected destination within its interval . In Phase 2, each packet is routed within its current fow
to its correct column . In Phase 3, every packet is routed within its correct column to its correct
destination . Contention for use of links are handled using farthest-first protocol. The

12

final column routing phase does not start until every packet has completed its row-routing . It
has been shown that the resulting algorithm runs in 2n + o(n) steps and uses queue of size at
most O(log n) with high probability .

3.7 A Heuristic Algorithm

A heuristic algorithm has been proposed in [3] for permutation routing in an n ' n mesh
This algorithm is built upon odd-even transposition [18] method . The odd-even transposition
method works as follows : At odd time instances , the processors that are at odd positions in a
row of processors compares their contents with the content of their left neighbors and a
decision is made on whether an exchange of their contents will occur . At even time instances ,
comparison and a possible exchange takes place between the processors at even position of the
row of processors and their left neighbors . This algorithm at each ste% tries to reduce the
summation of the distances that all packets has to travel Let D(t) and D(t +1) , respectively ,
be the total distance that all packets have to travel at time instances t and t + 1 _ Let at time t |
processors P, and P, contain packet p, and p., and let the distances these packet have to
travel be d.(t) and d __ (1), respectively . During odd-even transposition , the decision on
exchanging packet between two neighboring processors at time instance t is taken based on the

following two criteria

1. D(t+1) < D(t)
or 2.max (d (t),d _ (t))< max d@+1),d, (t+1))

where d (t + 1), d,, (t+ 1) are the distances the packets have to travel after the exchange .

The algorithm is as follows

Perform odd-even transposition on the row of the mesh such that the above mentioned criteria
are satisfied (packets are moving only horizontally). If a packet reaches the processor that lies
at its column destination , and , no other packet in that processor and no other packet at that
processor want to move vertically in the same direction | it starts vertical movement . Otherwise
the packet that has to move further in the column , moves vertically , while , the other packet
participates in the odd-even transposition that is taking place on the row

Simulation results has shown that the number of steps required to complete the routing is
almost equal to the maximum distance a packet has to travel .

3 .8 Off-line Algorithms

In some applications , the routing is known in advanced . In these cases , the route to be
taken is determined off-line so that the packets can reach their destination without waiting in
the intermediate processors . Off-line algorithms [1] are particularly advantageous when the
same packet routing problem is encountered over and over again .

13

To fi-lin alg ritom fr p rmutati nr uting nann x nmso wrksintor poas.In
Poas 1, to packts ar p rmut d witoin acoclumns toatat mst n packtin acor wis
dstindfr acoclumn . InPoas 2, aco packt witoinitsrwt to crrctclumn. In
Poas 3, acopacktwitoinitsclumnt itscrrctrw (i. .t itsd stinatin) .

To oard part { tois alg ntom 1s figuring ut o wt p rmut to pack ts witoin aco
¢ lumn during Poas 15 toattor willb atmst n packtin acorwdstind frany
c lumn . Tots part fto algritomisdn ff-lin . Onc toisisd n , aco poas is asily
implmntdinn-1stps. Tous,to n-lin part f tois alg ritonrruns in 3n - 3 wito qu u
siz f1byusingto gr dy alg ritomt rut to packts witoin acorw rc¢lumn.

To ff-lin part fto alg ritomis as f1l ws : Giv n an arbitrary p rmutati n r uting
prblm , first a bipartit ruting grapo G=(U, V , E) is ¢ nstruct d wito U={u1,u,,....,u }
and V={wv1,v,,..,v }andn’ dgsE={o, ,.., w1} suco toatkto dg . cnnctsu;t
Vv;,Wor 1 isto starting ¢ lumn f to kto pack tandj isto d stinatinclumn fkto
packt (0<k<n*1)

Sinc G in a n-r gular bipartit grapo (i.. vrynd fGisincidntt n dgs, and
nds fUar nlyadjacntt ndsinVand vic vrsa),itispssibl t labl aco dg f
Gwitoanintgrinto intrval[1,r]s toatanytw dgsincidntt to sam nd will
oav diff r nt lab Is.

Onc labls fto dgs f Gisdtrmmind, itis asyt sp cify o wto pack ts so uld
b r arrang d witoin aco ¢ lumn . In particular , acopacktpissndt rw lp . WOT lp
dntsto lablfrto dg crrspndingt packtp.

An xampl inFig. 3.1 ,sowsowto ff-lin part fto algritom wrks. Fig 3.1(a)
sowsaprmutatin t b rutdina 4 x4 mso. To numb rs insid grids impli s to
d stinatin fto pack t starting in toat pr c ssr. Fig 3.1 (b) so ws to ¢ rr sp nding
bipartit r uting grapo and to labIs assigndt to dgsaftrcmputatinisdn .To
lab Is ar into rang [0,4]. Fig 3.1(c) so ws to situati n aft r to pack tsar p rmut d
witoin aco ¢ lumn acc rding t to labls assigndt to ¢ rrsp nding dg .

14

Col 0 Col 1 Col 2 Col 3

Fig 3.1 :An example :(a) a permutation routing problem (b) corresponding
bipartite routing graph and labels assigned on the edges (c) after permuting packets
within the columns according to the labels

15

Chapter 4

Permutation Routing on Multi-Mesh

4.1 Introduction

We have observed in the last chapter that a space-time trade-offis involved in the solution
of the permutation routing problem . In one extreme are the algorithms which solves the problem
with best possible time , but requires large buffer to be present in each processor (Greedy
Algorithms) and at the other extreme are the algorithm which solves the problem by applying
sorting on the entire mesh without any use of buffer . In between these two extreme are the
algorithms which solves the problem by applying sorting on sub-meshes and uses brffer of constant
S1ZE .

In this chapter , we first give a greedy algorithm which requires buffers of large size to
be present in each processor . Next , we present an algorithm which is based on sorting of
packet on the entire MM network which requires no buffer space in the processors . Then ,
we present an algorithm which uses constant buffer size . Similar algorithms for permutation
routing on two-dimensional and multidimensional mesh runs in better time than the
correspo\nding algorithms which uses sorting on the entire mesh .

Finally , we present an off-line algorithm .

4.2 A Greedy Algorithm

The idea behind this algorithm is to find for each packet the shortest path between its

source and its destination and then route the packet through that path . The algorithm works
as follows :

As described in the Chapter 2 and shown in Fig. 2.3 , for each packet we can divide
both the source block and destination block into four quadrants . And depending on the
quadrant in which the source and the destination lie one of the two paths that pass through
entry or exit points of the source and the destination quadrant is chosen as the path to be
taken by that particular packet . This computation is done in each source processor . The
source processors then appends three fields with the data packet . These appended fields are :

Field (1): containing the address of the source block exit processor (o, B, x ,y,) if source
block and destination block are not the same |, otherwise this field is empty .

Field (2): containing the address of the intermediate block exit processor (o, , 3., x., y.) if
source block and the destination block does not lie on the same column of blocks ,otherwise
this field is empty .

Field (3): containing the address of the destination processor (a,, B, X, y,).
The algorithm is as follows :

16

In each processor (o, B, x, y) do in parallel :
for each amving packet D do
begin
if ((o, B, x, y)1s the source) then
make the first non-empty field current .Let us denote the current field as (a_ , B_, x_ ,y)
else
if (the packet has arrived following a interblock link) then
make the next non-empty field the current .
if (y, = n-1) then
if (x, #x andy_#y) then
put the packet in the queue of that vertical link which takes lesser number of steps to
reach(a ,B_,x ,y)
else if (y #y) then
put the packet in the queue of that horizontal link which takes lesser number of
toreach (o ,B.,X.,y,)
else
if (current field 1s field number 3) then
stop
else
put the packet in the queue of the horizontal interblock link
else
if (x #x andy_#y) then
send the packet through that horizontal link which takes lesser number of steps to
reach (a0, B . x .,y)
else if (x # x) then
put the packet in the queue of that vertical link which takes lesser number of
steps toreach (o , B ,x .,y)
else
if (current field 1s field number 3) then
stop
else
put the packet in the queue of the vertical interblock link
end
for each link do
select the packet that has to go farther and forward it through that link .

It can be observed from the that two or more packets may arrive at a processor for which the

next edge to be used is same . In that case , the packet that has to go farther , uses the edge first
and the other(s) 1s(are) buffered in the processor .

17

L.
P (a-pB, 9Kisyi)
P(a,,Bx,y,)
(a)
Pla,,B,.x,y)
r
P(B) P(a'd:ﬂd!x !yd)
%50, 5 XY, '
LS 3

(b)
Fig 4.1 Examples showing two possible routes taken by packets in greedy algorithm

18

4.3 Deterministic Algorithm with Queue Size 1

The algorithm presented here is a sorting-based algorithm and runs without requirement of
any extra buffer in the processor in the MM network . The basic idea is to assign a tag to each
packet based on its destination address and appropriate to the indexing scheme with respect to
which the sorting is done . Next , a sorting algorithm is run which sorts the packets according
to the tag assigned it . The result of this is that each packet reaches its destination .

Let the destination of the packet which starts at P(a, ,B, ,x,.y,) be P(a, ,B,,x,,y,) . If the
permutation is partial , then dummy packets are introduced destination of which is the source
itself .

The sorting algorithm for MM network [6] sorts with respect to snake-like ordering as
shown in the Fig . 4.1 . The snake-like indexing scheme in MM networ® order the packets in
following manner :

Let D(a, B, x, y) denote the data element residing in processor P(ov , B, x, y) . In a block
B(a , B) where o + B is some even number , the snake-like sorted sequence starts from the
lefimost end of the O-th row and ends at the (n - 1)-th row . Such a block is referred to as even

block . In a block B(a , B) where o + B is some odd number , the snake-like sorted ordering
starts at from the (n - 1)-th row and ends at the left most end of the 0-th row . In snake-like

ordering, D(O, B,*,*)< D(1,B,*,* < - <D(n-1,B, * * if Biseven and
D(O, B,*,%)2 D(L,B,*,*)=2 -2 D(n-1,0,* %) if Bisodd. And finally,
D(*,0, *,)< D(*, 1,* %)< < D(*, n-1,*, %)

In each processor P(o, B, x,,y,) forO<a,f,x,y, <n-1, the following computation is
done to append tag to each packet appropriate to snake-like ordering shown in Fig 4.1 :

begin
it (B, 1s even) then
begin
— 2 .
:[l - (12* n- o,
if (o, 1s even) then
begin
t,=x,%*n;
if (x, is even) then
L=y,
else
t,=n-1-y,;
end

19

else
begin
.tz——_(n- 1-x,)*n;
if (x, 1s even) then

t,=n-1 -Z: :
else
=Y,
end
end
else
begin

t,=(n-l-a)*n* ;
if (o, is odd) then

begin
t,=x,%*n;
If (x, 1s even) then
L=Y,;
else
t,=n-1-y ;
end
else
begin

i[2=(n_- 1-x,)%n;
if (x, 1s even) then

t,=n-1 Y,
else
L=Y,s
end
end
t, =B, *n’;
tag=1t +t, +t,+¢, ;

end

The tags are assigned to each packet in such a way that , if i is the value of the tag for some
packet , then the destination of the packet comes in the i-th position in the snake-
in MM network . If packets are sorted according the tag assigned in the above manner with
respect to snake-like indexing scheme , then packets reach their corresponding destination .

This algorithm completes in 58n + o(n) time which is the time complexity of the sorting algo-

rithm in MM network

20

like ordering

o] 1]2}
-
15| 4|3}
6| 7| 8
Il'? 16 |15 F
12|13 |14]
1mnl1wo |o
18| 19 |20 F
231 22| 21F
|
24| 25 | 26

35

1 30

34 |33

31 |32

29

28 | 27

72

73

TT7

76

75 1

78

79

80

Fig. 4.1 Snake- like Indexing Scheme 1n MM network

21

4.4 A Deterministic Algorithm with Constant Queue Size

In this section , we present an algorithm without giving proof of correctness which requires
buffer of size c to be present in each processor in the network . Before we give the algorithm ,
we give few definition

T-permutation . A T-permutation performs a permutation among each set of processors
represented by P(*, B, X, y)in parallel . It can be noted that there exist no direct connections
among the processors in a set . Hence , this operation is completed in three stages:

(1) Perform n shifts along the vertical interblock links , so that the packets D(*, B, x, y) are
brought into P(y, 3, x, *)i.e, to a row of processors .The situation is depicted in Fig. 4.1.
This stage needs n steps .

(1) Perform permutation in each row of processor in each block . This stage needs n -1 steps.

(iii) This stage is just the reverse of the stage (i) in which n shifts are performed along the
vertical interblock links in the reverse direction as stage (i). This step needs n steps .

The T-permutation operation needs 3n - 1 steps to complete .

F-permutation : An F-operation performs a permutation among each set of processors repre-
sented by P(a, * , x, y) in parallel . Here also , there exist no direct connections among the
processors in a set . Hence , this operation is completed in three stages:
i

(1) Perform n shifts along the horizontal interblock links , so that the packets D(o, * , x, y)
are brought into P(a , x, *,y) i.e. to a column of processors .The situation is depicted in Fig.
4.2.

(11) Perform permutation in each column of processor in each block .

(1) This stage 1s just the reverse of the stage (i) in which n shifts are performed along the
horizontal interbock links in the reverse direction as stage (i).

The F-permutation operation also takes 3n - 1 steps to complete .

The algorithm is as follows :

Let the destination address of the packet D starting at P(at ,B, ,x,,y,) be P(at, , 0 X,0Y,)
The tdea 1s to first correct the y-coordinate , next the x-coordinate , then the B-coordinate and
finally the c-coordinate .

For this,

Step (1) : First, the packets are rearranged in the entire network in such a way that the correc-
tion of the a-coordinate can be done using T-permutation operation without congestion . Let
the position of D after this step be P(o. ,B. ,x.,y)

Step (2) : Next , the packets are rearranged within each row of blocks in such a way that the
correction of the b-coordinate can be done using F-permutation operation without congestion .
Let the position of D after this step be P(c. B.xLy)

Step (3) : Each block is divided into subblocks of size k x k where 2 <k € ¢ <n'? .

22

(1) The packets are sorted in each subblock in column-major order based on their x and y-
coordinates as follows : if (x,,y)< (x,y)if yn+x <yn+x .

(11) In each row of processors in each block , the packets transmitted to the column that
corresponds to the y-coordinates of their destination address . In particular , D is transmitted to
the y,-th column .

(111) In each column of processors in each block , the packets are transmitted to the row that
corresponds to x-coordinate of their destination address . In particular , D is transmitted to the
x,-th row .

After step 3, the position of Dis P(a. ,Bj X,,¥,) 1.€., X and y-coordinates of each packet is
corrected . It can be shown that this step completes in 2n + O (n/c) steps and rpquires butfer of
size ¢ to be present in each processor .

Step(4) : The packets are transmitted to the correct column of blocks using F-permutation
operation . After this step , the position of D is P(a. ,B, ,x, ,y.) .

Step(S) : The packets are transmitted to the correct row of blocks using T-permutation opera-
tion . After this step all packets reach their destination .

The rearrangement operation of step (1) is as follows :

Divide the entire network into k* subnetworks consiting of (n/k)* processors each — (n/k)>?
processors each from (n/k)* different blocks . The subnetwoks are given by , S(k, Kk k)=
[k,nvk, - (k+Dn/k] x [k/k, - (k,+Dn/k] x [ka/k, -, (k,+1)n/k] x [k,/k, -, (k,+1)n/k]

Step(1.1) : In each such subnetwork , the packets are sorted according to the following index-
ing scheme: (o ,B ,x ,y) < (@, ,B, % .y) if yn®+xn’+ pnta <yn+xn’+fB n+

o

Sicslep(l.Z) . The packets are transmitted in such a way that the packet at (o , B , x , y) moves
to ((a + (y mod k)/k) mod n , B, x , y). This can be achieved by using T-permutation
operation .

Step(1.3) . In each subnetwork , the packets are sorted according to the following indexing
scheme (o, =Bp X 5Y,) < (o, ,Bq X, 5Y,) if or.pn:‘l +pfn’+ xnty < Cf,qns + Bp’tx n+t Y,

The rearrangement operation of step 2 is as follows :

Divide each row of blocks into k* sets of processors containing (n/k)? each — (n/k)? proces-
sors each from n/k different blocks . The sets of processors in each row of blocks o are given
by , SP(k, .k, ,k;) = [a] x[k,n/k, -, (k+D)n/k] x [k vk, -, (k+1)n/k] x [k,n/k,
(k,+1)n/k]

Step(2.1) : In each such set of processors , the packets are sorted according to the following
indexing scheme: ([313r X ,Y,) < (Bq X,y if yn®+ xn+f <yn’t+txn+ B
Step(2.2) : The packets are transmitted in such a way that the pac?(et at Ea , B, x ,y)moves

to(a,(B + (ymod k)n/k) mod n , x , y). This can be achieved by using T-permutation
operation .

23

Step(2.3) : In each set of processors SP(k, k, ,kg) , the packets are sorted according to the

following indexing scheme : (B X .Y) < ([J X,y) if B n® + X,nty < B n® + X,nty,
Here , we have assumed that sortmg in multi- mesh can be dane accordmg to the mdexmg in

schemes described in steps 1.1,1.3,2.1 and 2.3

24

4.5 An Off-line Algorithm

The off-line algorithm we present here is an extension of the off-line algorithm given in
Chapter 3 for mesh . The idea behind the off-line algorithm we present here is to perform some
precomputation to augment each packet with some intermediate destination addresses , so that
the packet can be routed through these addresses without requirement of extra buffer in the
processors in the MM network .

The precomputation required is described below . Let P, be the destination of the packet D
which is starting at P . We consider D as the representative of the packets to show how inter-
mediate destination addresses are augmented to the packets .

First , find a permutation perm, within each column of blocks such that in each set of
processors represented by P(a, * , x,y) for particular walues of a, x, y, there is at most
one packet destined for each column of blocks . Let P, be the destination of D in perm .

For routing perm without requirement of extra buffer , we need that each packet be
(i) first , routed to the correct block and then (1) to P, within that block .

For effecting step (i) , a permutation perm, within each block such that in each set of
processors represented by P(¥*, B, x, y) for particular values of f3, x, y , there is at most one
packet destined for each block in the B-th column of blocks . Let P, be the destination of D
in perm, .

For routing perm, without requirement of any extra buffer , we need that each packet be

first routed to the correct column of processor and then to P, which lies in that column of
Processor .

As discussed in the previous chapter | if this is to be done without using extra bufier , we
need to find a permutation perm, within each column of processors so that each row there is at
most one packet destined for each column of processor . Let P, be the destination of D in
perm_ . At this stage of computation , addresses of P, and P, are appended to D in that order .

This completes the computation required for routing perm, .

For effecting (ii) , a permutation perm, within each column of processor 1s to be found
such that each row there is at most one packet destined for each column of processor . Let P,
be the destination of D in perm, . At this stage of computation , addresses of P, and P are
appended to D in that order .

This completes the computation required for routing perm. .

For routing the packets in the destination column of blocks , exactly similar computation is to
be done . Here , D is augmented with another four addresses including that of P .

Once this precomputation is over , the packets can be routed through the intermediate
addresses without any congestion as follows :

Phase | ;

Route D
(i) to P, which lies in the same column of processors as D . This step requires n - 1 steps .

23

(1) to the column in which P, lies . This step requires n -1 steps .
(i) to P, . This takes another n - 1 steps .

(1v) to the block in which P, lies . This can be completed in 3n - 1 steps using T-permutation
operation .

(v) to P, which lies in the same column of processor as it is now . This takes n - 1 steps .
(v1) to the processor lying in the same column as P . This takes n - 1 steps .

(vii) to P, . This takes n - 1 steps .

Number of steps required to complete these seven stepsis 9n - 7 .
Phase II .

Route D to the column of blocks in which P, lies . This can be completed in 3n - 1 using F-
operation .

Phase 111 :

Next , D 1s to be routed to the destination P ; for which exactly similar steps as Phase I is to be
taken . This takes 9n -7 steps .

Hence the entire routing can be completed in 21n - 15 number of steps to complete .

Next , we discuss how to generate the permutations required in finding intermediate destina-
tions :

The permutation perm, can be generated by constructing bipartite routing graph as follows

Given an arbitrary permutation routing problem , bipartite routing graph G=(U,V E)is
constructed with U={u1 , u, ..U} and V= {vi v,,...,v_} and n* edges E={eo,e ,.. v}
such that kth edge €, connects u, to v, where i is the starting column of blocks number of
the kth packet and J, 1s the the destination column of blocks number of kth packet (0 < k < n%-
1) .

The bipartite graph G is n® - regulari.e. n’ number of edges are incident on each vertex of
both U and V . This is because of the fact that n* number of packets are to be routed from
each column of blocks and each column of blocks has n* of number destination . By Hall's
Theorem [1],unique labels in the range [0,n° - 1] can be assigned to each of the edges . For
examples , let the edge e _connecting u, and v; gets a label r, then for one of the packets
whose source is in the column of blocks numbered ui, and destined for column of blocks num-
bered v, , the destination in the generated permutationis (r/n* Ju, ,(r mod n*)/n, (r
mod n*)modn) .

26

The permutations perm, and the similar permutation required for determining the routes of
Phase III can be generated as follows -

A bipartite routing graph G’ = (U, V', E")is constructed with U’ = Ui, u,,...,u } and V'=
{vi, v, ...,V } and n* edges E’ ={eo,e, ,....,ew1} such that kth edge e connects u; to v,
,where i_is the starting block number of the kth packet and J, 1s the the destination block
number of k-th packet (0 < k < n? - 1) .

The bipartite graph G is n? - regular i.e. n’> number of edges are incident on each vertex of
both U and V . This is because of the fact that n? number of packets are to be routed from
each block and each block has n® of number destination . By Hall's Theorem ,unique labels
in the range [0, n? - 1] can be assigned to each of the edges . For examples , let the edge e,
connecting u, and v, gets a label r , then for one of the packets whose source is in the block
numbered v, and destined for the block numbered Vi , the destination in the generated permuta-
tionis (u, ,B,r /n, r mod n) where f is the column of blocks number which 1s being
considered .

The permutations perm, , perm, and the similar permutations required for routing in Phase
III can be generated as described in previous chapter by constructing n-regular bipartite routing
graph and then labeling the edges .

An MM network out-perform a mesh of same size in terms of an off-line algorithm when

number of processor in the network N is greater than 2400 . We get this result by solving the
equation : 3N > 2IN"

27

Source Block

Destination Block

0<

Fig. 4.3 An example showing the routes taken by a packet starting at processor P and
destined for P,

28

Chapter 5

Conclusion and Further Work

The algonithm presented for permutation routing on multi-mesh which requires butter of
constant size to be present in each processor 1s incomplete because the proof of correctness and
time complexity analysis 1s not given . Also, it has been assumed that sorting on Multi-Mesh
can be done with respect to the indexing scheme described in the algorithm .

Average-case and worst-case behaviour of the greedy algorithm presented can be studied.

Finding an algorithm for permutation routing which runs in optimal time without require-
ment of extra buffer space can be studied . As the diameter of MM network of size N is 2N
, an optimal algorithm should run in time close to this value .

The permutation routing problem in presence of faulty link / node can be studied . A
robust shear-sort algorithm which runs in asymptotically same time as normal shear-sort algo-
rithm has been proposed . Construction of a sorting algorithm on MM network similar to
this one can be attempted . Based on this sorting network permutation routing on faulty net-
work can be studied .

29

pendix

The shear-sort algorithm proposed in [17] has some mistakes . The correct algorithm is as
follows :

An operation , Rrotate[w,h,s,r] is defined as follows : the mesh is partitioned into vertical
regions of r columns each . Each of these regions is further partitioned into horizontal stripes of
h rows . The first such horizontal stripe is given a clockwise cyclic shift by s positions . The

next stripe is shifted by an amount w mod r relative to the first stripe . The third stripe is
~ shifted relative to the second by the same amount and so on . A similar operation Crotate can
be defined by interchanging horizontal with vertical direction .

Letk=n"* and/=n'"* .
The algorithm

1. Divide the mesh into 2 number of blocks of size k x k .

2. Rrotatefk,1,0,n]

3. Rrotate[1,k,0, /]

4. Crotate[-k,1,0,n]

5. Rrotate{ 1,k 0,/]

6. Sort each of the k x k blocks in column major order in paralle] .

7. Inverse(step 5)

8. Inverse(step 4)

9. Inverse(step 3)

10. Divide the mesh into horizontal 7 stripes and within each such stripe divide every column
into / segments , each consisting of elements . In odd-numbered stripes , route the / seg-
ments in such a way that every segment occupies a position corresponding to its mirror image
about the horizontal axis within the 7 stripes .

11. Crotate[-F , k, k - P K]

12. Rrotate[k, 7, k, n]

13. It two k x k blocks are adjacent in row-major snake-like ordering , then sort them into row-
major ordering in the following way : if the blocks are at the edge of the mesh then sort the
combined 2k x k block ,otherwise, sort the combined k x 2k block .

14. Sort each of the k x k blocks in parallel with respect to row-major snake-like ordering

30

Reference §

1. F. T. Lciighton , Introduction to parallel algorithm and architecture : arrays , trees
,hypercubes . Morgan Kaufmann Publishers .

2. Leighton , F. Makedon and Tollis . A 2n - 2 algorithm for routing in an n x n array with
constant size queues . Proc. of Symp. Parallel Algorithms and Architecture ,1989 .

3. F. Makedon and A. Symvonis. An efficient heuristic for permutation packet routing on mesh

with low buffer requirements . IEEE Transaction on Parallel and Distributed Systems, Vol . 4,
No. 3 ,March 1995 .

4. D. Das and B.P. Sinha . Multi-Mesh - an efficient topology for parallel processing . Proc.
of International Parallel Processing Symposium , 1995

5. D. Das and B.P. Sinha. A new network topology with multiple meshes . Zech. Rep. no. T/
Rep/E-94/01 ,Indian Statistical Institute 1994

6. M. De, D. Das , M.Ghosh and B.P. Sinha , Etficient sorting al on the multi-mesh topology.
Proc. of the International Conference on High-Performance Computing , 1995

7. M. Kunde . Routing and sorting on mesh-connected arrays . VLSI Algorithms and
Architectures (AWOC '88) , Lecture Notes Computer Science , No. 319 ,1988 .

8. M. Kunde . Packet routing on grid of processors . Proc. Optimal Algorithms , International
Symp. 1989 .

9. D. Krizanc , S. Rajashekaran and T. Tsantillas . Optimal routing algorithm for mesh-

connected processor arrays . VLS/ Algorithms and Architectures (AWOC '88) , Lecture Notes
Computer Science ,No. 319 ,1988 .

10. S. Rajashekaran and T. Tsantillas , An optimal packet routing algorithm for mesh . Proc.
of 7-th Conf. of Foundation of Software Technology and Theoretical Computer Science ,Lecture

Notes of Computer Science : Vol. 287 : 1987 .
11. C.R. Dyer , A VLSI pyramid machine for hierarchical parallel image . Proc. IEEE
Conference Pattern Recognition Image Processing , 1981

12. R. Miller and Q. F. Stout . Data movement techniques for the pyramid computer . SIAM
Journal of Computing , Vol. 16, No.] , February 1987

13. D. Nath, S.N. Maheshwari and P. C. Bhatt. Efficient VLSI network for parallel processing
based on orthogonal trees . IEEE Transaction on Computer , Vol. C-32. No. 6 . 1993 .

14. Q.F. Stout . Mesh connected computers with broadcasting . IEEE Transaction on Com-
puter , Vol. C-32, No. 2. 1983 .

15. S.H. Bokhari . Finding maximum on an array processor with broadcasting . JEEE
Transaction on Computer , Vol. C-33,No. 2 ,1984

16. M. De, B.P. Kundu and B.P. Sinha . Worm-hole routing for complete exchange on
Multi-Mesh . Proc. High Performance Computing , 1997 = to appear .

17. S. Sen and 1.D. Scherson . Parallel sorting in two-dimensional VILSI models of coinpu-
tation . /IEEE Traansaction of Computers Vol 38 No. 2 ,1989 -

18. D.E. Knuth . Sorting and Searching . Addision-Wesley

31

