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GENERAL FALSE PATH PROBLEM IN TIMING ANALYSIS OF
COMBINATIONAL CIRCUITS

The False Path Problem or the problem of detecting the paths which do not
contribute to the in combinational circuits has been discussed here. A precise
definition of the False Path has been attempted. Some of our observations on
the False Paths have been recorded here. The general false path problem is to
detect whether a given path (not necessarily the longest one) is a false path. An
efficient algorithm for solving the general false path problem has been proposed
here. This algorithm can be also extended to generate all the possible sensitizable
paths with the delays greater than threshold T. Scope for related future work

exists in demonstrating the efficiency and effectiveness of the proposed algorithm

experimentally.

INTRODUCTION

Timing verification can be performed by simulation or by timing analysis. Simu-
lation is performed by a simulator which generates the output signals of each com-
ponent and compute the delay of each component according to some delay model
and the input signals to the component. Due to the huge computing time required
by the simulator, the timing analysis, which takes an input vector-independent,

approach, is preferred. The timing analysis ignores the operating conditions and

functionalities of the components in the design.

Based on the connection information and the delay models of components, an

acyclic graph is constructed to model the design. The vertices and the edges of the
graph represent the components and the connection between the components in the
design respectively. The weight associated with a vertex (an edge) is the delay of

the corresponding component (the medium delay of the corresponding connection).



The delay of a path is represented by the sum of the weights of all vertices and
edges involved. Timing analysis is to check the delays of all paths in the graph

and to report the paths which violate some timing constraints. Therefore, path

selection algorithms which report long paths (referred to as the critical paths and

short paths are crucial to the timing analysis approach.

But due to the ignoring of operating conditions and functionalities of compo-
nents in the design, a path being reported by timing analysis may be a false path.
A false path is a path which can never be activated by any input vector. Reporting
false paths to the designer provides no useful information for the designer to cor-
rect the timing violations. Hence, the timing verifier (the task which implements
the timing analysis approach) can detect the long false paths(a false path with

a delay greater than a certain threshold T) and report only the long sensitizable

paths(a long path which is not a false path) to the designer.

In order to avoid reporting the false paihs to the designer, some of the previ-
ously proposed approaches have tried to use input-vector independent approaches
which report the false paths to the basic timing analysis algorithm. However,

these algorithms report either a Superset or a subset of the actual false path set

(We shall discuss this later). Also, these algorithms cannot perform the timing

analysis also simultaneously.

The major objective of this work is to design and develop efficient and effective

algorithms which report all the possible long sensitizable paths and can also be
extended to perform the timing analysis simultaneously. A false path is simply
a path which is never activated by any input vector. The problem of ide
whether a path (may not be the longest one) is a

the general false path problem.

ntitying
false path will be referred to as

PREVIOUS WORK



Most of the previously proposed methods for detecting a false path are based
on the D-Algorithm approach. This algorithm takes an input-vector independent
approach. But when the stability of the signals are taken into account, a path

identified to be a false path by the D-Algorithm approach may not necessarily be
a false path [YENS89).

REVIEW OF PREVIOUS WORK DONE RELATED TO FALSE
PATHS

In Figure 1, we consider the path P = B-1-D-2-E-3-X-4-Y. In order to allow a
signal go through path P from the primary input B to the primary output Y, we
need to set all the other gates feeding to gates along P to be non-control values.
The non-control value for the various gates are listed under Table 1. The formal
definition of Control Value, Non-Control Value may be found in [YENS89]. In
this example, we will set C1=1, A=0 and C,=0 respectively. Then the D-Algrithm
approach is used to propagate these setting values and induce new setting values
from these setting values. If any signal becomes inconsistent, we claim this path is
a false path. A signal set to more than one values is considered to be inconsistent.
Since C) and C; in this example belong to the same signal C, the setting values of

C1=1 and C,=0 will cause C to be inconsistent. Thus, the path P is claimed to
be a false path.

This means that the path P is not sensitized by any input vector. Let us

now take the stability of signals into account and see if the path P still remains
unsensitized by all possible input vector combinations. Consider that all the
inputs are stabilised initially (at 0 ns). Assume gate delay of all gates in the
circuit to be 1 ns and the signal delay to be 0 ns. Let us enumerate the various

path systems to the output Y from different inputs, along with their path delays
as follows:-
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(i) A-3-X-Y 2 ns

(ii) B-1-D-2-E-3-X3-4-Y 4 ns (Path P)
(iii) C-C,-2-E-3-X5-4-Y 3 ns

(iv) C-Cy-4-Y 1 ns

The Input Vector B==0,1, C=0 sensitizes path sysem (i) such that the Output
Y gets stabilized to Y=1 at T=2 ns when A=1 and sensitizes path system (iii)
such that the Qutput Y gets stabilized to Y=0 at T=3 ns when A=0. The path
system (iv) gets sensitized whenever C is set to 1. Thus, we see that none of
the input vectors sensitizes path system (ii) which represents Path P. Hence P is
a false path. This is of extreme importance in timing analysis, as we find that
although path P can cause the longest delay in the circuit, since it is not sensitized
at all, the delay due to it can be ignored completely and hence, the worst case
delay in the circuit is 3 ns and not 4 ns. This is an example of an actual false

path. We shall refer to this example in many of our future discussions later in this
paper.

Whenever a path is detected to be a false path by the D-Algorithm approach,
we need to further apply the signal stability criterion to finally confirm that the
path is indeed false. In the above example, it is merely a coincidence that the D-
Algorithm approach has been able to detect the actual false path alone accurately.
But this is not always the case. We shall now consider the example in Figure 2, in

which we shall show that the paths detected to be false paths by the D-Algorithm
approach are not the actual false paths (to be defined later).

As before, all the gate delays are 1 ns, signal delays are 0 ns and the inputs

B1-1-D-2-F-3-G in Figure 2. Both P, and P, are the longest paths with the same

are stabilised at 0 ns. Consider the two paths P, = A;-1-D-2-F-3-G and P,

delay 3 ns. In order to allow the signals to propagate along path P, from A, to
G according to the D-Algorithm approach, we set signals B, = 1, C = 0 and E

= 1 respectively. Then we use the D-Algorithm approach to induce new setting



values of signals from these signals and check to see whether any signal became
inconsistent. Since B; = 1 = B = B,, we set B, to be 1. And because gate 4 is
a NOR gate and one of the input signals B, to gate 4 has value 1, we can induce
that the output E of gate 4 must have value 0. Because the initial setting value of
E is 1, the new setting value of E = 0 makes E become inconsistent. Thus, path

P, is a false path. By a similar argument, path P; in Figure 2 is also a false ﬁa,th.

Because the two longest paths in Figure 2 are both false paths, they will not
contribute their 3 ns delay to the output G. The worst case delay of G should be
2 ns. But when the input vector (A = 0, B = 0, C = 1) is applied, we can get D
=0and E=1atlns, F=1at2nsand G =1 at 3 ns. Since E = 1 which is
stabilized at 1 ns is a non-control value to gate 3, the output G of gate 3 cannot

be decided until F is stabilized and has its logical value. Since F is stabilized

at 2 ns, G can only be stabilized at 3 ns. This condition shows that the worst
delay of this circuit is 3 ns. But using the D-Algorithm approach, we claim both
P, and P; are false paths. This contradicts the result given by the D-Algorithm
approach. Hence, the two paths P, and P, are not actual false paths although
the D-Algorithm approach says that both of them are false paths.

Also, we see in the above example that both the paths P, and P, are get-
ting equally and simultaneously sensitized, when the input vector is A=0, B=0
and C=1, and the Primary Output G gets stabilized at T=3 ns. We shall call
such paths ( two or more in number ) which simultaneously get sensitized on the
application of one or more input vectors and also contribute the same delay to
the circuit all the time ( the delays will be the same for all the input vectors

in case more than one such input vector exist} as Equally and Simultaneously

Sensitizable Paths. We shall refer to such special paths later on in our literature.

If in a situation, two or more paths apparently seem to get simultaneously

sensitized, yet do not contribute the same delay to the circuit, then we regard

only that path which contributes the minimum delay to the circuit as the Singly

Sensitizable Path. In case, a set of such paths that equally contribute the same

minimum delay to the circuit, we still call all the paths in that set of paths as
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Equally and Simultaneously Sensitizable Paths. On the other hand, among
the remaining paths, which contribute a greater delay to the circuit than that
contributed by the Singly Sensitizable Path or the Equally and Simultaneously
Sensitizable Path Set, if there exist one or maore paths that are not sensitizable by

any other input vector, all such paths are also Actual False Paths while otherwise,

all such paths are also Sensitizable Paths.

There is still another possibility, in which case, we may have two Sensitizable
Paths, which contribute the same delay to the circuit, but not simultaneously, i.e.,
only on the application of different input vectors. We shall call all such paths (
two or more in number ), contributing the same delay to the circuit as an Only
Equally Sensitizable Path Set. There can be several such Fqually Sensitizable

Path Sets in a given circuit, the path delay of each such set being unique.



FALSE_PATH_CHECKING ALGORITHM PROPOSED IN [YENS89]

The Algorithm false_path_checking(P,false_path) given in [YENS89] also
takes an input-vector independent D-Algorithm like approach, but does not guar-
antee whether all the paths other than those detected to be false paths are indeed

sensitizable.

We shall first try to discuss the General False Path Problem and our ob-
servations on the actual false paths. Thereafter, we shall discuss the method
that we have adopted to represent Combinational Circuits and the relevant data
structures. lL.ater we shall present an input vector independent graph theoretic ap-

proach for the detection of false paths and discuss the properties of the associated

graph equivalent of a given combinational circuit and its dual.

We shall also discuss the similar approaches made so far, in dealing with the

false path problem and their shortcomings.

Before going ahead with our algorithm, we shall first review a few concepts

that have already been discussed in [YENB89].

Theorem 1: A path P = 84,00,91,91,82,92,. - . ,0k_1,8k, iS & Sensitizable path if

and only if there exist at least one input vector I such that all the signals 8;, 0<i<k,
along path P satisfies the following two conditions:-

(1) Early-arrive-signal(s;, I, T)) N C(g;,I) = ¢, and 2

(2) If Late-arrive-signal(s,-,I, T,r) 7é qﬂ), 8; € C(g,*,f),



where signal s¢; is an input signal to gate g;)

A path which is not a sensitizable path is a false path. This is the definition

of the false path that we shall adhere to in our discussion on this subject.

GENERAL FALSE PATH PROBLEM

The general false path problem can be formulated as follows:

- For a given combinational circuit C, let I denote the primary
inputs set, O denote the primary outputs set and P = sy,qy,
81,91« « + y8k-1,9k-1,8% be a path. The general

false path problem is to detect whether some path P is a
false path.

Below, we give some of the key terms with their definitions, which we shall

use in our descriptions and algorithms.

The Stable Time of Signals, Control Value and Non-Control Value
have already been explained in [YENS89].

We define OFF-FATHS to be the paths, the signals along which are set to the
Non-Control values of the respective gates to which they are input while trying to

verify if a given path is false or not by the D-Algorithm approach.

We define ACTUAL FALSE PATHS as the paths which are not only false

paths by the D-Algorithm, but can be proved to be false paths by Theorem 1
also.

ASSUMPTION:

For simplicity, we assume here that the propagation delay of every Component



(Gate) is 1 ns.

SOME OBSERVATIONS ON ACTUAL FALSE PATHS:

1. If a sub-path of a path is false, the entire path by itself becomes false. For,
if there does not exist any input vector that can sensitize a portion of the path, it

is obvious that the entire path containing it cannot be sensitized at all.

But the Converse is not necessarily true. i.e., a sub-path of a false path need

not necessarily be a false path.

A false-path is specific to a primary input-primary output pair. A portion of a
false path from the same primary input to a different primary output, which lies on
the original false-path itself, can be sensitizable, i.e., this path need not necessarily

be another false path. Hence, a sub-path of a false path need not necessarily be a

false path.

This can be shown by referring back to the example in Figure 1.

In figure 1, the path B-1-D-2-E-3-X,-4-Y is a false path, with respect to the
Primary Output Y. But the sub-path B-1.D-2.E-3-X, of the same path B-1-D-
2-E-3-X,-4-Y is not a false path, with respect to the Primary Output X,. This
is shown by the observation that when A=0, C=1, the path B-1-D-2-E-3-X; gets
sensitized, and the Output X, gets stabilized to 0 or 1 respectively as the Primary
Input B is set to 0 or 1.

2. The false path is a path from a primary input to a primary output. Even if
the minimum sum of products form expression of a primary output signal does not
contain one or more primary inputs, and if there exists a path between the corre-
sponding primary input- primary output pair, still this path need not necessarily
be an false path. The Example is shown in Figure 3.




In this example, Y = A 4 C. Also note that this circuit is logically equivalent
to the circuit shown in Figure 1. Let us consider the various path systems in this
circuit in the same way as we had earlier done to the circuit shown in Figure 1.

The different path systems in this circuit are as follows:-
(i) A-3-X,-Y 2 ns
(ii) B-2-E-3-X,-4-Y 3 ns
(iii) C-C;-1-D-2-E-3-X7-4-Y 4 ns
(iv) C-C2-4-Y 1 ns

The Input Vector B=0,1, C=0 sensitizes path sysem (i) such that the Qutput Y
gets stabilized to Y=1 at T=2 ns when A=1. Also, A=0, B=1, C=0 sensitizes path
system (ii) such that the Qutput Y gets stabilized to Y=0 at T=3 ns. Similarly,
A=0, B=0, C=0 sensitizes path system (iii) such that the Qutput Y gets stabilized
to Y=0 at T=4 ns. Also, the path system (iv) gets sensitized whenever C is set

to 1. Thus, we see that all the 4 path systems here, are sensitizable.

The KEY OBSERVATION here is that although the minimum sum of prod-

ucts form expression of Y ( Y = A + C ) does not contain the primary input

B, still the path system B-2-E-3-X3-4-Y is sensitizable, meaning it is not a false
path.

Also, even if the minimum sum of products form expression of a primary

output contains all the primary inputs, still all the paths from the primary inputs
to that primary output need not necessarily be sensitizable.

This is clear from the example in Figure 4. Figure 4 is, in fact, a slightly
modified circuit of the circuit shown in Figure 3. The modification is that there is
a direct input signal line from the Primary Input B to the gate 4, whose output is
the Primary Output Y. Hence, the minimum sum of products form expression of
Y becomes Y = A + B + C. Let us now consider the various path systems in

this circuit in the same way as we had earlier done to the circuits shown in Figures
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1 and 3. The different path systems in this circuit are enumerated as follows:-
(1) A-3-X2-Y 2 ns
(i) B-B;-2-E-3-X,-4-Y 3 ns (Path P)
(iii) C-C,-1-D-2-E-3-X3-4-Y 4 ns
(iv) C-C74-Y 1 ns
(v) B-B;-4-Y 1 ns

The Input Vector B=1, C=0, A=1,0 sensitizes path sysem (v) such that the
QOutput Y gets stabilized to Y=1 at T=1 ns. Similarly, C=1, B=0, A=0,1 sensitizes
path system (iv) such that the Output Y gets stabilized to Y=1 at T=1 ns. Also,
A=1, B=0, C=0 sensitizes path system (i) such that the Output Y gets stabilized
to Y=1 at T=2 ns. Also, C=1, B=1, A=0,1 sensitizes both the path systems (iv)
and (v) equally such that the Output Y gets stabilized to Y=1 at T=1 ns. The last
mentioned is another classic example of a special case in which two or more path
systems simulataneously get sensitized equally on the application of atleast one
input vector (The earlier case was in shown in Figure 2, in which, both the path
systems P, and P, get sensitized equally and simultaneously on the application
of the input vector A=0, B=0, C=1, resulting in the Primary Output G getting
stabilized at T=3 ns). Also, A=0, B=0, C=0 sensitizes path system (iv) such that
the Qutput Y gets stabilized to Y=0 at 4 ns.

Thus, we find that, the path system (ii) in Figure 4 is not sensitized by any
input vector. Hence, the path P, ( B-B;-2-E-3-X;-4-Y ) is a false path.

Thus, we see that although B appears in the minimum sum of products form

expression of Y, the path P from B to Y via path system (ii) is a false path.
Hence, our observation.
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3. D-Algorithm detects all those paths as possible false paths whose corre-

sponding off-paths contain atleast one signal such that this signal is an input

signal to two gates with different non-control values lying on those paths.

Theorem 2 : A path which is not a false path by the D-Algorithm can never
be a false path by Theorem 1 also. The proof is as follows:-

Proof:

The D-Algorithm approach does not take the stableness of signals into ac-
count. Hence, the D-Algorithm approach assumes that all the signals are stabilized
earlier than the signals along the path that we are considering [YEN 89]. In other
words, as per the definitions given in YEN89, all the Signals along all the off-paths
are Early-Arrive signals(s;,I,TT), where, s; is an input signal to gate g; along the

path considered, 1 is an input vector assignment and T; is the stable time of

input vector 1.

Since we set all the signals along the off-paths to the respective non-control

values of the gates to which they are input, the first condition under Theorem 1
gets satisfied.

Again, since all the signals along all the off-paths are Early-arrive-signals(s;, I, T}),

Late-arrive-signals(s;, I, T;) = ¢. Hence, we need not necessarily set s; to C(g;, I),
where C(g;, I) is the control value of the gate g;.

Hence, both the conditions in Theorem 1 are taken care of by the D-Algorithm
approach, although it does not take the stable time of signals into account.

Conclusion:

Thus, we may conclude that the ACTUAL FALSE PATH SETis a PROPER.
SUBSET of the FALSE PATH SET detected by the D-Algorithm Approach.

Also, the Algorithm given in [YENBS89] detects a SUBSET of the ACTUAL
FALSE PATH SET.

We have given a diagrammatic illustration of our above conclusion in Figure

12



4. We define FALSE SUB-PATH as the path which contains the signal input
to the gate, while an inconsistency occurs in any of the remaining signals to that

gate along an off-path.

FALSE SUB-PATH is specific in relation to a primary output, i.e., a path
which is a FALSE SUB-PATH with respect to one of the primary outputs need

not necessarily be false with respect to any of the remaining primary outputs.

The above statement is a direct corollary of our Observation 1. A false sub-
path is certainly a sub-path of a false path and a sub-path of a false path need
not necessarily be false. Hence, a false sub-path is also primary-output specific.
In other words, A path which is a false sub-path with respect to one Primary
Output need not be a false sub-path with respect to another Primary Output
which shoots out from a sub-path of the original false path. This can be shown
" by referring ‘back to the example in Figure 1.

In figure 1, the path B-1-D is a false sub-path, with respect to the Primary
Output Y, dince the path B-1-D-2-E-3-X;-4-Y is a false path. But the same path
B-1-D is not a false sub-path, with respect to the Primary Output X, since the
path B-1-D-2-E-3-X, is not a false path. Hence, our Observation.

5. We define FALSE SUB-PORTION as that portion of the circuit contain-
ing the false sub-path, the gate to which it gets input and the remaining input

signals to that gate. Similar to the FALSE PATH and the FALSE SUB-PA TH,
the FALSE SUB-PORTION is also primary-output specific.

According to the D-Algorithm approach, the false sub-paths are indepen-
dent of the hardware-changes that may be incorporated in the false sub-portions
without affecting the rest of the circuit in any way, i.e., irrespective of the hard-
ware changes made in the false sub-portion of the circuit, without affecting the

logical design of the rest of the circuit, the corresponding false path still remains
unsensitizable.

13



The above fact is illustrated by the example shown in Figures 1 and 3. It is
easy to verify that the circuit shown in Figure 3 is logically equivalent to the circuit
shown in Figure 1. The modification has been made only in the false sub-portion
of the circuit in Figure 1 to get the circuit in Figure 3. There is a minor change
in the delay that could be caused by the path from B to Y. While in the Circuit
1 shown in Figure 1, the maximum delay of 4 ns could be caused due to the path
from B to Y and the next maximum delay of 3 ns could be caused due to the
path C-C)-2-E-3-X3-4-Y, provided such paths can be sensitized, in the Circuit 3
shown in Figure 3, the maximum delay of 4 ns could be caused due to the path
C-C1-1-D-2-E-3-X2-4-Y and the next maximum delay of 3 ns could be caused due
to the path from B to Y, provided such paths can be sensitized.

We have already shown that the path from B to Y in circuit 1 is a false path
by the D-Algorithm approach. On exactly similar lines, the corresponding path

from B to Y in circuit 3 still remains a false path.

However, while the path from B to Y in circuit 1 is an actual false path, its
corresponding path in circuit 3 is not an actual false path. We have already shown
this in our observation 2, by taking the stable time of signals into account. Also, in
this case, no new actual false paths have been introduced in the circuit. Hence, this
is a typical example of a situation in which the actual false paths get eliminated by
suitable hardware changes in the false sub-portion of a circuit, without affecting
the output logic. It is possible to eliminate the actual false paths by changing the
- overall design and not merely concentrating only on the false sub-portion in the
circuit. An example of eliminating the false paths in circuit 1 this way has been
shown in circuit 6. It should, however, be noted that such hardware changes are

most likely to cause the elimination of the intermediate signals, keeping intact

only the primary inputs and the primary outputs.

6. When we consider the elimination of false paths, we should also determine
whether they really serve any purpose from the timing analysis point of view.
For example, the worst case delay of 4 ns in circuit 1 is caused by the path from

B to Y, which is an actual false path. Hence the actual delay caused by circuit 1

14



is 3 ns and not 4 ns, while the actual delay in circuit 3 is 4 ns since all the paths
in circuit 3 are sensitizable. Hence, even though the two circuits are logically
equivalent, performance-wise, circuit 1 is preferred to circuit 3. However, circuit

1 has an actual false path, while circuit 3 is devoid of any false path.

Hence, while designing a circuit, a designer is not necessarily working with
the risk of introducing false paths in the circuit. But, however, introducing false
paths complicates the work of the timing analyzer. Timing analyzer either needs
efficient false path detection algorithms in order to eliminate the long false paths
from its analysis or else spends a huge amount of time wastefully, analyzing all the
false paths as well. Experimental results of running existing false path detection
algorithms on Bench Mark Circuits have revealed that as the circuit complexity
increases, the number of long false paths also increases [YEN89]. In [YEN89|, the
authors have reported that on running their false path detection algorithm with
the timing analyzer, they discovered that more than 60even when the threshold
value of the timing analyzer T was set at around 90of the time delay contributed
‘to that circuit by its longest sensitizable path. Also, the same authors have
mentioned that they do not report all the actual false paths. Hence, some of the
paths not reported as false paths by their algorithm may still be false. Hence, the
total number of actual false paths may be still larger. Hence, it is a real trade-off
for the designer, as whether to design faster circuits containing greater number

of false paths or else, refrain from introducing false paths in the circuit at the
designing stage itself. |

This observation tells us that by designing more efficient false path detection

algorithms, we free the designer from the fear of introducing a greater number of
false paths. However, a more useful work will be to evolve a design methodology,

that prevents the introduction of false paths during the design phase itself.
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GRAPH-THEORETIC APPROACH TO THE FALSE PATH
PROBLEM

In all the papers discussing the false path problem and the timing analy-
sis approach to find all the sensitizable paths responsible for the delay beyond a

maximum threshold T in a given combinational circuit, a suitable graphical repre-

sentation of a digital circuit has not been discussed. Here, we present a graphical

representation of an acyclic combinational circuit

ASSUMPTION: For simplicity, we assume here that the propagation delay

of every Component (Gate ) is unity.

GRAPHICAL REPRESENTATION OF COMBINATIONAL
CIRCUITS

A suitable data-structure has been evolved to represent the acycic combi-

national circuits.Basically, a combinational circuit consists of three different el-

ements, namely, Primary Inputs, Components and Primay Outputs, repre-
sented by vertices and the interconnections between them, which are represented
by edges of the corresponding graph

G=(V,E). From this basic graph, which wholly represents the given combina-

tional circuit, we algorithmically construct the associated graph and its dual, which
form the basis for our analysis of false paths.

16



BASIC GRAPH:
DATA STRUCTURE OF AN ELEMENT:

All the three elements: Primary Inputs, Components and Primary Qut-

puts are represented by nodes, the structure of which contains the following fields:-

Identification No., Static Level No., Dynamic Level No., Type, Val, Status

Register, Predecessor List and Successor List.

Identification No. uniquely identifies the Primary Inputs, Components and

Primary Outputs. Option may be provided to let the dynamic assignment of the
Identification No. by the running algorithm, when the circuit is input by the

user, or the user himself may assign the Identification No. to all the elements

input by him,

The Predecessor List of a given element X is the list of all those elements
whose outputs serve as inputs to X. Clearly, the Predecessor List of any Primary
Input is empty. The Predecessor List of any Component may have one or more

‘elements while the Predecessor List of any Primary Output contains exactly

one element.

Associated Data Structure: In the actual implementation, the structure

representing element X points to the root of a Linked List formed from the pre-
decessor elements by using their Identification nos. as the key value. The

nodes of this Linked List point to the corresponding elements that are the pre-
decessors of X.

The Successor List of a given element X is the list of all those elements
whose inputs are outputs from X. Clearly, the Successor List of a Primary

Qutput is empty. The Successor List of any Component and any Primary

Input is always non-empty and may have one or more elements.

Associated Data Structure: In the actual implementation, the structure

representing element X points to the root of a Linked List formed from the suc-
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cessor elements by using their Identification nos. as the key value. The nodes

of this Linked List point to the corresponding elements that are the successors
of X.

The Static Level of all primary inputs is taken to be 0 while the Static
Level of any other element in the circuit under static conditions, i.e, when the
primary tnputs in the circuit have not been fed their logical values is one more

than the mazimum of the levels of all the elements in its Predecessor List.

The Dynamic Level of all primary inputs is taken to be 0 while the Dy-
namic Level of an element X ( Primary Output or Component), (under dynamic
conditions) is one more than the minimum of the dynamic levels of those elements
in its Predecessor List, that have the Control Value of X and in case none of the
elements in its Predecessor List contains the Control Value, the Dynamic Level
of the element X is one more than the maximum of the dynamic levels of the ele-

ments in its Predecessor List. Thus, the dynamic level is a dynamically changing

variable and it depends on the logical values to which the primary inputs have
been set.

The Dynamic Level of an element directly corresponds to the time at which
the signal coming out from it becomes stable, on the application of an input

vector, assuming that all the primary inputs are stabilized at t = 0.

Type defines whether the element is a Primary Input, Primary QOutput or

one of the following Components: NOT, OR, AND, NOR, NAND, XOR
and XNOR by a unique type no.

Value is the Logical Value of the output from a Component. In the case of
Primary Inputs, Val is the Logical Value input by the user and in the case of

Primary Outputs, Val is the Logical Value of the Primary Output for the given
input vector.

Status is used to determine whether the Value has been determined or not for
the given input vector.
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The addresses of all the elements are stored in an AVL Tree by using their
identification nos as the key value, Using this AVL Tree, any element can be
accessed by fetching its address. This also facilitates elementary operations such

as addition, deletion and modification of any element in the circuit.

The above Data Structure Description completely specifies the combinational
circuit that has been input.

Based on this data structure, algorithms have been designed to prepare a net
list, determine the fan-in and fan-out, static level and dynamic level (depending
upon the input vector) of the various elements, evaluate the outputs at the vari-
ous components and the primary outputs for a given input vector, enumerate the

various paths from a given primary input to a given primary output and construct

the associated graph with respect to each of the primary outputs and their corre-

sponding duals for the purpose of analysis of the false paths and the sensitizable
paths.

Given a combinational circuit, its associated graph (or its dual associated

graph) with respect to a primary output is constructed as follows:-

1. The Primary Output is the Start Node of the graph.

2. Set the Node to this Start Node.

3. Initialize 3 Queues: Leaf Node Queue, Terminal Node Queue
and Daughter Node Queue

4. The Set_Val(Start Node) is arbitrary.
If it is ‘1’ for the associated graph, it is ‘0’ for its
dual associated graph and if it is ‘0’ for the associated

graph, it is ‘1’ for its dual associated graph.
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5. Call Const_assgraph(Node,Set_Val{(Node)).

6. End.
Procedure Const_assgraph(Node,Set_Val(Node))
begin

If Node = Primary Input, Add Primary Input to Leaf Node Queue and stop.
Else
begin
Set Node to parent node.
If Set_Val(parent node} = control value of its
predecessor,
begin
(i) Fork at this node such that it has as many
daughter nodes as the number of inputs to its predecessor.
Each of the daughter nodes corresponds to one input
to the parent node. Add all the daughter nodes to the
Daughter Node Queue.

(ii) Set the Set_Val(Node) of each of the daughter nodes to
the value that will set the Set_Val(parent node) to

the control value of the parent node.

While the Daughter Node Queue # ¢,
begin
(a) Visit the first daughter node.
(b) Set it to Temp.

(c) Call Const_assgraph(Temp,Set.Val(Temp)).
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(d) Dequeue Temp from the Daughter Node Queue.

end while

Else,

begin

(i) Add all its inputs to the Daughter Node Queue.
(ii) Set the parent node to previous node.

While any of its inputs in Daughter Node Queue €
Primary Input Set,

begin

(a) Connect this in series with the previous node.
(b) Set the value of Set_Val of this node to the value
that is necessary to set the Set_Val(parent node) to
the non-control value of the parent node.

(c) Set this input node to previous node.

(d) If no. of nodes in Daughter Node Queue is 1,
add this to Leaf Node Queue.

(e) Dequeue the input from the Daughter Node Queue.
end While

While the Daughter Node Queue # ¢,

begin

(a) Visit the first node in Daughter Node Queue.
(b) Set it to Temp.

- (c) Connect this in series with all the nodes in the
Leaf Node Queue.

(d) Set the value of Set_Val of this node to the value
that is necessary to2set the Set_Val(parent node) to
the non-control value of the parent node.

(e) Call Const_assgraph(Temp,Set.Val(Temp)).

(d) If no. of nodes in Daughter Node Queue is 1,
add this to Leaf Node Queue.

(e) Dequeue the input from the Daughter Node Queue.
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end While

end

end Add all the leaf nodes to the Terminal Node Queue. end Procedure

Our approach has been to determine the static level of all the elements in
the circuit, which would enable us to test the static sensitization conditions by

the D-Algorithm Approach. The static level of an element in a circuit does not

change, irrespective of the input vector. The static level finding algorithm has

been described as follows:-

Procedure LEVEL (element)

begin
if type(element) = primary input

level(elament) = 0;

else
begin
for(pres:=pred(element);pres;pres:=next(pres))
LEVEL(pres);
if level(element) < level(pres)+delay(element)

level(element) = level(pres)+delay(element);

endfor;
end;
endif

end.

But in our algorithm, we make use of dynamic sensitization. This calls for
the determination of the dynamic level of an element in the circuit. As already
explained, the dynamic level of an element is dependent upon the earliest stable

input signal having its control value and if none of its input signals has its control
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value, then its dynamic level is dependent upon the last stable input signal having
its non-control value. Hence, in the case of dynamic sensitization, we consider an
input vector and dynamic level of the same component may vary with the input
vector. This is the essential difference between the static level and the dynamic

level of an element in a circuit. The dynamic level finding algorithm has been

described as follows:-

Procedure DLEVEL (eleinent)

begin
if type(element) = primary input
dlevel (élement) == ();
else
begin
flag:=0;
for(pres:=pred(element);pres;pres:=next{pres))
if(val(pres)=NCV(element))
begin
if(Aag=0)
begin
DLEVEL(pres);
if(dlevel(element) < dlevel(pres)+delay(element))
dlevel(element) = dlevel(pres)+delay(element);

end;

endif;

end;

else

begin
DLEVEL(pres);

if(dlevel(element) > dlevel(pres)+delay(element))
- begin '
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dlevel(element) = dlevel(pres)+delay(element);
flag=1;

end

else

begin

if(flag=0)

begin

dlevel(element) = dlevel(pres)+delay(element);
flag=1,;

end;

endif;

end;

endif;

end;

endif;

endfor;

end;

endif

end.

SOME OBSERVATIONS ON ASSOCIATED GRAPHS AND THEIR
| CORRESPONDING DUALS

1. Each one of the graphs can be directly constructed from the other(We shall

outline this algorithm later), provided there is no impossible path in either of the
graphs.

2. The logical values to which the various signals are set in one graph are

exactly the complements of the respective logical values in its corresponding
dual graph
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3. By studying the different path systems, given an input vector, we can

always find the logical value of the output.

4. The graph can be converted into a weighted graph for our analysis, where
weights on the edges of the graph correspond to the delay of the component be-
tween the two signals, as in the associated graph and its dual, an edge represents
a component while the vertices represent the signals along the path, in which the
component lies. Weights along the path from a primary input to the primary
output correspond to the delay along the path, if the path gets activated by the

corresponding input vector. This enables us to find the sensitizable paths that

contribute the minimum delay to the circuit.

CONCLUSION

An efficient algorithm to detect all or most of the false paths in a circuit has
to be designed based on the associated graph models. Since we have tried to
incorporate the sensitization condition mentioned in [YENG89], it is hoped that

our proposed mode] performs atleast as good as the false_path_checking
~ algorithm presented in [YENS89].
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