O

'
|

|
i
|
|

L

Y

"\

M. Tech. (Computer Science) Dissertation Series

of

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENT FOR THE DEGREE

MASTER of TECHNOLOGY

CONDIUTER SCISNC S

e

%

<
£ 0 SEP 5y
\3

= sy —ulli -

Under the guidance of
Prof BHHARGAB BIKRAM BHATTACHARYA

ADVANCE COMPUTING & MICROELECTRONICS UNIT

INDIAN STATISTICAL INSTITUTE
203, Basruckpore Trunk Road
Calcutta-700 035

30th July. 1997

Function Extraction & Verification

General MOS Transistor Circuits

cTVCAL R ,,,:*::n..

VU \
O E

o

'h‘—

Ry 2

Sa 24 5

F

Certificate o Approval

This is to certify that the dissertation titled Function Extraction and Verification of
General MOS Transistor Circuit submitted by Mr. Debashis Sarkar 10 the Advance
Computing and Microelcctronics Unit, Indian Statistical Institute, Calcutta i partial

fulfilment of the award of the degree of Master of Technology in Computer Science, isa bona
fide record of thework undl invest ivation carried out by himunder my supervision and guidance.

Date : 30th July, 1997
Indian Statistical Institute

Calcutia.

K (s Blettedsg,

(DEBhargab Bikram Bhattacharya)

Protessor,
Advanced Computing and Microelectroms Unit
Indian Statistical Institute
Calcutta-

"I

L AL

r
P .-n;;_ 3

/{{‘t T o ﬁ\::,\“
I T -

-
v
.

o,

T |\ ~
y St 9 y

2

Acknowledegments

Itbrings me immense pleasureto express my deep sense of indebtedness to my guide Prof. Dr.
Bhargab B. Bhattacharyafor lusclose supervisionand constant encouragement throughout the project
work. I really left with no phrases to express my gratitude to him for his personal care and timely
suggestions. I take this opportunity to thank Prof. Prabal Sengupta who motivated me implicitly,
throughout my course of study. Iam greatly indebted to him for his friendly cooperation.

I amthankfulto all my friendsand classmates who helped me directly or indirectly in various stages
of my work. I offer sincere thanks to the faculty members, research scholars and lab staffs for the inhelp

and cooperation. I specially thank my friend Anjit Laha, and Manoj Baruawho have made my staying
in ISI enjoyable and helped me alot whenever I was in problem.

AT SN\MNL--

30thJuly, 1997 (Debashis Sarkar)

Abstract

There is a natural tendency to make the VLSI design as a interconnected set of clusters of
transistors, which can be utilized to extract the function from an MOS transistor network. The
other requirement of verification of the circuit can also be performed simultaneously. In this
dissertation, we present an algorithm for partitioning a switch level (nMOS / pMOS / ¢cMOS)
network, which may be a multicell, into several blocks and then extract the logical function from
each of the individual components, followed by evaluation of the overall logic. Extension of this
technique to sequential circuits is also straightforward.

Keywords :

MOS Networks

Depth First Search

VLSI Design and Verification
Biconnected Components

Contents

Chapter 1

Basics and overviews

1.1 Introduction 7
1.2 VLSI design cycle 7

1.3 MOS Logic Circuits : An overview 8
1.3 Organization of the report 9

Chapter 2

About the Problem

2.1 Motivation 11
2.3 Definitions of some relevant concepts 12
2.4 An example of the CMOS simple circuit. 14

Chapter 3
Tell me the Circuit

3.1 Circuit Representation and Input format 15

Chapter 4

The First Approach

4.2 Algorithm for the creation of the required graph 19

4.3 How to find all the paths 20
4.4 Finding the total output function. 21
4.5 How to verify the short circuit and open circuit conditions 21

Chapter 5

For a little less

5.1 Scope of Improvement 24

5.2 Some Graph relevant definitions 24

5.3 Algorithm for doing the DepthFirst Search 26

5.4 Detection of Separation Pairs . 28

5.5 Algorithm : RunSeparation() 29 |

5.6 The Improvement of running time for this preprocessing algorithm. 31

5

Chapter 6

Welcome Feedbacks

6.1 Modification in AddtoGraph 33
6.2 Modification of function ExtractFunction() 34
6.3 Modification in Verification 34

Chapter 7

Looking Beyond

Possible Future Work 35

7.1 The Problem of Function Matching 35

7.2 The State table generation by marking the clock signal 35
7.3 Homing sequence finding/ Robustness testing 35

7.4 Circuit Delay Estimation 36

7.5 Limitations of the current approach 36

Chapter 8
Some test Circuits and Results 37

Bibliography 40

Appendix
Header file listing for some classes 41

Chapter 1
Basics and overviews

1.1 Introduction

The integrated circuit technology has today gone so far that we cannot think of any person to
design an efficient or even a working circuit, if' it is a complex one, without an aid from the
Computer Aided Design (CAD) tools. To reduce the complexity of the design process, it is
divided into various stages. After completing the design of each stage, its operation is simulated
and verified to check whether it conforms to the previous level design specification. The CAD
tools assists the designer by reducing mundane but not the less important design rule checks which
may range from mere width checking at the physical level to the synchronization or delay checking
at the higher level. As the size of the circuit increases, this checking time also increases. A strive
to reduce thus design rule verification time is thus always felt. In this thesis, we address a probiem
of logic extraction i.e., determining the boolean expression corresponding to a switch level circuit
description and designing an efficient algorithm for extraction. Logic extraction is useful not only
tor verification, but is also to perform simulation, test generation and timing analysis.

1.2 VLSI design cycle

System Specification

This is the very first step of the VLSI design cycle. It is concerned with the overall
performance requirements of the system. For example, speed, power requirement, interfaces,
can be described in system specification.

Functional Design

The behavioural aspects of the system is considered in this design. For the above example,
the instruction set, the memory and I/O addressing, the interface between the different module and
their synchronization is the design goal.

Logic Design

Here the logic structure that represents the functional design is derived and tested. Usually,
logic design is represented by boolean expressions and finite state machines. This logical descrip-
tion of the system is simulated and tested to verify its correctness.

Circuit Design

The circuit representation based on the logic design is developed in this phase. The dircuit
design is usually done in terms of detailed circuit diagram. Here also, the circuit design is simulated
and tested to verify its correctness and to reduce the complexity which might arise in the subse-
quent phases.

Physical Design

In this step, the circuit representation of each component 1s converted into a geometric
representation. This geometnc representation of a circuit is called a layout. The physical design is
a complex process, and 1s split up into various substages ke partitioning, placement, routing and
compaction.

Design Verification

The layout 1s verified to ensure that it meets the system specification and the fabrication
requirements. Design verification consists of Design Rule Checking (DRC) and Circuit Ex-
traction. DRC is a process which verifies that all geometric patterns meet the design rules
imposed by the fabrication process. Then the functionality of the circuit is verified by circuit
extraction process.

As this checking is at the very last stage, so if any violation is found then all the process up the
tree has to be redone. To avoid that problem normally after the design of every stage a verification
of the design with the previous stage is done. Then only the next stage is taken up.

Fabrication

After the verification, fabrication is done. This consists of transferring the physical layout on
the silicon wafer, deposition and diffusion of various materials on the wafer according to the layout
descniption. This is a very complex and costly process. So it is also divided into various stages,
each of which consists of mask transfer, diffuston, etching, 1on implantation, deposition etc. (all
may not be needed in a particular stage.)

Packaging, Testing and Debugging

Finally the wafer 1s fabricated and diced in a fabrication facility. Each chip is then packaged
and tested to ensure that it meets all the design specifications. This stage also has various sub-
stages as connecting the I/O pads with the pin of the package, testing, and packaging into the
case,

The present work is concerned with the verification of circuit design of a switch level
circuit,

1.3 MOS Logic Circuits : An overview

The MOS (or the Metal Oxide Semiconductor) transistors are basically a switching device
which can be made ON or OFF depending on the voltage applied in its gate. It has three
terminals, source (where the majority carrier are injected), drain (from where the majority
carriers leave the device) and gate (which controls the current flow). Though it can be operated
in the active region also, but in digital circuits, which is our field of study, the transistor is either ON
(saturate, or the current flowing through it, resulting a near zero voltage across its source and
drain) or OFF (no current is flowing through the transistor and the voltage applied appears across

the drain and source terminal).

Depending on the type of the majority carrier used, MOS transistors are of two types.
NMOS, where the current carrier is mostly electrons, and PMOS, where the current is mainly due
to holes. The PMOS transistors are slow due to the slow carrier, whereas the NMOS transistors
are nearly twice as faster as their PMOS counterpart. The structure and representation of the
NMOS and PMOS transistors are given later. The CMOS circuits provides two paths from the
output to various input points depending on the input combination. For example a NAND circuit 1s
shown in all three technology. Along with these, there are several other techmques also, as
pseudoNMOS etc.

Depending on the type of transistors used the digital MOS circuits are of three types, namely
1) PMOS where the transistors used are of PMOS type
2) NMOS where the transistors used are of NMOS type

3) CMOS where both type of transistors are used.

Differenttechnologies .. some examples

Source Drain Source Drain
o =
Gate | Gzl.te
NMOS circuit representation PMOS circuit representation

Vdd Vdf.i
b »
= o—:

(A+B) '=A'B' L (A+B) '=A'B"
L

|_A ’:II_— B — i_B

Ground Ground
Fig. l1a. NMOS NAND gate Fig.1lb. CMOS NAND gate

1.3 Organization of the report
The next chapter, i.e. Chapter 2 gives an overview of the problem and 1ts scope.

Chapter 3 describes the representation of the circuit, and various examples. We shall de-
scribe our algorithm with the help of these circuits. It also gives the format of the input file which

describes the circuit.

Chapter 4 gives a straightforward algorithm for the extraction of the boolean function and also
a scheme for verification of some restricted type of circuits. This is the groundwork for the
proposed algonthm, on which several modification will be done.

Chapter 5 gives the modified algorithm for the improvement of running time, keeping the
constraints as it is. The algorithm for finding the subnetwork and simplifying the circuit for the

following extraction and verification pass, is presented here.

Chapter 6 describes logic extraction for sequential circuits. However, 1t may not handle the
floating bus concept.

Chapter 7 talks about the possible future works, and other areas of its application. Limita-
tions of the proposed method and their probable solutions are also discussed.

Chapter 8 reports some case studies on which the algorithm ran successfully.

Some part of the header files are included n the Appendix to clanfy any points in the
discussion.

10

Chapter2
About the Problem

2.1 Motivation

The purpose of the circuit design is to develop the transistor level implementation of the
boolean functions designed in the logical level design. The main way to reach the goal is to replace
the gate level circuits by the equivalent transistor circuits. It can be done by gate wise replacement
which is inefficient but reliable, or by designing the transistor level circuit which is a direct imple-
mentation of the function. After that there can be some simplification or compaction so that the
redundancy can be reduced. The design can be Automatic (using some program to replace gate or
the functional blocks) or by custom (by doing it manually with the help of some CAD tools). The
automatic tool's design 1s fast and reliable but the performance and efhciency increases in custom
implementation which takes more time. For a custom made transistor level circuit the reliability
depends on the designer and many problems may anse. This is the point where we want to help
the designer to venfy the designed circuit.

The main verification should be in the following areas :
1. Any short circuit or open cucult conditions, which 1s undesirable ;
2: The function is really impleniented correctly |

3: The timing delay of the circut s according to the specification |

4: The circuit should be testable (which is very important for the complicated and costly
systems) ;

5: There should be minimum redundancy in the circuit ;

6. Area optimization ;

Some of the design goals are contlicting, so there should be a compromise among them. Here
we are addressing the vurification coals of reliability and the short circuit and open circuit condition
testing. This includes the extraction of the function and the checking for the possible condition of
output for all the input combinution,

Il

2.2 Problem Specification

Our problem pinpoints to

1. To automate the testing process of circuit design through devising a strategy for extract-
ing the function out of the general MOS circuit from switch level description, (i.e., given a
switch level circuit { NMOS / CMOS / PMOS) with arbitrary interconnections of transistors,

derive the boolean expression as a logic sum of product terms.)
2. To test whether for any input combination there is a short circuit between power and

ground .
3. If there exists any input combination for which the output is not connected to any other
signal node, that is the combination for which the output node floating,

Basic scheme is as follows.

a. Construct the underlying graph from the given circuit.

b. Decompose the graph into several two terminal components, based on the separating
pair recognition algorithm developed by Einsper, Seth, & Bhattacharya (1987).

c. Evalute the function for each of such segments by path traversal.

d. Get the overall boolean function by logical substitution of the subtunctions.

e. Check for consistency, i.e, whether there exist any input combination that causes a short
circuit in the circuit, via output, or causes an open circuit for both pMOS and nMOS parts.

f. The procedure should handle passmode transistors and multicell circuits.

g. It should be extended to extract sequential circuits, i.e., accross the latch and F/F.

2.3 Definitions of some relevant concepts

As we will be working in a graph theoretic approach, so we better define some things which
will be required in later stages. The knowledge of MOS transistor switches are assumed to be

known.

Series transistors : If any two transistors in a circuit has only one node (between drain and
source, gate is not considered) common, and the common point is not attached to any other
transistor or signal then this two transistors are called series transistors. This transistors can be
replaced by an equivalent transistor whose gate is controlled by the logical AND of the two
functions applied at the gate prevtously.

Parallel transistors : If any two transistors has both of there nodes, source and drain
common (here we are not discriminating here between source and drain), then they are said to be
in parallel. These transistors can be replaced by a single transistor, whose gate is the logical OR
of the previous two gate functions.

Path : A path in a graph is a sequence of nodes (u,v,....w) where no nodes appears twice

and there exist an edge between any two consecutive nodes in the sequence. Node u will be
called the startnode, and node and node w will be called the end node.

Series-Parallel edges : In an undirected connected graph with two specified node, one as
source, from which all paths emerges, and another as sink, at which all path ends, an edge (u,v) is

12

called a series-parallel edge iff every path passing through the edge (u,v) has the same order of u
occurring first and v following it or vice versa.

Non-Series-Parallel path. The non-senes edge (u,v) is such an edge in the aforesaid graph,
s0 that there exist at least two paths , from the source to sink, so that in one u follows v, and in
other v follows u.

Passmode transistors. The passmode transistors are those transistors where one node 1s
connected to a signal node which may take any value of O or 1. (i.e., other than power and

ground).
Modelling of the problem

The circuit is modelled as a undirected graph . Only the required part of the circuit is to be
searched and the corresponding graph is to be formed. Each node in the graph represents a
junction point in the circuit or an input of the circuit. Each edge in the graph has a controlling
function associated with it which represents the gate vanable in the corresponding transistor in the
ctrcutt .t can also be thought that the gate node is connected to a node the signal value of which
1s controlling the transistor. Any node can be associated with a signal which is basically the output
at that point, or any input signal applied at that point. So our problem boils down to find the
function associated with a particular node which is specified as the output node.

Difficulties

At first sight the problem may seem to be a direct one. Try to find out all the possibie
combination for which the output node 1s connected to the supply line or ground or any other
signal line, & for that combination the signal value at the output node will be the connected rail or
signal. But at second thought we can see that after finding a path between output and one signal
node, we have t0 know the combination for which the specified path will be connected or short.
But it 1s not always trivial. This requires some tricky assumptions and iteration over the circuit.

The next part ts the verification. We can get all the combinations for which the output is
connected to at least one of the input signals, which may be power or ground also. So we can
easily find out the input combinations for which the outputnode is not connected to any of the input
signal or power rails, detecting the floating condition. But for the short circuit , it is not that easy.
We can easily find out the combination where the output gets affected due to the short circuit, but
for those combinations where the output is not affected, and we still don't have the answer.

As 1t 1s not possible to extend the verification to those paths all of whose nodes are not

reachable from the output without passing through a signal node. Hence we cannot test those
paths also.

13

4.4 An example of the CMOS simple circuit.

Now give an example of an CMOS circuit which we will use for the clarification of the
algonthm. Nodes are marked for clarification of representation.

L .
' . Ir L
5 6—0 'Tl—Ci 10_1‘2'“' ’

10 g |

e

7 Ground

Fig.2 The evaluated functionis X,’X,*+X X, +X, X +X X +X 'X '
Le function = (X +Xc) - XX, +XcXc) !

14

Chapter3

Tell me the Circuit

This Chapter is about how to input the data about a circuit and how we are going to
represent it in the computer. This input part can easily be modified and make the interface as per
the requirement of personal use. The goal of our representation is to keep it easily understandable

from the file format.

3.1 Circuit Representation and Input format

The circuit representation will be evident from the header file listing. The input format 1s
explained after the listing. The classes MyList and MyArray can be thought as a list and array

respectively.

L i e
/111 CIRCUIT .H THE DEFINITION OF THE CIRCUIT & TRANSISTOR CLASS///
//f////////////////////lf/////////////////////fﬂ////////////////////
#ifndef CIRCUIT

#define CIRCUIT

#include <iostream.h>

#include “graph.h”

#define PTYPE O

#define NTYPE 1

class node {
private;
int number, // this the index in the array in the circuit
nooftrans, // to remember how many transistors are connected
mark, // for identifying the node as traversed
evaluated, // to signifyied that the function associated 1s a valid one
signaltype, // this is the no of variable associated with,
signalvalue; // this is O for inverted signal, 1 for in the normal form
MyArray<int> transistors; // the array of indexes of the connected transistors
Termlistt; // the function associated with the node, valid if evaluated is 1
public :
node(),
void Print() ; // for printing the node no and the associated transistors and circuit
friend class Circuit;
friend class Transistor;

} s

15

Continuation of classes Circuit, Transistor & Node

class Circui;
class Transistor{
private:
int source,drain,gate, // the source drain,and gate node no
type, //the type may be PMOS or NMOS, may incorporate pull up transistors
number, //index in the entry in the array of transistors in the circuit
mark; // used to denote that it has been processed
public :
Transistor();
void SetType(int 1);

friend class Circuit;

}s

class Circuit {
private:
MyArray<Transistor> TransList; // this the total transistor entry of the circuit
MyArray<node> Nodes; // this the total node information of the circuit
MyArsray<int> Outputs;, // this keeps the information about the output to be evaluated
unsigned int PresentSignalno, // this is the next variable number to be used, discussed later
public :
Circuit();
int ReadCircuit(); // reads the input from a file
int WriteCircuit(); // writes the circuit information in a file
Graph *BuildGraph(int); // function for creating the graph for a specified output node
int AddtoGraph(int,Graph*); // recursive function for the graph building procedure
Termlist* ExtractFunction(int); // function for extracting the function associated in
// a particular node.
int QutPut(int 1) ; // retumns the ith output entry.

b
#endif

The input file format is given in the next page. The circuit is kept as the node array, and the
input signal nodes and the signal applied at that point. This will restrict the program to arbitranily
evaluate the function. Each node has an array of transistor numbers, which will indicate the
transistors drain or source node is attached to the specified node. The circuit also has an array of
transistors, which will help the program to access the transistors quickly. As this array has a
dynamic size, so it is better to have an idea of the no of the transistors and nodes. As the array
will always accommodate the largest numbered entry, so it is better to number the transistors from
1 to #transistors. The circuit also maintains an array of output nodes along with no of output
nodes. For future use it also keeps track of temporary nodes marked as input nodes.

16

The Input file for the circuit of figure no.2

The format is written in the side. Obviously those comments were not 1n the file.

000 //false node, may not require to give this

1180 // Node number 1, Connected to Vdd, 18 is reserved for
300 // Power supply,

400

500

600

7170

800

961 // node9 isconnected to input signal no 6, and it 1s 1n
1051 // normal form, last entry O denotes the inverted signal
1131

1241

-1 // end of node information

11390 // Transistor information, first entry is the transistor
232 100 // number, then the source node, then the drain node,
324100 //then the gate node, after that there 1s transistor
464101 //code, Ofor PTYPE, 1 for NTYPE, and
57691

612110

712120

82490

954111}

1085121

1178101

127891

-1 // end of transistor list

4 -1 // output node list

The input format is explained above. This circuit has a no feedback in the gate and there is no
passmode transistor. The only signals connected are the power supply and the ground. While
reading the transistor list, the transistor numbers are kept in the associated with the node. The
circuit has a list of transistors, and hst of nodes.

17

Chapter 4

The First Approach

Assumptions

The problem is related to the extraction of the logical function implemented by the MOS
transistor circuit. The circuit may contatn a number of NMOS and PMOS transistors. Moreover
there may be some signals which are connected to the output controlled by some transistors. For
the simplicity we will assume that there is no feedback in the circuit and the circuit 1s not a
sequential one. By feedback we denotes all those connections where there 1s a path between the
gate and the source(drain) through the source or drain of other circuit.

Proposed Solution of the Problem

In the first approach we can proceed is that to find all the paths from the output to every input
signal, including the Vdd and Gnd also, so that from those paths of the individual input signais we
can find out the ultimate function.The steps in this approach are

a) To build the graph
b) To find all possible paths to individual signal nodes

¢) To find the function from the path information

d) To verify the short circuit and open circuit conditions

4.1 How to build the corresponding graph

The first problem is to build the graph from the circuit. For this we start with the output node
and do a DFS like traversal of the circuit where the terminal nodes are input signals. The
transistors are converted to edges and the junction points are converted to vertices. If any gate
node is controlled by any other output which is not already evaluated then we try to evaluate that
node first, temporarily suspending the previous node. So we are traversing only those transistors
which are relevant to the extraction of this output. Any transistor is tested only two times, one for
the source node , and another for the drain node. The nodes are traversed only one time. Any
node which is declared as the input signal node is entered in a list of signals. The Power supply
and ground node is also considered as a signal node, having value 1 and 0 respectively.

The resulting graph has some nodes and edges, where the edges are associated with some
function which defines the required combination for the edge to be short. It also has a list of nodes
and associated functions which defines those signals are applied to the corresponding node. By the
time we finish the building of this graph we have evaluated all the necessary nodes which are
controlling the transistors of the required part of the circuit. Once one node's logtcal function is
evaluated, it is marked and the evaluated function is used later.

18

The Comypllexity of creating the graph is proportional to the no of transistors present
plus the no of nodes traversed.

4.2 Algorithm for the creation of the required graph

This algonthms is for creating the graph from the given circuit. The function AddtoGraph can
call ButldGraph through another function ExtractFunction to evaluate the gate node signal. The
function AddtoGraph() is the recursive function that does the job of adding a node and exploring
all the transistors associated with the node.

Thus 1s the calling function to build the graph from the circuit.
Input : A circuit and a node in that specified for the evaluation

Output : A graph corresponding to the part of the circuit required for the evaluation.

Graph* BuildGraph (node nd)
{ Graph *grf,
Mark the node nd as the Startnode for grf.
AddtoGraph(nd,grf); // adds the node and its relevant part in the graph
Unmark all the nodes and Transistors used in this process.
return gif,

}

The function AddtoGraply() is the basic recursive part of the graph building function.

Input : A node in the circuit which is to be added in the partially built graph for a output node.
Output : Augments the graph by adding the supplied node and its related nodes, which is not
already added.

int AddtoGraph(node nd, Graph *grf)
{ Start at the node nd.

Mark node nd.

for all outgoing unmarked transistor do

{ mark the transistor.,

if the gate node function is already evaluated
{ add an edge in the graph grf between drain node and source node
the corresponding function is the gate function

j

else

{ gate controlling function = ExtractFunction(gate node)
add an edge in the graph grf between source node and drain node
with the controlling function
}// remember that the combination for this function will short
// this transistor, so for PMOS the function should be inverted.
if the other end of the transistor is not marked
AddtoGraph(other_end,grf):

} // for each unmarked transistor

}

19

| 4.3 How to find all the paths

First we have to clear ourselves why we are looking for the paths. The requirement lies in the
switching condept. If we can identify all the possible paths, we can associate an input signal
combination for, which those two points will be connected. If these two points are the output node
amd a signal node then for that particular combination the input signal will be available in the output.
This way the output will be the combination of these outputs for all the input signal nodes.

To find all the paths, we define one function which, from a node in the circuit, will look for all .
possible paths to a particular node, called endnode. This will return the input combination for
whuch at least any of these paths exists, if at alt exists. The algorithm is given bellow. The gist is to
tey to proceed through all outgoing edges to the endnode avoiding any previously traversed node.
If it can be done then the path from this node to endnode will be the summation of individual
function with the transistor controlling function in series, i.e., if we have to go to endnode from
startnode, and startnode has three outgoing edges to vl,v2 and v3, and v2 is only marked, then let
vl has a path from v1 to endnode for function T1, v3 has T3, and the edges (startnode,v1) and
(startnode,v3) has controlling functions f1 & f2 respectively, then the path from startnode to

endnode willbe f1.T1 +f2.T2.

For avoiding loops in the path, while entering a node we are marking it.For the next step we
will proceed towards a unmarked node. But while returning from one node it unmarkes the current
node because there may be a next path which passes through this the current node but doesn't
uses some of the nodes used in the previous path, which may be utilised now. This explores all the
possibilities, but make the algonthm to run in exponential time with the number of nodes.

The algonthm for finding all the paths possible is given in the following section.

Algorithm for finding all the path from startnode to endnode

Input : A graph, and two nodes in1t.
Qutput : A boolean expression for which there will be at least one path between the two nodes.
FindAllPath(node endnode) // for node st say
{ Termlist t=NULL; // t 1s a bollean expression.
mark the current node; // so that it is not used in a path more than once
for all the outgoing edges e = (st,ot) and ot not marked do
{ if (ot = = endnode) t =t + e.Function; // there is an edge to the target node
else t = t + ¢ Function * ot.FindAllPath(endnode); // try to proceed from ot
}
unmark the node st;
return t;
}

20

4.4 Finding the total output function.

The extraction part is done in the following way.

1. First for each input signal find the possible combination for a path to that node, say for I1
itis Tl forI21t1s T2 etc.

2. If the signal is not associated with ground, then multiply the path function with the input
signal. The sum of all these product term will give the function output at the required node.

4.5 How to verify the short circuit and open circuit conditions

The venification process for short circuit is done in the following way

1. First for each input signal find the possible combination for a path to that node, say for 11
itis T1, for I2 it 1s T2 etc.

2 Then find all the combination, for which a path will exist in between two input signal, e.g.,
between Il and [21t s T1* T2.

3. Now if the existence of path has a combination which makes the corresponding signals
opposite values, i.e.. | & 0, then for this combination input signals I and 12 will be shorted.

For the verification of the floating output condition we are doing the following algonthm.
1. First find out the combination for each signal as in the first case.

2. Then add up all the functions, keeping in mind that they are not to be multiplied with the
input signals. The sum will indicate the combinations for which it will be connected to at least one

of the input signals.

3. Now check whether any combination is left. If exists, it will be the combination for which
the output floats. |

Limitations.

The limitations of the checking for short circuit is that it cannot detect any short circuit
combination which doesn't affect the output node. Testing for those combination in this frame-
work is costly as that can be the finding all paths between any two input signal node.

The relevant part of the output the program for circuit in figure no 2.

Enter the filename from read : circ2.dat
Creating a Vdd connection

Added one Ground term
Compacting in 8

continued ..

21

Comtinued output for the circuit in figure 2.

Compacting in 7
Compacting in |
Compacting in 4
Compacting in 2
Compacting in 2

Graph Number O

Start vertex is 4 & End vertex is

Vertex No : 8 1

Edge between : From 8 to 7 The term is : x5 + x6
Edge between : From 8 to 5 The termis : x4
Vertex No : 5

Edge between : From 5 to 8 The term is : x4

Edge between : From 5 to 4 The term is : x3
Vertex No ; 7

Edge between : From 7to 8 The termis : x5 + x6
Edge between : From 7 to 6 Thetermis @ x6
Vertex No ; 6

Edge between : From 6 to 7 The term is : x6

Edge between : From 6 to 4 The term is : x5
Vertex No : |

Edge between : From | to 2 The term is : x3' + x4'
Edge between : Fromi 1 to 3 The term is : x6'
Vertex No : 3

Edge between : From 3 to 1 The term is : x6'
Edge between : From 3 to 2 The term is : x5'
Vertex No : 4

Edge between : From 4 to 5 The term is : x3

Edge between : From 4 to 6 The termis : x5

Edge between : From 4 to 2 The term is ; x5' + x6'
Vertex No : 2

Edge between : From 2 to 4 The term is : x5' + x¢'
Edge between : From 2 to | The term is : x3' + x4'
Edge between : From 2 to 3 The term is : x5'

Input signals are as follows...
Nodeno 1 ... Input Signalis |
Node no 7 ... Input signalis 0
No of Signals are 2

Looking for path from 4 to |
The term is : x3'.x5' + x4' x5' + x3'.x6" + x4' x6' + x5' . x6'

Looking for path from 4 to 7

22

The term is © x3.x4.x5 + x3 .x4.x6 + x5.x6

The function got in the Extract function is ...
The term is © x3'.x5' + x4' x5' + x3'.x6' + x4' x6' + x5' x6'

The Extracted Function is as follows as in main
The term is - x3' x5' + x4' x5' + x3'.x6' + x4' . x6' + x5' x&'

For the algorithm FindAllPaths to work correctly it is required that there should not be any
parallel edges between two nodes. For this we run a parallel edge compacting function after
creating the primary graph. This will replace parallel edges with an edge controlied by the parallel

equivalent function .

This algorithm has complexity in the exponential range and it is mainly due to the back and
forth propagation of the path exploration scheme. This algonithm also tnes all nossible outgoing
edge to find the destination vertex, thus roaming many edges which is not at all required. This
deficiencies are tried to solve in the next algorithm by reducing the no of equivalent edges.

23

Chapter 5

For a little less...
The Improvement over the first Approach

5.1 Scopeof Improvement

The main time consuming part of the algorithm FindAllPath is the recursive call of
FindAliPath(endnode) for various nodes. The nodes away from the output node will execute this
function many times than the near one, where the near nodes will take larger time to execute. This
process is necessary for finding all the possible paths.

If we take a second look at the graphs and the paths, we can see there exists some
subnetwork which is connected to the graph at two points. So if we can replace this subnetwork
by a simple edge controiled by a boolean function, then we need not roam within the subnetwork
many times. Thus the required edges will be reduced and the overall performance will be better.
Now we present an algorithm to find out the separation pairs and the associated subnetwork. The
algorithm is based on the depth first search and segmentation of the graph. This increases the
running overhead for the algorithm, but if the no of edges and nodes are large then it can be shown
taking smaller time than the simple and direct one. This algorithm will run in order of n time, where
n is the no of edges, but the improvement of the following verification algorithm depends on the no
and size of the subnetworks present in the circuit.

Once a subnetwork is identified, it is deleted from the original graph and a simple edge
equivalent to the subnetwork 1s added to the graph between the separation pair. If the subnetwork
does not include any signal node other than the two in the pair, then it doesn't hinder the pnmary
objective of finding the output function by finding the paths as no signal node is lost. But if the
subnetwork has any signalnode, then we cannot replace the subnetwork as it will delete at least
one signal node.

Now we present the algorithm for finding the separation pair and corresponding subnetwork.
This algorithm can handle parallel, series, and non-series-parallel edges also. For finding the
equivalent edge-function we are using the previous path finding algorithm from one vertex of the
pair to the other.

Before going to the algorithm we should define some terms which will be used frequently.

5.2 Some Graph relevant definitions

Form now onwards we will forget the circuit representation as the transistors and junction
points along with the input signals. We will talk about the underlying graph, where the junction
points are vertices or nodes, and the transistors are edges, may be thought as weighted, which is
the controlling function. We will define the graph as (V,E) where V is the set of nodes and E is the
set of edges, directed or undirected.

24

Biconnected component: A biconnected component of a graph is a subgraph of the graph
such that for any two nodes in the subgraph, there exists two node disjoint paths between them.

Cycle : A path which starts and ends at the same node is called a cycle.

Separation pair. If there is a connected component of a graph which has exactly two points
common with the parent graph then the common points are called the separating pair. The
speciality of the separating pair is if any path starting from a vertex and ending at a vertex ,both of
which are not in the aforesaid connected component, and if it enters through any one vertex of the
separating pair then it must leave through the other vertex of the pair.

Tree: A connected graph without any cycle 1s called a tree.
Rooted tree : A tree in which a node, say r, is singled out as the root is called a rooted tree.

In a rooted tree we can always assign directions to the edges away from the root. In such a
directed tree, a node v is called ancestor of the node w if there exists a directed path from v to
w. In that case w is called a descendant of the node v and w and v are lineally related. The

lineal relation defines a partial ordering of the set of vertices of the tree

Lineal numbering: Let (T,r) be any rooted tree with vertex set W. A lineal numbering of
(T,r) is a bjjection LN: W < {1,2,.. |W|} that is compatible with the lineal order of T. That is,
LN(v) < LN(w) whenever v < wis in the lineal order in T.

A Subgraph T = (VE,) is a Spanning tree if T is a tree. E_ is the set of directed edges.

A rooted spanning tree (V,E_,r) of G is said to be lineal if for all edge (s,t) € E-E_, s and t
are lineally related. Such an edge is directed from s to t, if t < s, in the lineal order. Then (s,t) is
called a backedge. Let E = E-E . The subgraph of G with edge set E_ is called the backedge
graph B. Let (T,r) be a lineal spanning tree of G and B be the backedge graph. Suppose that we
have a lineal numbering LN of the vertices of G, i.e. a numbering consistent with the lineal order
induced by (T,r). For any edge e = (a,b) in E, let R(e) be the set consisting of LN(t) where (s, 1)
1s a backedge, and s is a descendant of b including b, i.e., R(e) is the set of LN(w) where there is
a path from a to w through zero or more tree edges and the last edge is a backedge. Now for all
edges e € E, we define LOW1(e),LOW2(e) (the first and the second low points of e) as

a:Ife=(ab) € E, then:
LOWIl(e) = min {LN(b) } v R(e), LOW2(e) = min {LN(b)} U (R(e)-{Lowl(e)})
b.Ife=(st) € E., then LOWI(e) =LN(t), LOW2(e) =LN(s);

Now we can give the procedure to produce this lineal numbering of the nodes and calculate
the low points of the edges. Along with this we can find the biconnected component of the relevant

node so that we can easily identify those nodes not to be considered in the later path finding stage,
for two given nodes. This also helps to locate the transistor which can contribute nothing in the

25

circuit extracting procedure for the given nodes.

All the header files for the class Vertex, Edge, dVertex (Vertex in the directed graph) and
dEdge (edges in the Directed graph) are given at the appendix. So for any clarification please
refer to the listing in the appendix.

5.3 Algorithm for doing the DepthFirst Search

The algorithm DFSearch 1s many used algorithm, so we are not explaining vividly. A stack is
maintained to keep track of the biconnected component.

DFSearch(Edge e=(u,v))

{ dfsnum=dfsnum-+1;
LOWI1(e)=LOW2(e)=LN(v)=dfsnum,;
push v in the stack.
for each edge e¢'=(v,w) do
{ if (LN(w)==0)
{adde'to E
DFSearch(e'),;
AdjustLowPoints(e,e');
if (LN(v) ==LOW(v)) //abiconnected component detected not required
{ pop all the vertices in the stack and there associated edges
untill there is a vertex z such that LN(z) < LN(v);
push v in the stack.

)
}

else f{w=u) // not the edge by which we came to this node
{ add (v,w)to E_; // that is mark the directed edge as backedge
LOWI(e')=LN(w), LOW2(e')=LN(v),
AdjustLowPoints(e,e'); / that is the corresponding dEdges

j
;

AdjustLowPoints{(dEdge e,dEdge ¢')
{
if ((LOWI1(e")<LOWI(e))
{ LOW2(e)=min {LOW2(e"},LOW1{(e) };
LOWHe)=LOWIl(e");
J

else
{ if (LOWI1(e') == LOWI(e))
LOW2(e)= min { LOW2(e), LOW2(e') };
else
LOW2(e) = min { LOW2(e), LOWI(e)) };
\ |

26

We have td keep in mind that in our implementation, we are creating another graph from the
original keeping the edges of any one direction from the two. So we have to manipulate many

things to keep track of the correspondence.

For the time being we will forget the original undirected graph and work on the directed
graph, created by the process of the depth first search algorithm. So any reference to the graph
will denote the directed graph after the DFS, unless otherwise specified .

We associate with each directed edge e = (a,b) a triplet (a,LOW1(e),x) where x = 0 if
LOW2(e) < a, or 1 otherwise. This is done because we want an ordering among the edges going
out from a node. The ordering is such that if we choose an edge earlier in the list then we can go
to smaller numbered nodes, at least as smal! as the other later edges in the list lead to.

Now we will define the path starting from any edge ¢. A Path(e) 1s constructed as follows.
The edge e will be the first edge of the path. If e is not a backedge, let €' be the first unused edge
in the outgoing list of b (e = (a,b)). Add €' to the Path(e) then repeat the process until ¢'1s a
backedge. The ordering of the outgoing edges in the list in each vertex is such that this will lead the
path to the vertex of minimum lineal number possible with the last edge as backedge. Let us
denote this path as Path(e) = (e ,e,,...e) where e = e and e_is a backedge. Note that e, may be
equal to e,

Now we define another concept called Son(e). It is the list of all edges coming out from the
nodes of the Path(e), but not used in the Path(e), except the start node and the end node of the
path where the nodes will be considered in the reverse order it was added .That is the last (not

the end node) will be considered first and its remaining edges will be added at the start of the list,
and the next to the start node will be considered last.

All the path will have a Segment List which is basically the paths starting at the Son(e) hist.
We will call it the PathList(e) also. The Segments Seg(e) 1s defined as follows.

Seg(e) = All the Paths Path(f) and its Segments where edge f 1s in the son list of the path(e).

For the algorithm for identifying the separation pair we will identify one edge which is the
starting edge.

The Path(e) has the following property.

1. Path(e).Tail = The sating node's number (i.e_, the lineal number)
2.Path(e).LOW1 = The low] value of e

3.Path{e).EdgeList = The list of the edges present in the path(e)

4 Path(e).PathList = The list of the paths directly going out from the path(e).

6.Path(e).ENUM = The no of edges present in the path and its segments.

27

7.Path(e).Father = The edge of the parent path from which the present path has emerged.
Now we just present two Lemmas [2] .

Lemma 1: Let X <Y (1.e, X 1s generated before the generation of Y) be segments in
Path(e).PathList. Then X and Y are directly linked relative to Cycle(e) (i.e. , the cycle in which e
1s an edge) iff X has a backedge (s,t) so that LOWI(Y) <t < Tail(Y).

This lemma proposes that as X <Y, then for X and Y to be within a separation pair there
must be a backedge in X which goes to a node in the parent path between the lowest point and
the highest point of the segment Y. Otherwise the segment X and Y are in different separation
pairs.

Lemma 2 : Let X,Y be the segments in the Seghst of path(e),If X bridges Y but Y doesn't
bridge X then X < Y.

This lemma puts an order in the creation of the paths/segments for any path(e). Thus we can
be sure the ordening of the generation of the segments, unless they are irrelevant to the identifica-

tion of separation pairs,

5.4 Detection of Separation Pairs .
The separation pairs will be detected in the recursive algorithm BuildPatr. We can divide the
separation pairs (a,b) of G into three types :

. Type 1 pair: This corresponding to the TAIL and LOW1 points of a segment that has
only two point in common with the parent cycle. If this segment is Seg(e) then LOW?2(e) = Tail(e).

2. Type 2A pair : This is the LOW1 and LOW?2 points of an edge with no internal segments.
Let x be the tree edge on Path(e) going out from the LOW?2 point as in the figure, then LOW2(x)
= Tail(x). So this type of separation pairs can also be checked in the same way as the type 1
pairs.

3. Type 2B pair: This 1s Tail and LOW1 points of a component without internal segments as
in the picture. This the most difficult type to detect.

In the following figures , the separation pairs are (a,b).

LOW1 (e)

(e) L

d

X

Seq) Tafil(x)Yb
/\\e

Tail (e)

1(e)

Type 1 Pairs Type 2A pairs Type 2B pairs

28

For detecting the Type 2B pair, we are taking several steps. The first one 1s to associate a
number with each node which denotes the lowest number of all the path number which is coming
in at that vertex. This is done by the DFSearch() while assigning Low numbers to nodes.

The next step is to keep track of the lowest point which is the last point of the current path,
we keep a local stack in each call of the BuildPatr. The stack has two items, LS or the path
number of the eagliest partially built segment, and the LOWC, 1.e. the current low point of this
component. When the minimal component is detected the corresponding separation pair will be (
LOWC, TAIL(LS)).Let us call the stacks for LS as LSatck, and for LOWC as LOWStack. Just

keep in mind that the pops or pushes in the stack will be simultaneous.
The stacks are updated as follows.

1. When a new segment (here a path) with edge x 1s started, we check if there is any entry
in the LOWStack such that LOWC > LOW1(x). If exists , it denotes that the new segment will go
beyond the present lowpoint, so it is not required. We pop all such entry from the satcks. Now if
LOWI(x) = Tail(e) then the current segment is not going to the parent cycle or path, so it can
result in a separating pair one of which is LOW1(x). So1f LS is i.e. last entry poped from LStack
then push LS and LOW1(x) in the stacks. 1f no entry was deleted, then push SEG(x) in LStack,
and LOW 1(x) in LOWStack.

2. When we backtrack past an edge x on Path(e), any entry which has LS>FirstPath(Tail(x))
is no longer can give a separation pair, because there 1s another path coming from further away.
So Pop all such entry.

The total no of entries in the various stack i1s proportional to the number of generated paths,
soitisO(V+E) [2]

Now for finding the all the separation pairs in the path from one node the output, to another
node which is the input to be considered, we add a new directed edge from the input node to the
output node, and mark it as the first node. This is done so that the components found will be
related to both this nodes. All other edges which are not in the same biconnected component in
which the starting edge is, will be discarded at this stage. For a large circuit with various input
signals, specifically if input signal i1s connected to the output node in separate biconnected
components then it will stop the roaming of the algorthm FindAllPath() in the nonrequired edges.

This 1s described in the figure in a better way.

5.5 Algorithm : RunSeparation()

Input : A graph having a specified startnode and endnode
Output : A graph with two edges and two nodes. One will be the equivalent of all the paths
possible between the two nodes 1n the graph.
RunSeparation()
{ for all v € V do v.FirstPath=MAXINT, // a large number, representing oc
Add an edge from the end node to the startnode, and mark 1t as startedge
BuildPatr(startedge);

)

We are assumung LS is the top entry of LStack, and LOWC is the top entry of LOWStack.
The Stacks are the last in and first out type data structure implemented by singly linked list. The

only visible element in the stack is the last entry. The function BuildPatr() is a recursive function
which creates the paths and detects the separation pairs.

Algorithm BuildPatr(Edge ¢)
{ Create the path Path(e).
// Fix LOW1 and Tail of Path(e) and FirstPath(LOW 1(e)) also
for a € Path(e).Edges // list creation was in the reverse order
{ t=Tail(a); low2 = LOW2(a);
// a separation pair extraction may delete this information, so keep it
while top entry of LOWStack =t // the partially built component goes at most to t

{ // one separation pair of Type 2B, LS.Tail and LOWC
TYPE2B(Current Path,LS,LOWC);

If this results any senies edges, combine in into a single edge.
Delete the top entry in the Stacks.

}

if a is not a backedge then
{ if possible replace any series edge
eise
if (low22>t) // a separation pair of a. Tail and LOW1(a).
TYPE! 2A(path(e),a);
}
pop from stacks any entry if LS>FirstPath(t);
// all processing has been done for the detecting separation pair, now do the
// pathfinding part for the unused edges going out
for all unused edges f going out from t do
{ BuildPatr(f):
if (Path(f). Enum==1)
// it may be parallel to any previous edge or segment or path, so try to find and combine.

1if CompParallel(Path(e),e,Path(f)) succeeds then skip the rest of loop
add Path(f) to Path{e) PathList.
Path(f).Father=a.

Pop all the Stack entry with LOWC > LOW1({{).
if (Path(f). LOW1 > Tail(e) then
if LS 1s the last Pop from LOWStack then
push LS and Path(f). LOWI1 in the stacks
else push Path(f) and Path(f).LOW1 in the stacks

} //all edges and paths have been explored, so update the no of edge information.
path(e). Enum = Sum of all the Path(f).Enum in the PathList

}

Remarks :

The function GetPath(e) sunply proceeds through the unused edgelist until it gets a backedge
It then number the Path and evaluates its Tail, LOW1, and ENUM. It keeps the list of edges in
such a way that the last edge comes first, and the first edge comes last in the edgelist. It also

30

assigns FirstPath for the node Path(e). LOW 1 to path{e).number 1f it 1s the lowest numbered path
ending at that node. |

The function TYPEI2A deletes all the Paths and it chuldren from the current pathlist and the
part of the present path that is between the Tail(e) and LOW1 point. This function also add an
edge in replacement of this component. It first makes a new temporary graph with the separation
pairs as the start node and the end node. Then transfer ali the segments in the path Path(e) to the
new graph. Then it transfers the part of the path from Tail(e) to PATH(e). LOW1. It then runs
FindAllPath() in the newly created graph to find the equivalent function. Rest is the creation of a
new edge in the original graph and associating the function evaluated with it. The edges transfered
to the new graph is deleted from the old one. The nodes, except the separation pairs are also
deleted from the onginal graph.

The function TYPE2B also does the more or less same thing but it considers the Path(e).PathList
and selects all the segment which has number greater than LS and LOW1 points greater than
LOWC. As in n case of the previous procedure (TYPE12A), all the edges transfered are
deleted, and a new edge is added. Both of the functions uses TxPath (Path FromPath,...) to
delete the path from the graph. It also has some other parameters due to implementation details
and equivaient function evaluation for replacement.

The function CompParallel(Path (e),Edge a,Path(f)) tnes to find if there exists any tree edge,
backedge or path of length 1 parallel to this edge of Path(f), and returns 1 1if succeeds.

Though this algonthm has not been tested in the circuit extraction procedure but it has been
tested separately, and it ran successfully on a complicated graph and extracted the function for the
equivalent circuit for only one output node and signal node. This can easily be implemented, taking
care of the original graph modification problem.

5.6 The Improvement of running time for this preprocessing ailgonthm.

1. This will only consider the biconnected component of the whole graph, which 1s relevant to
the corresponding input signal. Thus for a large CMOS circuit it will not consider any PMOS for
Ground connection, and any NMOS for the POWER connection, thus greatly improving the
performance of FindAliPath(). This will stop all the unneccesary traversing through unrelated
nodes.

2. This algorithm will compact all possible subgraph which can be replaced by a single edge,
thus improving the running time of the next pass by reducing the no of edges (equivalent
transistors).

3. The algonthm can identify any transistor which is not at all required in the circuit (probably
one whose one node is floating or a subgraph which i1s connected to the rest of the circuit at a
single point,}. Those extra transistors can be removed, or it may be due to some forgotten
connection which ts to be made

4. All the series and parallel compaction can be done in a single pass, thus avoiding the
procedure of iterating over series and parallel compaction on the circuit.

The result of the separation pair extraction over a graph 1s shown. Though we are not
showing the equivalent funcuon evaluation, but it was done by calling the Find AllPath() function
between two separation pairs. The edge is replaced and may be included in a subsequent separa-
tion pair.

31

An example of the Algorithm RunSeparation()
The start node is 1, and end node is 7

o
After addition of startedge and doing the dfs,

the first series component is detected
First oneis original graph build from the circuit, ot

her 1s the corresponding directed graph, created
by dfs,dotted line isadded line and starting edge, dark line is tree edge, dashed ones are backedge.

The fine lines along with the other lines denotes the edges in the next component to be

replaced. The double line denotes the modified lines by the algorithms We are not compacting the
startedge. The series edges replacement are not shown explicitly.

l

y
/

L
L
>
L
&
&
&
»
.
»
»
&
L

/
‘$/

The final graph after compaction and separation pair replacement. The startedge is not to
take part in the separauon pair

32

Chapter 6
Welcome Feedbacks

Relaxing the Constraints

Until now all our discussions were based on the assumptions that any transistor's gate node is
not connected to its drain or source node , directly or may be through a series of transistor's
source and drain nodes, which we denote as the feedback in the circuit. This will obviously
happen in the case of Sequential Circuits, and also may happen in the case of some combina-
tional circuits. Now we relax this constraints by allowing some feedback of both of the above
types. We have tested our algorithm on some test circuits. The results are satisfactory in the limit
that they represent the true function of the circuit and does not take care of the invalid input
combination.

There may be two types of feedbacks experienced. The first kind is that while evaluating
function at a gate node, we face that the gate node is already marked. This indicates that for
evaluating the gate node we have to know the status of this transistor. This kind of teedback is
found mainly in the combinational circuit The other kind of feedback is that while a recursive call
of ExtractFunction(node) sees a node, not a gate node, which is marked, but not by itself, i.e,, it
is marked by some call of BuildGraph() for a partially build graph down in the execution stack.
This normally happens for a sequential circut,

The proposed solution of this problem is to temporarily take those nodes as input signal
nodes, and mark it in that way, but do not declare it as evaluated. Use this temporary vanable in
the extracted function and then try to replace that in the final result after evaluating it separately. If
the next evaluated lunction contains its own term or any term of the previously evaluated term,
then don't try to proceed. Otherwise replace the temporary variable with the evaluated function to
get the final result. The combinational circuit may be evaluated by the first way, if temporary node
is chosen properly. For the next type of feedback, which is mostly found in sequential circuit, it 1s
better to identify the temporary inputs manually, such as the output of the latch or Fhip/Flop.

6.1 Modification in AadtoGraph

This will require a modification in the function AddtoGraph(node) to identify the cases, and
modify it accordingly. To identify the nodes marked by itself, 1t has to check for the presence of
every marked node it tuces while proceeding through a unmarked transistor. The other type of
checking is whether the gate node is marked but not evaluated, which means a failure of the
nrevious algorithm. In this case also it will mark the gate node as a temporary input node and
proceed in the normal way These checkings will obviously increase the running time but one has
to pay the cost of evaluating scquential circutts

33

6.2 Modification of function ExtractFunction()

The function ExtractFunction() should be modified to have a iry to get rid of those temporary
input signals marked by the AddtoGraph(), if possible. It will try to evaluate the functions associ-
ated with the corresponding node. If again some temporary input node is created, it will not
proceed. The other way round is to tell the output node where the signal is feed back. Then it will

reduce the unnecessary evaluation of the temporarily marked input signal node.

6.3 Modification in Verification

The verification algorithm also to be modified in a sense that it will also wait until all the
temporary signals are evaluated, if possible. Then only it will declare the verification results. This

will help to avoid any misguidance by the program.

Example of an sequential circult : SR FLIP-~FLOP

Q 9 - 5(Xp)

=L

Ground
Fig. Clocked SR Flip Flop

The above circuit while tried to be extracted for the output node Q then it marks the node Q'
as temporarily vanable Y, and evaluates the function in form of Y, also. The function evaluated are
given bellow. But we have to consider that the invalid mput combinations C=1, R=1, and S=1 1s
taken as Q=0 and Q'=0 output instead of the general convention of Q=1 and Q'=1.

The function evaluated for the output Q 1s

Q=X'Y, + X, Y + XXX,

which comes to

Q=R Q+C'Q+R. S C

34

Chapter 7
Looking Beyond

Possible Future Work

The range and type of future work in this area is quite large. The circuit extraction process
can be provided with the output point of the F/F (Flip Flops) so that it should not mark any arbit
node as temporary node. It also prevents the algorithm from evaluating the unnecessary nodes.
Ths also can be extended to the state transition table extraction where one signal will be marked
as the clock signal. If that can be done then it can be easily used to identify any counter, and the
type of the counter and its stages. It can then also verify from any arbitrary sequential circuit,
whether 1t 1s robust in terms of homing sequence. This can be extended to the testability of any
circuit by 1dentifying the paths for testing. In the following sections we are present some of the
future works.

7.1 The Problem of Function Matching

The function extraction and verification is also associated with another problem where a
function is given and a circuit is given. The problem is to test whether this function can be
implemented withe given circuit or not. This requires not only the knowledge of the circuit function,
but for the equivalence we have to find the correspondence between the literal in the given function

with the circuit input and the equivalence between the different representation of the same function.

7.2 The State table generation by marking the clock signal

The Algonthm can be extended to finding the state transition table of a sequential circuit in a
sequential machine. For that we have to define the clock input and the output nodes for the state
table entry. Then the program can automatically do the 0 and | assertion of the clock signal and
find the state transition table for the designer. Thus we can identify any counter type sequential
circuit from the switch level circuit description.

7.3 Homing sequence finding/ Robustness testing

The homing sequence of a sequential circuit is a sequence of input signals for which starting
from any state the circuit will come to a known state. Knowing the state transition table, it can be
automatically evaluated. This also can be used for robustness testing of the circuit, that is for any
starting state it should always come to the required state transition sequence. This is required for
those circuits where not all the possible states are used.

35

7.4 Circuit Delay Estimation

The work in other direction may be the estimation of the circuit delay by finding the longest
active path and estimating the delay along this. This would be a complicated one as a path may be
long but can never cause a problem to the circuit delay, i.e., there may exist a path which is longer
than another path but the longer path can not change the output due to the other polanty set by
another path which is shorter, and there may not be any combination where such a shorter path
doesn't exists. This would be an interesting work.

7.5 Limitations of the current approach

The main drawback of the extraction of the function in the algorithm 1s the Find AllPaths()
which runs in the exponential times with the # of nodes and # of edges. If this can be reduced then
the total algorithm would be faster. This can be approached by identifying each possible path and
guiding the selection of the transistors from a node towards the required direction.

36

Chapter 8
Some test Circuits and Resuits |

The input file for the circuit in figure no 3, for space efficiency it is written continuously, and
the commas (,) are introduced. Hope it will not misguide.

100,200 ,300,400,5170 ,6180 ,700, 80 0 ,
900, 1000 ,1100 ,12 00 ,13 1 1 ,14 2 1 ,15 3 1

16 41 ,17 71,1851 ,19 6 1 ,20 8 1 , 21 9 1 ,-1,
121131, 232141,353151 ,421161 ,54 2 18 1,
6 5419 1,7 4117 1,8 3 4201, 953211, 10 6 11 17 0O
11 11 10 16 0, 12 10 1 13 0,13 11 9 18 0,14 7 9 20 O,
159 114 0, 16 6 7 19 0, 17 7 8 21 0, 18 8 1 15 0 ,-1

1 -1

F

’

6 vdd

r—

1 OQutput

15 i9 21
Xl Xﬁ Xu
-l
5
Ground

Figure 3 Circuit no 2.
Function : xl'.x4'.x7’+x2‘.x5'*x7‘+x2'.x6'_x8'+xl‘.x4'_xS'.xé'.x8'+x3'.x6'*x9'+x3‘.x5'.x7'.x8'.x9'

37

The output of the algorithm on the previous circuit
Enter the filename from read : circ4.dat

Extracting the function for node |

Adding signal node 5

Adding signal node 6

Compacting in 5

Compacting in 3

Compacting in 1

Compacting in 2

Graph Number 0 Start vertex is 1 & End vertex is
Vertex No : 8

Edge between : From 8 to 1 The termis ; x3'
Edge between : From 8 to 7 The term is : x9'
Vertex No : 7

Edge between : From 7 to 8 The term is : x9'
Edge between : From 7 to 6 The term is ; x6'
Edge between : From 7to 9 The term is : x8'
Vertex No : 9

Edge between : From 9to 1 The termis ; x2'
Edge between : From 9to 7 The term is : x8
Edge between : From 9 to 11 The term is : x5'
Vertex No : 6

Edge between : From 6 to 7 The term is : x6'
Edge between : From 6 to 11 The term is ; x7*
Vertex No : 11

Edge between : From 11 to 9 The term is : x5'
Edge between : From 11 to 6 The term is : x7'
Edge between : From 11 to 10 The term is : x4'
Vertex No : 10 |

Edge between : From 10 to 11 The term is : x4'
Edge between : From 10 to]l The term is : x1’
Vertex No : 4

Edge between : From 4 to 5 The term is : x6
Edge between : From4 to 1 Thetermis ; x7
Edge between : From 4 to 2 The termis : x5
Edge between : From 4 t0 3 The term is : x8
Vertex No : §

Edge between : From 5 to 3 The termis : x3 + x9
Edge between : From S to 4 The term is : x6
Vertex No : 3

Edge between : From 3to § Thetermis : x3 + x9
Edge between : From 3 to 4 The term is : x8
Edge between : From 3 to 2 The termis : x2

Vertex No : |

38

Continuation of the output for circuit no 2

Edge between : From | to 9 The term is : x2'
Edge between : From 1 to 8 The term is : x3'
Edge between : From 1 to 10 The term is : x1'
Edge between : From 1 to 4 The term is ; x7
Edge between : From 1 to 2 The termis : x1 + x4
Vertex No : 2

Edge between : From 2to 1 Thetermis: x1 + x4
Edge between : From 2 to 4 The term is : x5
Edge between : From 2 to 3 The termis ; x2

Inputsignals are as follows. ..

Node no 5 ... Input Signal Sorry, no term is associated .
Node no 6 ... Input Signal The termis : 1

No of Signals are 2

Looking for path from 1 to 5

Looking for path from 1 to 6

The node 1 1s evaluated as

The term is ;| x1'x4'x7' + x2'x5'x7' + x2'x6'x8' + x1'x4'x5' x6'x8' + x3'x6' x9 +
x3' x5' x7' x8'.x9'

The Extracted Function is as follows as in main

The term 1s : x1'x4'x7" + x2'x5'x7 + x2'x6'x8' + x!'x4'x5x6'x8 + x3'x6' x9 +
x3' x5' x7" x8' x9'

39

/Sibliography

[1] A. V. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974,

[2] Kiem-Phong Vo, Finding Triconnected Components of Graphs, Linear and Multilenear
Algebra,Vol 13 , pp 143-165, 1983

13] K. Einspahr, S.C.Seth, & B. B. Bhattacharya, Two-terminal Decompositions of Switch-

level Circuits with Application to testing, /EFRE Annual International Workshop on Design
for Testability, Colorado, 1938.

[4] Naveed A. Sherwani, A/gorithms for VLSI Physical Design Automation Kluwer Aca-
demic Publications, 1993.

[5] Gary L. Miller & Vijaya Ramachandran, A new graph triconnectivity algorithm and its
parallelization, Combinaiorica, Vol 12(1), pp 33-70, 1992

10

Appendix

Header file listing for some classes

L
///l HEADER FILE FOR CLASS VERTEX AND EDGE /////
L L
#iindef VERTEXEDGE
#define VERTEXEDGE
#include “mtclass.h”
#include “list.h”
#include “termlist.h”
#include <iostream.h>
#include <process.h>
extern int NoOfPaths;
class Edge; // forward declaration for the edgelist;
class dVertex; // forward declaration for the corresponding vertex.
class Vertex : public Object {
private :
int number,visit,deg;
dVertex *DgVertex;
MyList<Edge> Adjlist;
Int X,y;
public:
Vertex() { DgVertex=NULL;number=0;visit=0; deg=0; }
~Vertex();
void SetNumb(int 1) { number=i; }
void SetNumber(int i); // provisions for inputing the coordinates also
int Number() const { return number; }
void Print(} const { cout<<endi<<*Vertex No : “<<number<<* *;}
void PrintEdges(); // Done
void Visit() { visit=1; }
int IsVisited() const { return visit; }
int Degree() const { return deg; }
void UnVisit() { visit=0; }
void StartList() { Adjlist. Restart(); }
int Next();
Edge *GetEdge() { return Adjlist.Getltem(); }
int AddEdge(Edge*); // Partially done
int DeleteEdge(Edge*);
int DetachEdge(Edge *e) { return Adjlist. Detachltem(e,0);)
void CompParallel(); // replaces all the parallel edges by their equivalent
Edge *FindEdge(Vertex *):

41

Edge *FindNext(Vertex *); // finds the next edge going to the said vertex
int X() const { returnx;} //for storing the coordinates, not used now
int Y() const { returny;}
Termlist* Find AllPath(Vertex*); //returns the combinations for the paths
void SetCorrespond(dVertex *v) { DgVertex=v;}
dVertex *GetCorrespond() const { return DgVertex; }
// the following functions are for saving the data structure inthe file
Object *Vertex::Vertex_FTAG() { returnnew Vertex; }
int thecode() {return MetaClass::thecode((ICP)& Vertex: ‘Vertex FTAG),}
void ArchiveRead(Archiver*);
void ArchiveWrite(Archiver*);
void ArchiveGet(Archiver *a) { Object:: ArchiveGet(a),ArchiveRead(a); }
void ArchivePut(Archiver *a) { Object:: ArchivePut(a); ArchiveWrite(a), }
b
class Edge : public Object {
private:
int edgetype,edgeno, |
Vertex *head, *tail; // for storing the from vertex address and to vertex address
Termlist function; // associated function
public:
Edge() {}
Edge(Vertex *t,Vertex *h);
Vertex *Head() const { return head; }
Vertex *Tail() const { return tail; }
void SetHead(Vertex *h) { head=h, }
void SetNumber(int i) { edgeno=t; }
int Number() const { return edgeno; }
void SetTail(Vertex *t); // takes care of deleting from previous list and
// adding to the new one.
void Print() const,;
void SetTerms(Termlist& func) { function.Copyterm(func); }
Termlist& Function() { return function; }
void Display(int) const,
// following functions are for saving the data structures along with the pointers
Object* Edge FTAG() { return new Edge; }
int thecode() { return MetaClass::thecode{(ICP)&Edge::Edge_FTAG);, }
void ArchiveRead(Archiver®);
void ArchiveWrite{(Archiver¥);
void ArchiveGet(Archiver *a) { Object:: ArchiveGet(a);ArchiveRead(a); }
void ArchivePut(Archiver *a) { Object::ArchivePut(a);ArchiveWrite(a); }
¥
fdefine TREEEDGE 1
#define BACKEDGE 0
class dEdge; // forward declaration for directed edge in dfs
class dVertex {
private :
int no,dfsno,father, firstp,mark, lowpt;

42

onc.

MyList<dEdge> Adjlist;
Vertex *original;
public:
dVertex() ;
dVertex(Vertex *v), // creates the corr. dvertex
dVertex(int n, Edge *e); //creates the dVertex corresponding to the head of the edge e.
void StartList{) { Adjlist.Restart(); }
int Next();
dEdge *GetEdge() const { return Adjlist. Getltem(); }
int AdjustList(); // adjusts the lists after doing the dfs
int Degree() const { if (original = 0) return oniginal->Degree(); else return 0; }
int Dfsnum() const { return dfsno; }
void SetDfs(int1) { dfsno=i; }
int Low() const { return lowpt; }
void SetLow(int1) { lowpt=i; }
void SetNumber(int 1) { no =1,}
int Number() const { return no; }
void SetFather(int 1) { father=1; }
int Father() const { return father; }
int AddEdge(dEdge*);
int DeleteEdge(dEdge*),
Vertex* Original() const { return ongnal; }
void SetFirstPath(int 1) { firstp=t; }
int FirstPath() const { return firstp; }
void Print();
void Display(int) const;

};

class dEdge {

private:
int low] low2 edgetype, edgeno,mark;
dVertex *head, *tail, *low;

public:
dEdge(Edge*,int); // original edge,tree/back edge .
dVertex *Head() { return head; }
dVertex *Tail() { return tail; }
void SetHead(dVertex *h) { head=h; }
void SetTail(dVertex *t); / take care of deleting from previous list and adding to the new

int Lowl(} const { return lowl, }
int Low2() const { return low2; }
void SetLowl(int 1) { lowl=1; }
void SetLow2(int1) { low2=1; }
void AdjustLowPoint(dEdge*),
void Mark() { mark=1,}
void UnMark() { iflmark==0) cout<<*Already unmarked”; else mark=0; }
int IsMarked() const { return mark ;}

43

int Type() const { return edgetype; }
void SetType(int 1) { edgetype=i; }
void Print() const
{ cout<<* to “<<head->Number()<<",(*; cout<<lowl << << ow2<<) ¢)
void Display(int) const;

Y
#endif
Header file listing for the graph class .. directed and undirected

I T T T T T T TR TR T T
//{/ HEADER FILES FOR THE GRAPH CLASS //////f]

I TN LT T T T

#ifndef GRAPH

#define GRAPH

#include “veredge.h”

#include “list.h”

#include “termbist.h”

#include “path.h”

#include <iostream.h>

class DirectedGraph; // forward declaration for the corresponding directed graph.

class Graph |

private:

static int num,

int no,noofsignal; // keep track of the no of signalnode connected
MyList<Vertex> nodelst;

Vertex *start *end; // start is the outputnode. end is set to one signal node at a time
MyArray<Vertex*> InputNodes; // array of input signal nodes
MyArray<Termlist*> InputSignals; // array of input signals at the node of same index
Edge *StartEdge;

Termlist function; // function value at the output node

dEdge *DFS(Edge*), // used internally for the depth first search

DirectedGraph *dGraph;

public:

Graph();

~Graph();

int AddEdge(Edge*); // adds new vertex(ices) if required int

AddEdge(int i,int j); // adds two new edges between node 1 and node j int
AddEdge(int,int,const Termlist&), // adds an edge of function ternmlist between two vertices
int DetachEdge(Edge*); // deletes the vertex(ices) if degree is 0.

void DeleteVertex(Vertex*),

int AddVertex(Vertex *v) { return nodelist. Addltem(v), }

void DetachVertex(Vertex *v)

{ iflnodelist. Detachltem(v,0==0) cout<<“\nCouldnot detach vertex”; ;

44

Continuation of the source listing for graph.h

Vertex *Start() const { return start; }

Vertex *End() const { return end; }

int AddSignal(int,Termlist*); // adds one signal node in the arrays
void SetStart(Vertex *v) { start=v; }

void SetEnd(Vertex *v) { end=v; }

int Number() const { returnno; }

const MyList<Vertex> *Nodelist() const { return &nodelist; }
int DFSearch() ;

int AdjustList() ; // order the adjacency list at each node depending on low numbers

void Compact(); // compacts any parallel edge in the graph |

void PrintGraph() ;

Termlist* FindAllPaths() ;

void RunSeparation();

void PnntDirected() ;

void Display(),

// following function are for saving the graph structure as it is

void SaveGraph();

void RetnieveGraph(),

b

class DirectedGraph

{ private :

MyList<dVertex> nodelist;

dVertex *Start, *End;

Graph *parent;

dEdge *startdedge;

public :

DirectedGraph(Graph *gr) { Start=End=NULL;parent=gr;}

int AddEdge(dEdge*), //add and edge, adds new vertex(ices) if required

int AddVertex(dVertex*),

void DeleteVertex(dVertex*);

void DetachVertex(dVertex* dv) { nodelist.Detachltem(dv,0); }

Path *BuildPatr(dEdge*); // the function for detecting the separation pairs

dEdge *StartEdge() const { return startdedge; }

void SetStartEdge(dEdge *de) { startdedge=de; }

int AdjustList(); // adjust the edgelist according to their lowpoints and tail

void PrintGraph();

void Display();

Graph *Parent() const { return parent; }

void CompSeries(Path *p,dEdge *de);

// replace the senes edge de, and the edge going out from its head in the path p

int CompParallel(Path *pl,dEdge *de Path *p2);

// looks for a parallel edge with path p2, as p2 has only one edge which starts at the tail of de

void Type2B(Path *p,int LS int LOWC); // deletes one type 2B component from the graph
// and replace it by a single edge in original graph as well as in the directed graph

45

void Typel 2A(Path *p,dEdge *de), // deletes one type 1 or 2A component from the graph
// and replace it by a single edge in original graph as well as in the directed graph

void TxPath(Graph *grf,dVertex *dvl,dVertex *dv2,Path *p),

// transfers the edges between the vertices vl and v2 of the path p and paths onginating from

// it from the directed graph to the component graph grf,

};
#endif

Listing of the template class MyList and MyArray
I T T T T T TN T
/f{f HEADER FOR THE LIST MANAGEMENT ////
#ifndef MYLIST

#define MYLIST

#define NULL O

#include <process.h>

template <class T> class ListItem {

private : T *data; ListItem<T> *next,

public : Listltem()

{ data=NULL;next=NULL,; }

- void Setltem(T* newitem) { data=newitem;}

void InsertNext(ListItem<T> *nt)

{ if{next!=NULL) nt->InsertNext(next); next=nt; }
fnend class MyList<I>;

friend class MyListlterator<T>;,

b

template <class T> class MyList
{ pnvate:

ListItem<T> *header;

Listltem<T> *current,

int totalitem;

public:

MyList() { header=NULL;totalitem=0; }
~MyList(); // deletes the list item also

int Scanltem(T*); // returns the item no in the list if exists, else returns zero.
int Detachltem(T* int); // int = | deletes the data item

int AddItem(T*); // this data to add doesn't repeat

T* Getltem() const

{ iflcurrent!=NULL) return current->data; else return NULL;}

void Restart() { current=header; }
int EolReached() const { return (current->next==NULL)7 1:0; }
void Step() { if (current!=NULL) current=current->next; }
int Total() const { return totalitem, }

friend class MyListlterator<T>;
b

46

Continuation of the source listing of header files for the class array and list...

///l List Iterator Class and functions ///

template <class T> class MyListIterator

{ private :

const MyList<T> *thelist;

ListItem<T> *currentl;

public:;

MyListltegator() { thelist=NULL,; current1=NULL;}

MyListltetator(const MyList<T> *Ist) { thelist=Ist, currenti=NULL;}

virtual ~MyListIterator() { thelist=NULL, current1=NULL;}

void Restart() ; // set the current pointer at the very begining of the List

T *GetCurrent() const { if (current1) return current 1->data; else return NULL;}
T *Next(); // returns the current and move the current pointer to the next entry
T *Find(T *t) const; // search for the item t, if found, retums its address, else return NULL.
T *SetCurrent(T*); // sets the current pointer to a specified entry

b

//ll Template Class Array and its implementation /////
template <class T> class Arrayltem

{ pnvate:

int size;

T *items;

Arrayltem<T> *next;

public:

Arrayltem(int);

~Arrayltem(); // deletes all the array content for this item
T& operator{}(int);

Arrayltem<T>* Next() const { return next; }
friend class MyArray<T>;

5

template <class T> class MyArray

{ private

int basesize, increment,currentsize;
Arrayltem<T> *header;

public:

MyArray() { basesize=0; increment=10; currentsize=0; header=NULL; }
MyArray(int,int); // initial size, and incrementing size can be set

T& operator{}(int);

// overloaded index operator, adds dynamically if indexing crosses currentsize

int CurrentSize() { return currentsize; }

}s

Hendif R GTCAL TS 7

47

CALCUTTA

e - S

