M. Tech. (Computer Science) Dissertation Series

Design and Implementation of a Redundant Radix-4 Coprocessor
with
Binary Interface

a dissertation submitted in the partial fulfilment of the
requirement for the M. Tech. (Computer Science)
degree of the Indian Statistical Institute

By

Subhasis Bhattacharjee

under the supervision of

Dr. B. P. Sinha
Profcssor & Head
Advance Cotnputing & Microclectronics Unit

INDIAN STATISTICAL INSTITUTE
203. Barrackpore Trunk Road
Calcutta - 700 035

998

Indian Statistical Institute

203, Barrackpore Trunk Read

Calcutta = 700 035

Certificate Of Approval

This 1s to certify that the dissertation work entitled “Design & Implementation of a
Redundant Radix-4 Coprocessor with Binary Interface” submitted by Subhasis
Bhattacharjee, in partial fulfillment of the reqﬁiremcnts for M. Teeh in Computer
Science degree of the Indian Statistical Institute is an acceptable work for the award of

the degree.

g -
Prof. Bhabhni P Sinha

Profcssor & Hecad
Advancce Computing & Microelectronics Unit

ACKNOWLEDGEMENTS

I would like to acknowledge my guide, Dr. B. P. Sinha for providing me
invaluable support throughout this project. During the course of this project he has
always given me helpful suggestions whenever | was in trouble.

| would litke to thank Prof Mrs. Susmita Sur-Koley and Prof, Mrs. Mallika De and
all other members of ACM unit . for helping me directly or indirectly throughout the

work.

Finally 1 would like to thank all my teachers and batch-mates for their support

throughout this project.

Subhasis Bhattacharjee.

ABSTRACT

Arithmetic Operations in Redundant Radix-4 require lesser time and hardware
complexity with respect to those in binary number system. The proposal deals with the
Design and Implementation of a coprocessor for some arithmetic and logical operations
which can be integrated with the main processor operating in binary number system. The
implementation is likely to be done using FPGA modules.

Si. No.

&

AW

CONTENTS

Topic

Introduction

Redundant Radix-4 Number
System

Pestgn of Coprocessor
Implementation

Concluston

Reference

Page
No

14
15
16

. Introduction

Coprocessors are very common in today’s computing environment whether they
are built in single chip microprocessor or attached separately. Coprocessor runs parallely
with the master microprocessor to serve fast arithmetic computations. The data
representation inside the processor may significantly reduce the time complexity of the
operation. That’s what happens when data in the coprocessor is represented in redundant
radix-4 number system.

Encouraged by “Fast Parallel Multiplication using redundant Quaternary Number
systemy” a paper by Prof. Mallika De & Prof. B. P. Sinha , this dissertation s on the
Design and Implementation of Redundant Radix-4 Coprocessor with Binary Interface
which runs at a much faster speed than the conventional one.

The advantages of RR4 number system for arithmetic computations are many. The
redundancy in RR4 number system helps to perform the carry-propagation-free addition
of two numbers which leads to the constant time addition. Also subtraction reduces to
addition if we negate the number to be subtracted. Multiplication of two RR4 numbers can

be performed m 172 lnggnﬂ time. Again as division can be done by repeated
multiplication, the division operation can be achieved mn () log”m) time.

To make this coprocessor compatible with the conventional microprocessor which
usnally runs on binary number system , interface is organised in binary number system. The
exchange of the data between microprocessor and coprocessor is only in binary number
system. The data in the coprocessor is first converted into redundant radix-4(RR-4)
number system. Subsequent processing is done in RR-4 number system and the result is
again converted into binary number system.

The conversion of binary number into RR-4 can be done in constant time and re-
conversion time is O(log u). Though this seems to increase the overall time complexity but
using suitable algorithms for ditferent arithmetic operations in RR-4 number system the
total time complexity can be reduced.

For certain logical operations like AND, OR L EXCLUSIVE-OR etc. suitable RR4
equivalence are not known. Operation like SHIFT & ROTATE have RR4 equivalences ,
but they create unnecessary Circuitry complexity and take little more time than that of n
binary. As there is a suitable interface, logical operations are done in binary.

2.Redundant Radix - 4 Number System

A radix-4 number system uses four distinct digits tor coefficents and the
cocfficients are multiplied by powers of 4. Here cocflicients wre all positive only. In
redundant radix-4 (RR-4) number system cach cocetlicients can also be negative. So
thereby in RR-4, we have coefficients ranging from -3 to 3 including 0.

To encode these coefficients into binary computer we require three binary diguts. If
we denote mish of the encoded symbol to represent sign of the coefficients, where O and |
represents positive and negative sign , the remaintng two digits will represent the
magnitude. This encoding maps set of coefficients {-3,-2,-1,0,1,2,3} to the set ol bimary
symbols {111,110,101,000,001,010,011}.

2.1. Binary to RR4 Conversion

If the number is given in sigh-magnitude forim , then we can convert it n RR-4
number system by grouping every pair of bits of magnitude part starting trom the least
significant bit(lsh) side (padding a 0’ bit at the extreme left, if the number of bits i the
magnitude part is odd), and then attaching the sign bit (*0’ if the number 1§ positive and I’
otherwise) to every such group. Each such resulting group of 3 bits will constitute one
digit in equivalent RR-4 number system.

If binary number is given in 2’s complement form, as it is commonly used, then
first check its most significant bit(msh). If it is ‘0’°, then proceed with the remaining bits of
the number in the same way as above to get the required number in RR-4 system. 1f the
msb is ‘1°, then complement the remaining bits of the binary number and then group them
pair wise starting from the lIsb side(by padding a ‘0" at the left if necessary). If any group
of bits is ‘11’ then the corresponding RR-4 digit will be -1, along with the generation of an
RR-4 carry digits ‘1’ for next higher digit position. Collect the carry digits from each such
group of ‘11’ bits to construct a carry vector in RR-4 system. The RR-4 digits
corresponding to the other groups will be obtained in the same way as discussed n the
preceding paragraph. Now add the three RR-4 numbers : (1) the number obtained from the
pairs of bits as above, (ii) the carry vector and (iii) a carry of ‘1’ at the least significant
RR-4 digit position, to get a new number in RR-4 system. Finally the sign bit of each RR-
4 digit of this sum is complemented to get the required equivalent RR-4 number.

Based on the above principle following logic has been developed ~

Let AyAs...... Ag be a 8 bit 2’s complement binary number, which 18 to be
converted in RR4 number system, where A; is the sign bit. Taking pair wise bits from

™D

binary number (starting from Isb) and using the following logic By and (; are generated for
each pair where k=0 to 3 and 1=0 to 4. Let By be represented as sba

L1 . d = EAH'*‘ A?I}
b= A7A1+ A7A1 Ao
s = A74140

—_——— ams

C1= A7A1A0

Using the logic below Bk & CI (for each k =I) generate Dk . Lot Dk be represented
as rde, then,

Lgl ¢ =a® C0
d=b&d aCy
r= Cyle+d) @D s

Therefore the RR4 equivalence of the binary number A7Aq.....An 1 Ds....Dy.

2.2. Redundant Radix-4 to Binary Conversion

An RR4 number may contain both positive and negative digis. If there 1S no
negative digit then to convert it into binary each if the digits of RR$ number is changed to
binary deleting its sign bit. But if the RR4 number has negative digit then to convert it

into binary we do as follows:

Two vectors are generated , one with the positive digits putting 0 in the place of
negative digits & the other with negative digits putting in the place ol positive digit .
The second vector is subtracted (using 2’scomplement addition)from the first one to get
the binary number equivalent to the given RR4 number . |

Based on the above principle following logic has been developed :-

Let As,...Ap be a RR4 number ,where each Ay 15 represented as salag Let P & N
be two binary vectors with 4 pair of bits is generated from theRR4 numbers. Let each pair

is represented by pipe,same is the case for N.

-—

Lj: Do = Sda

p1 = Sl

L no=ao+ s
Hi=ar+ 3

To perform the subtraction operation intermediate sum vector D and pre-carry
vector E are generated. D is a binary vector with 4-pair of bits and let each pair be

represented by didg. E is a binary vector with 8-pair of bits & let cach pair be represented
by e1€o.

LS: ffﬂ = pn@”u
dy = pl(’Blh

Lﬁ: o — plrﬂu + p:IL‘m + HuC

£ = fmﬁl_}.’”ﬂ* + E};piflu -+ ap{}ﬁu
Eim = DN for 1750
en= p, D n. ﬁ)r i?‘io

The pre-carry vector subsequently processed in log,(2*no of RR4 digits) (here 3)
stages to generate final carry vector F which is clear from fig. 3(c). Each circle of the said
figure takes four input lines & those from two different pair of E or its successor and two
output lines to produce its successor. Circle of figure 3(c¢) takes 4 inputs (f,...fp) &
generates 2 outputs (g),20) which implements the relation

go = f; + f1

g1 = K

The required binary equivalent is obtained by doing Ex-ORto D & F.
2.3. Arithmetic Logic in RR-4

Four separate arithmetic logic are designed for I) Addition 1) Subtraction
ityMultiplication 1v) Division.

2.3.1. Logic for Addition

In carry-propagation-free addition of RR4 numbers, four such numbers can be
added at a time. Time requirement for such addition is same for 2,3 or 4 RR4 numbers.
Hence the logic for addition of four RR4 numbers is taken into consideration.

The addition of four RR4 numbers X, Y, U,V is performed in two steps. In the first
step the intermediate sum S; and carry C; of cach digit position satisfying the refation
ity Huvi=4CiH-S; (=0 to m) are determimed dand all ¢7s & Si's can be computed
parallely. To add four RR4 numbers for each digit position 12 bit mput 1s needed to
produce an output of 6 bits(3 bit each for C; & S;). Let S; & (; be denoted as Sg5p8y and
S.Coc) respectively. Let S, denote sign of carry digit of the previous digit position r.e S¢ of
Ciy. Let the rectified sum ST and carry C’i for each digit position generated as per
loffowing logic be denoted as S's’vs’s & §'.¢’uc’s respectively.

Lo S’ =
¢'o=cCot oS- D SHH(s0+ 50)
¢' = @S D S50+)
S = @S DS,)50+ 5)

,
S 1 = 5

S’ﬂ = So+ .'i'l(Sr S5, Srp)(.'i'n + 51}

Now S’ & C’.-; are added to get the final sums Ai (represented as SOa0al) for
cach digit position as per logic below. Letting C'-1 equals to O and C'm will be the carry
RR4 digit of the final sum.

2.3.2. Logic for Subtraction

The subtraction of two RR4 numbers X & Y, (where X-Y 1s defined) is equivalent

(o the addition of RR4 no X & Y. To convert Y to Y , the sign bit of each RR4 digit
position is reversed.

2.3.3. Logic for Multiplication

[et A & B be two RR4 numbers that are to be multiplied. Then , P1 = bA 1s the
ith, partial product .Let jth. digit of this partial product be represented as py(which s
nothing but bya;). Each py (for all i & j) can bave a maximum vajue of 32, which nceds two
digits in RR4 system. Now the aim is to generate a digit pair [¢;(2) ¢;(1)) with weight of
cii(2) four times that of c;(1) for each digit-product p; in such a way that the sum of ¢;.
/(2) and c;(1) becomes carry-propagation-free for all j, 1< j<m-—1. |

Let S;B;A; and S;B»A; be two RR-4 digits to be multiplied, where for k=1 ,2, Sk
is the sign bit, B, and A, are the most and the least significant bits respectively of the
magnitude of the digit. Let cy(1) & ¢y(2) be the pair of digits to be generated ,
corresponding to the product of the digits S|B(A; & S;B:A; ,as per the following logic.
Let ¢;i(1) & ¢;i(2) be represented as Sqid 2d and Sgd;2dy respectively, taking Sep as the
sign of the carry digit from the previous digit position.

Lgl S.-fz:SIEBSz

$5.=8®35:+ (B_/E + BIA#)(Sl@ 5.2 8,)+ A1A1(81 ® B.)
dll — ALA?

dv. = A:B: A + B A2 A

dn=(B:A:+ BAN(S DS:DS,)(B:A: + BLAY+ (5 D S: D S,)
(B:A: + BiA)}+ AiAx(B @ B:) + B:A:Bi A
d»n=BB:AA:+BB:(A® ANS DS:DS))

2.3.4. Logic For Division

let A & B are two RR4 numbers and A/B (taking defined) is to be computed.
Now the fraction A/B is normalised in such a manner that the decimal point can be

assumed to the left of the first significant digit from msb of B. As a result A changes to
A’. Now B, being a decimal fraction , can be put into the form (1-C) , where C is another

decimal fraction. Therefore,

A/B = A’/(1-C) .
= A'(14+C)(1+Co)(1+Cy). .. (T+CH)/ (1-Ca).

Now as n->oc0, Ca, -> 0, therefore ,
A/B = A’([+ 1+HCHEHCy). L (| +C%).

If the valuc of A/B is required correct up to jth. Significant digit, the value of k
will be given by the relation k/2 < j < k where k=2" for some integer m.
By complementing the sign bit of each digit position oi B , C 1s obtained.

3. Design of Coprocessor
Design of a 32-bit coprocessor with binary interface is given below.
3.1. Architecture

Input unit consists of four registers viz. AB,BB,CB,DB and output unit consists of
two output registers viz. PB,QB. Contents of all these registers are defined in 32-bit
binary number system. Data is loaded from microprocessor or memory to any or some the
input registers. Next interface unit converts the binary data into RR4 equivalent, then pass
to the arithmetic unit for the said arithmetic operation. Arithmetic unit sends the result of
the operation to the interface unit for re-conversion of RR4 to binary, which subsequently
goes to the output register(s) (Ref. Fig. 1(a)).

For logical operations only AB,BB serves as input registers. In this case data
passes nto logical unit directly without going through interface unit, which subsequentiy
goes directly to the output register PB.

The Hlag register FB s a part of output unit whose content is defined i the fig. 1{b),

A.2. Instruction Set

Type Instruction ~ Operand(s) Description Change of flag(s)
Data Transfer LOAD reg ,data reg can be any of the input No
| registers, data is 32-bit
immediate

[reg) € data

STORE reg , addr reg can be any of the output
registers, addrs 16-bit
absolute address.
laddr] € (reg).

MOV Rd , Rs Rs can be any ol 6 regs, but
Rd can take only input regs.
Rd < (Rs)
CLEAR reg - reg €0]
Arithmetic ADD [PB:QB}<¢ AB+BB+CB+DB
SUB QB €« AB-BB
MUL IPB:QB]¢ AB*CB

DIV (PB:OB1€ AB/CB

Characteristics in PB,
Fraction in QB.

SQR IPB:OB]€ AB*AB
NEG reg reg € -reg. o
[Logical AND PB€& AB AND BB
OR PB< AB OR BB
NOT reg reg € 'reg
SHIFTL reg , count reg€< left shifted reg

count is no of bit to shift
SHIFTR reg , count reg€ right shifted reg

Special STE addr L6bit absolute address

3.3. Instruction Encoding

For Data Transfer instruction :

{) - No Iinm. Opr

‘ 1 - Imm, Opr.

lﬁlln tr[Rdet{0 {01
00 - LLOAD

01 - STORE
i0 - MOVE Reg?2 —» 00U - AB
11 - CLEAR 001 - BB
010 - CB
0 - AB
gl-lﬁi 011 - DB
10 . CB 100 - QB
1 - DB 101 - PB

For Arithmetic and Logical Instructions

() - No Imm. Opr
| - lmin. Opr.

olT l}mr]Rl"gll

(l] — i\;ililll;llclic 0 - AR
o | . Ol - BB
000 - ADD / AND 10 - OB
00! - SUB/OR It - DB

010 - MUL / NOT
011 - DIV / SHIFTL
100 - SQR / SHIFTR
101 - NEG

For the instruction STk

nooggoon

3.4. Internal Details of Coprocessor

Coprocessor has Interface unit, Avithmetic uviit, Logical unit and Control unit
besides Input and Output unit. Here the uniis are discussed one by one with reference to
the corresponding figures and schematic diagrams.

3.4.1. Binary to RR4 Interface (Ref. Iig. 2):

Fig. 2(a) show schematic diagram where AR is a 16-digit RR4 register. Fig. 2(b)
shows the detailed diagram for AB to AR conversion. Bs is the implementation of L1 of
Sec. , where

{AB(0),AB(1),AB(31)} € {AO0,Al A7}
& {R33(2),R33(1),R33(0)} € {s. b, a}
& x0 €< CO.

Again B6 is the implementation of L2 of Scc. | where
{AR(2),AR(1),AR(0)} € {r, d, e}

3.4.2. RR4 to Binary Interface(Ref. Fig. 3) :

FFig. 3(a) shows the schematic diagram where PR & QR are two 16-digits RR4
registers and PB & QB are two 32-bit binary registers. Fig. 3(b) explains the detailed
diagram for the above conversion. B20 & B21 are the implementation of L3 & 1.4 of Sec.
,where

{QR(2),QR(1),QR(0)} € {s, al, a0}
& {QP(0),QP(1)} € {p0, pl}
& {QN(0),ON(1)} £ {n0O, nl}|

B22 & B23 are the implementation of LS and 1.6 of Sec. , where
{D(0),D(1)} € {d0, d1]
& (E0),E(1)} € (e0,el}

Fig. 3(c) shows final carry generation {rom pre-carry vector for 4-digit RR4
number. This is to be extended tor 16-digit RR4 number.

When PR & QR together hold the data , B25 generates final carry for MSB which
is clear from fig. 3(d). B26 consists of sixteen Ex-OR | where QBi1 = Di Ex-OR F1.

3.4.3. Arithmetic Unit ;

Fig. 4(a) shows schematic diagram of 16-digit RR4 adder block. Fig. 4(b) explains
the details of above. By & B; are the implementation of 1.7 & Ly of Sec. , where

{R5(2),R5(1),R5()} € {8S,, 80,51}

{R6(2),R6(1),R6(0)} € {S,, co.ci}

(R7(2),R7(H),RT(D)} € {S’, s°0,8"1}

(R8(2),R8(1),R8(0)} € (S, ¢’o,c’1]

{R9(2),R9(1),RI(0)} € {S., ap,a}

[R10(2),R10(1),R10(0)} € {R8(47),R8(46),R8(45)}
Following is for the ROM table for the adder.

Dsi Ci and Si for negative DSi-1
12 3 0
11 2 3
10 2 2
9 2]
3 2 0
7 | 3
6 l 2
d l 1
4 l 0
3 0 3
2 0 2
1 0 1
() 0 0

Following are the some entries in the ROM table for adder.

Address C Si
00000101001 1 001 01
0

Q10000010011 001 01
}

011011011011 011 00
0

OOT1TTTOETTO]) (OO() ()
O

[{OTTAO01010 000 10
l

101101101101 101 10

SRRRRNRERED |11 00

Fig 5(a) shows schematic diagram of 32-digit RR4 adder using 16-digit RR4 adder
of Fig. 4.

Fig 5(b) shows the detailis of above. R11 is a [-digit RR4 register. R12 to RI16
cach 1s a 32-digit RR4 register which are again halved into Lower(L) and Higher(H) parts.

Fi1g 6(a) shows schematic diagram of 16-digit RR4 multiplier which uses 16-digit
RR4 numbers from R17 & R18 to produce 32-digit RR4 number in R16,

Fig. 6(b0) & 6(bl) give the details of first & second partial product generation
(PO,P1). B3 1s the implementation of L9 of Sec. , where

(R17(2),RI7(1),RI17(0)} € {SI, BI, Al]
& (R18(2),RI18(1),RI8(0)} € {S2, B2, A2}
& (R19(2),R19(1),R19(0)} € {Sd2. d22, d21]
& (R'19(2),R19(1), R 19(0)} € {Sdl, d12, dit}

Scp 1s generated inside B3. B4 is generated in the same way as B2,
R20 keeps the partial product vector (P1) in expanded 32-digit form.

Fig. 6(c¢) shows how to add these partial product vectors to generate final result of
multiplication which is kept by R16 register.

Fig 7(a) shows a schematic diagram of generation of 32-digit RR4 fractional
multiplier using 16-digit RR4 multiplier of fig. 6. Fig. 7(b} shows the details of above. R21
to R32 are all 16-digit RR4 register.

Fig. 8 shows normalisation procedure during division. CR | DR are capable of
simultaneous action and can shift right together. R34 is a paruallely loaded 4-bit counter.

Fig. 9 shows a schematic diagram of division unit rather the complete arithmetic
unit , using 32-digit RR4 fraction multiplier,

In all figures M stands for Multiplexer and DM stands for De-Multipiexer.
- 3.4.4. Logical Unit : Conventional.

- 3.4.5. Control Unit:

It has three registers viz. IR,PC and MAR (usual meaning) . Registers PC and
MAR has the capability read , write (parallely) and counting , but IR has read & write

capabilities.

1l

The instruction execution cycle is divided into 4 basic operation namely,
Instruction Decode(ID), Data conversion i.e. binary to RR-4(BRR), Compute(CM) and
Re-conversion (RRB).

Data transfer and logical instructions does not enter into conversion and re-
conversion phases. After decoding , they directly enter into CM.

For some instructions the timing & control flows are given below.

1. LOAD reg,data

ID.t0 : LOAD€ 1,reg€ | ,PC&PC+1,Busy€ |
t1 : RD PC, ECC€<CM, t€ t0

LOAD.CM.tO RD PC
tl: WR MAR
t2: RD MAR, M<& 1 RD< |
t3: WR reg|7:0]
(4: RD reg|7:0], PCEPC+1, MAREMAR+]
t5; RD MAR, M€ | RD& |
(5} WR reg[1 5:8]
t7: RD regl15:8], PCEPC+l, MARSCMAR+I
t8: RD MAR, M€ 1, RD<€ |
t9: WRreg{23:16]

0 RD reg|23:16], PCEPC+1, MAREMAR+I
tl1: RD MAR, M& | L RD< |
t12: WR reg[31:24]
t13:

4

RD reg[31:24], PC&PCH+I, MAREMAR+]
RD PC, ECC&1D, Busy €0, t£t0

2. ADD

ID.t0 : ADD€ |, PC&PC+1,Busy€1,type €0
t1 : RD PC, ECC€¢BRR, t< 10
BRR.t0: RD AB,BB,CB,DB
tl: WR R33
{2 RD R33
t3: WR AR,BR,CR,DR
{4 RD AR,BR,CR,DR, ECC& CM, t€<t0

ADD.CM.t0: [M1,M2,M3,M4]SI1S0€ 10
tl: WRRI to R4, CLEAR RO
t2: RD RI to R4
(3: WR R5,R6
t4: RD R5,R6

t5: WR R7,R8
t6: RD R7,R3
t7: WR R9,R10

t8: RD R9Y,R10, ECC€& RRB, t<t0

From these control flow, the control signals have beeen generated for different
registers and counters.

4. Implementation

The part of the design is verificd using verilog HDL. The Binary to RR4
conversion and the re-conversion is running properly.

For other part of the coprocessor ,adder takes significant amount of memory to
keep the ROM table. Also entries in the ROM table has to be done. The simulation 1S
giving exact result. The coprocessor is designed for 32-bit binary number, but for the sake

of simplicity, simulation is done for 8-bit coprocessor.

As the exact way to simulate on FPGA and proper connections are not known, as
it is generally assisted with software tool, it could not be implemented on FPGA.

14

5. Conclusion

This design of the coprocessor can execute a small set of operations. This show

the scope to design a full phase coprocessor which will run in RR-4 number system in near
future.

By hand designing of the coprocessor can not assure the optimality of the
resources used. The time optimality is also to be considered for future design.

6. References

[1] Mallika De and Bhabani P.Sinha, Fast Parallel Multiplication Using

Redundant Quaternary Number System : IEEE 1989,
[2] P. Abouzeid, Michel Crastes, [nput-Driven Partitioning Method and

Application to Synthesis on Table-Lookup-Based FPGA.: IEEE 1993,
[3] J.P.Hayes, Computer Architecture.

—_—rrR e Lea

| N
il
S o
L

A._,
_ ﬁ | p) ey
& |
ﬂ _M_ \ﬂ/, “h h T _
m ” P | o |
P | 1) | | N |
N Ol Y IV | a0 v ,
N T T 1T BEA

| s H M — . o - ; ﬁ

i* 4 3 "ﬁ _ o | H_

A 3% 13 Bt LR

" Syt _ | m
e _, DY Y Y 9G | i

IIL 20 | h nwo, B | | A\JF/ = |

g S0 Y9G \zzﬂarzﬁ \v
N‘J e
_”mm

[Binnary
32 1o 48
AB I 5 opa conv.| 7 AR

o jI 0 ;J_G' r
AB|, { B5 |, JR33)
| N, R
Ko
' 3 e 2
N
> -
§ N G
]
X,
1
i K i
L
J AT [1 /5 B
N Bh a6 JP3Jue | B6 [ac AR
47 4y
9] . ! JL!? o B

TR

AN SN

PCen

v'R

0% 0} Layicol
Uiy

RR4 b
Bivrod ‘Lla

(U'rx'\j _

1
w;
3

f-:‘od.’B (o)

=
L — — .,I _xn,_
A yved) pujol &
\IT =
C D — Q4 LY 9 —
| [lﬁpﬂ
, “ dd!
uUA R — I _,dm , .m
,_ - —_— 1 —
| — WY {3 o [] Ina M_
j | § .
| m&‘ﬂ NHI r[
- L T lak—
“ i3 -
__ — oliN K —_
m . S8
S0 S——
AON.IW _ I* _ N ,..._...unu..{v
_ ou«q [IR — V) _ 79 |
el | | Y ke “
L 1 i E— e
m md_ WA 1 | J.__Tl — 919 r #
_ ,,..~ 1da TR | a,l
- o e

TR
T3
e |13 ,
4} Ipy
#h y 16 Dirr]d' T
271 ppea |
_ Addan
A 3 Jom
E)j_h_)l } A R0
~1 48
R4t 7
L 1. Fu& 4 ()
[] o — ' [T _ﬁ
R\ 5] E][ﬂ E’ b
L __>L
R‘L‘* O-2 5| - >1
B ROM o gy B 1 B2 L]
J s YRS 3 PARTE 1
EB] N N o
5 . G- 2
e g]
E] 0-2 | Eii:;__+;-
Ry L35])
—>1
a-2
R2 |23 ['3 T N
e 34 R
RIL 5 3
4 Jee [
5
L T 1
Rf.i - E > | L\E |
.H'L‘ifﬂ
| 4
- F—E%AU:')

QA ¢

no b *?gw I\ fTb 2|

L

R\b

L2 o
ST TERE
[£ | |
L R f—— —
I L N 32 gl SR\,
KR4]
Lg Rl) Nddan i
_. = Kio
L1 RIS A |
i
| Lg q K172 A
P LPREY i
| 1 Re4
| LH} qul Amm P\H}
\J.
L1 th S I
32 ca) |
113 - 5 et Cdﬂ Ri¢
It |
LiY R, A Aen ‘-‘[Rlo
Y j{m*ma ‘

F-i% L ()

| 0% 0)
R\
R

w(qg:i;a))I '
e —y (19 r 1

RAGH) .@
o j]
L.g L{"‘]‘ - (D [:,_-‘ _F T"—“‘*—T
Rl | @)
£ 1 S |

R,

K13

Ki%

QX .

e

o s [b [

