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Abstract

With the increased global competition and need for faster and efficient processing, a high demand for
parallel computation is created. Even with the most sophisticated technology available so far, a parallel
processing system usually involves a large investment. Also there is a need for efficient software support
which makes parallel processing user-friendly. |

A recent trend is to use Cluster Computing which involves computing on a set of workstations, which are
interconnected in the form of a high speed net. This type of network factlitates the access of available
resources from different sites connected in the network.

The present dissertation was mainly focussed on simulation of interconnection patterns for a
Heterogeneous Network of Workstations on single, double and triple processors. To improve the
efficiency of execution, optimum number of tasks into which a problem is to be divided, is identified for a
given number of processors. All the tasks are distributed equally among the processors to ensure that all
the processors complete execution at around the same time for effective utilization of resources. Then
taking the load ( number of ready processes ) on each processor into consideration, the tasks are
distributed among the processors, to further fasten the execution by giving more number of processes to
the machine which has lesser load. |

PVM software environment was used to study various operations on matrices on different types of
interconnection patterns. The interesting results observed during this study were reported.
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Chapter 1

INTRODUCTION

1.1 Need for Parallel Computation

The need for ever faster computers has not ceased since the beginning of the computer era. Everv
new application seems to push existing computers to their limit. If the current and contemplated
applications are any indication, our requirements in terms of computing speed will continue.

With the advent of inexpensive elements due 10 VLSI technology. it has become feasible to build
computing machines with hundreds or even thousands of processors cooperating in solving a given
problem. Computing machines with various types and degrees of parallelism built into their architectures
are already available in the market, and many more are in various stages of development.

However. in practice the tremendous increase in the raw computational power available through
these machines does not directly translate into a comparable increase in performance. In order to attain
the maximum performance, one must keep as mamy processors active as possible. But this is critically
dependent on the algorithm used. It could be that the problem itself is such that it does not admit an
“efficient” parallel algorithm. Or the type of parallelism that the chosen algorithm exhibits may not
readily fit into the architecture of the underlying machine. Thar is to say. not every parallel algorithm is
“efficiently™ mapped onto a realistic parallel machine, or the processors are all active all the time but
perform a large amount of redundant computations. Further, when two or more processors cooperate in
solving a problem, there will definitely be a need for communication and coordination between them.
Understanding the nature and extent to which each of these factors affects the performance of parallel

algorithms and architectures constitwtes one of the fundamental goals of the theorv of parallel
computation.

1.2 Design of a Parallel Algorithm

Parallelism is sure to change the way we think about and use computers. It promises to put within
our reach solutions to problems and frontiers of knowledge never dreamed of before. The rich variety of
architectures will lead to the discovery of novel and more efficient solutions to both old and new probiems.
It is important therefore to ask: How do we solve probiems on a parallel computer? There are three ways
to design a parallel algorithm to solve a problem.

1. One can detect and exploit any inherent parallelism in an existing sequential algorithm.

2. One can invent a new parallel algorithm or
3. One can adapt another paralle! algorithm to solve the similar problem.

The main problem encountered in the development of parallel algorithms is the minimization of
communication cost. ability to run on simple architectures, synchronization among processors, timing of
data movement etc. There are many other performance criteria which must be kept in mind, e.g.. speed-up
achieved utilization of resources.



A recent trend in computer systems is to distribute computation among several physical
processors. There are basically two schemes for building such systems. In a multiprocessor ( tightlv
coupled ) system, the processors share memory and a clock. and communication usually takes place
through shared memory. In a distributed ( loosely coupled ) system, the processors do not share memory
or a clock. Instead, each processor has its own local memory . The processors communicate with one
another through various communication networks, such as high speed buses or telephone lines.

1.3 _Parallel Processing

We formally define parallel processing as follows: -
Definition: Parallel processing is an efficient form of information processing which emphasizes the
explotitation of concurrent events in the computing process. Concurrency implies parallelism, simuitaneity
and pipelining. Parallel events may occur in multiple resources during the same time interval:
simultaneous events may occur at the same time instant: and pipelined events may occur in overlapping
time spans. These concurrent events are attainable in a computing system at various processing levels. It
is a cost effective means to improve system performance through concurrent actives in computers.

1. 4 Distributed Memory Parallel Processing

A distributed system is a collection of loosely coupled processors interconnected bv a
commurncation network. From the point of view of a specific processor in a distributed svstem. the rest of
the processor and their respective resources are remote. whereas its own resources are local,

The processors in a distributed system may vary in size and function. They may include small
mICro processors, workstations, minicomputers. and jarge general-purpose computer systems. These
processors are referred to by a number of different names. such as sites. nodes. computers. machines.
hosts, and so on, depending on context in which thev are mentioned. We mainly use the term site. to
indicate a location of machines and host to refer to specific svstem at a site,

If a particular computation can be partitioned into a number of subcomputations that can run
concurrently. then the availability of a distributed system mav allow us to distribute the computation
among the various sites, to run the computation concurrently. In addition. if a particular site is currenthy
overloaded with jobs, some of them may be moved to other. lightly loaded. sites. This movement of job 1s
called load sharing.

The loosely coupied multiprocessor system is a collection of micro processors, workstations.
minicomputers. and large general-purpose computer systems. Here each processor that make up he system
has it’s local memory and the local memory of any two processor is not shareable. The Processors are
connected through high or low speed data links. Data path may be either both serial or parallel bus
connecting I/O of two computers or shared bus to which two or more computers are interconnected in
Various ways.

The general idea of parallelizing the programs for these machines is to decompose the domain of
the application and to assign the parts to individual processors. These processors perform the computation
on their subdomain and have to synchronize, if they need values computed bv other processes.

The algorithm to achieve the objective is a distributed algorithm. The distributed al gorithm 1is
broken down into a set of algorithm, one of which is performed by each peer process. The algorithm
performed by one process in a set of peers consists of carrving out various operation on available data. and
at various points in the aigorithm, either sending data to one or more peer processes or readind ( or
waiting for ) data sent by another peer process.



In the simplest distributed algorithm, the order in which operations are carried out by various
algorithm 1s completely determined. For example, one algorithm might perform several operations and
then reliably send some data to other algorithm, which then carries out some operations and return some
data. In more complex cases, several algorithms operate concurrent, but each still waits at predetermined
points in the algotithm for predetermined messages from specific other algorithms. In this case, the
overall distributed algorithm still operates in a deterministic fashion (given the input data to the peer
processors ) , but the lockstep ordering of operations between different algorithms is removed .

In the most complex case , the order in which an algorithm performs its operations depends on
the order in which data arrive. -

1.5 Approach to Parallelizing Codes

Design of parallel programs depends a lot on the programming model that issued. There are
three different ways 10 produce paraliel codes.

Semi-automatic paralielizing

Data parallel Programming.
Message Passing Programming

1.5.1 Semi-automatic Parallel Programming
The matn goal of automatic parallelizing is to generate. without anv external intervention. a code
appropnate for parallel computer from a sequential source program.

1.5.2 Data Parallel Programming

A program which performs identical computation over a large set of data points, is called Data
Paralle] Programming. The approach to parallelizing this type of program consists in distributing the data
over the number of available processors. Then each processor independently performs the computation of
it’s subset of data. This is basically done through a Data-paraliel Programming language. The
programmer uscs the data parallel programming support given in the language(i.c. compiler interpreted
key words) to specify the data distribution code. On compilation the compiler generates the code for
parallel programming.

1.5.3 Message Passing

In this programming model. a parallel program is considered as a set of cooperating processes,
each solving a common task. Each processor owns a private set of data. If a processor needs data from
other processors, an explicit request message has to be sent to the processor holding the desired data. The
parallel program can be seen as a sct of in instruction executing in parallel on different processors, which
exchange message during execution, to send or receive certain values.

Developing a message passing program requires that the programmer take care to manually
distribute both computations and data among the processors. Communication routine calls between
processors are inserted explicitly into the source code. These programming features are straight forward to
implement if the code has a intrinsic paralle] structure with few and regular communications. If however .
- the code is difficult to parallelize, and the parallelizing process produces a large number of irregular
communication between the processors, then the use of message passing library can be tidious.



Chapter 2

Heterogeneous processing

The main goal of the development of computing systems is to increase its performance. Basically , three
different ways are used to achieve this. These are -

1. Physical enlarging of the clock frequency, capacity of memories, and the throughput of channels;

2. Logical exploiting of various methods of concurrent processing, and

3. Functional specialisation of software and hardware in order to achieve most effective realisation of
different labour intensive functions,

Recently the aspiration for utilising the useful features of different architectures led to the
¢mergence of the concept of Heterogeneous Computing(HC), which implies a distributed network system
of several commercially available computers of diverse architectures. In such an environment . the user is
able to varv flexiblv the style of programmung , in accordance with the characteristics of his problems.
Heterogeneous processing (HP) addresses compute intensive applications and algorithms that are
composed of fundamentally different sub-tasks. The goals of HP are to investigate and develop techmques
and infrastructures for the execution of such applications, e.g.. through building a virtual heterogeneous
machine composed of diverse processing elements and through evolving appropriate programming and
system methodologies. HP uses different tvpes of parallel processors. processing components and/or
connectivity paradigms to maximise performance. cost effectiveness and/or ease of development.

2.1 Software Platform for Heterogeneous Resources

In some applications collections of heterogeneous machines can be used to execute a parallel algorithm,
thereby allowing the application to produce results at a lgher speed than on a single machine.
Facilitating the use of heterogenity for such purposes 1s the target of svstems such as PVM, p4, APPL.
MPI etc, which provide sophisticated software infrastructures that. in essence, turn a network of possibiv
heterogeneous workstations into a cost-effective parallel machine.

| Here in this report we focus on PVM programming system. PVM (Parallel Virtual Machine) is a
- portable message-passing programming systemn, designed to link separate host machines to form a “virtual
machine” which is a single, manageable computing resource.

The virtual machine can be composed of hosts of varying types, in physically remote locations.
PVM applications can be composed of any number of sCparatc processes, or components , written in a
mixture of C, C++ and Fortran. The svstem is portable to a wide variety of architectures, including
workstations, multiprocessors, supercomputers and PCs.

PVM is discussed at great length in the next chapter.

2.2 Program speedup in 2 Heterogeneous Computing Network

The purpose of heterogeneous computing network is to achieve speedup. Donaldson. Berman and Paturi |
] proposed definitions and models for program speedup in a heterogeneous computing system.
Incorporating parameters relevant to the program and computations as well as the network.




Their model 1s based on the task graph with computational nodes and communication edges and
assumes that tasks are atomic.

2.2.1 Heterogeneous network model

Their heterogeneous network model is a set H = { M M, ... M, } of m distinct machines. Each machine
can commumicate with any other machine. The machines in /7 may include any combination of sequential,
dataflow, vector or other processors. Their primary model of program execution on H assumes that each
machine AM; may execute at most one program task at a time. In this case, we say the network is
nondecomposable. If multiple tasks can be executed concurrently on an individual machine, we call the
network decomposable.

Program Model :

The basis of their program model is the well known task graph. A task graph for a program P is a directed
acychic graph G, = (V.E). V' = {1,,1,, ... .t,} is a partition of P consisting of » tasks. Tasks are constrained to
be atomic- ecach task is executed to completion bv exactly one machine without intermediate
communication or synchronisation with other tasks. £ < I'XT. and (1,.tyeE iff ¢, must execute before i,
due to data dependence or task synchronisation requirements of P. Since G, is acyclic , £ may be viewed
as imposing a partial ordering on the tasks in V. Without the loss of generality, we assume that G, has
unique entry and exit nodes identified with tasks 7, and 7,. and for any task t;. there is a path from t, to t,
Figure. (a) . at the end of this chapter is an example of a task graph.

For a program consisting of » tasks and a network of m machines. there are m” possible mappings
of tasks to machines. A mapping of tasks to machines is a function /71 —>H. If /7 maps all » tasks to the
same machine the mapping is sequential. If » > m. anv mapping of tasks to machines must map muitiple
tasks to at least one machine.

The requirement that each machine mayv execute at most one task at a time can be enforced by
augmenting the task graph. A scheduled task graph is a task graph with additional edges defining a total
order on all tasks mapped to the same machine. If similar edges already exist in E, the additional
scheduling edges are redundant. and are not added (the scheduled task graph is not a multigraph). Edges
which are transtively redundant may aiso be deleted if desired. although when data communication times
are constdered. otherwise redundant edges mav need to be retained. Figures. (b) and (¢) at the end of this
chapter are examples of scheduled task graphs.

Unless otherwise specified, we assume that G, is a scheduled task graph, and that the mapping of
[lTon G, is fixed

Timing values are associated with the components of (, For cach of the n tasks and each of the
machines, T¢"’ is the time required to execute the task ti on machine Af, T," is defined to be the value
To"" such that [1(ti) = M;. We also define timing values for communication between tasks. For each edge
(ti tk) €E, Ny 1s the time required for data commumication (including data representation conversion if
required) and synchronisation between task ti on machine [J(ti) and task z; on machine [/itk). It is often
assumed that if tasks t; and t, are mapped to the same machine, N, 4 = 0. This simplification can be
justified by noting that relative t0 network times, communication times internal to individual machines in
the network are typically pegligible. In this discussion we assume zero communication time for
intramachine communication.

The preceding model contains an additional simplification. In practice, both network times and
task ttmes will vary, depending on the state of the machines and the network. We make the comnion
simplifving assumption that the computation times of individual tasks and the communication times
between tasks are constant.

L



With these assumptions, we can define T,", the time to execute program P on a heterogeneous
network H, using a macro dataflow apporach. Let G, be a scheduled task graph. Define est(t1), the earliest
starting time of entry task t, to 0, and for all remaining tasks t,, 1=2,3,.....n define

est(t) = MAXu pyer { S5U) + Too + Ny )
L+

Then
T, = est(ty) + T

We are also interested in TP”"‘{ the time required for each individual machine M;eH to execute P. Since

network # is non-decomposable and intramachine communication times are assumed to be negligible, for
J=12,...,.m, we define

TpMj =Zi=l,‘.,n Tuhﬁ
We¢ assume that the program P, the network of machines H. the scheduled task graph G, with timing
values, and the mapping 1 are fixed.

Definttion : The speedup S, of heterogeneous network 7 on problem P under mapping-[] is defined as ...

S, =min{T,M, T}, TM /17



Figure (a) . Task Graph

Fignse (b) : Scheduled task graph on two machines :
Shaded tasks are mapped to one machine.

Figure (¢) : Scheduled task graph without redundant edges. Timing values in
for task t; are
(T, Ts™)

T, = 2434343042 = 40
T, = 2420+20+3+2 =47

min (T,"", T,” )= 40 (Sequential time)

Ty =2+3+3+2 =10 (Parallel time)

Therefore, Speedup, S, =40/10=4.

paranthesis



Chapter 3

Software Environment

In this chapter we describe the software environment used for executing parallel applications. The
software system used is - PVM that permits a heterogeneous collection of Unix networked together to be
viewed by a user’s program as a single parallel computer. PVM is the mainstay of the heterogeneous
network computing research project, a collaborative venture between Oak Ridge National Laboratory. the
University of Tennessee, Emory University and Carnegiec Mellon University.

PVM supports a straight forward but functionally complete message passing model. PVM is
designed to hnk computing resources and provide users with a parallel platform . for running their

applications , trrespective of the number of different computers they use and where the computers are
located.

in this chapter we discuss the architecture of the PVM svstern and discuss its computing model:
the programming interface i1t supports; auxiliarv facilities for process groups: and some of the internal
implementation techniques emploved.

3.1 Common Parallel Programming Paradigms

Parallel computing may be approached from three fundamental viewpoint, based on the
organization of computing tasks. Plainly we can sav these three classifications are made on the basis of
process relationships. Within each these there classes. different workload allocation strategies are possibie

Crowd Computation
Tree Computation
Hvbrid Computation

3.1.1 Crowd Computation

The first and most comimon model for parallel application can be termed as crowd computing: a
collection of closely related processes, typically executing the same code, perform computations on
different portions of the workload, usually involving the periodic exchange of intermediate result. This
paradigm can be further subdivided into two categones:

The master-slave(or host-node) model in which a separate “control” program termed the master
is responsible for process spawning, initialization, collection and display of results, and timing functions.
The slave program perform the actual computation involved; they cither allocated workload by their
master ( statically or dynamically) or perform the allocatton themselves.

The node only model where multiple instances of a single program execute, with one process(
typically the one imitiated manually) taking over the noncomputational responsibiliies in addition 10
contributing 1o the computation itself.

Crowd computation typically involve three phases. The first is the initialization of process group:
in the case of node-only computation . in the case of node-only computations, dissemination of group
information and problem parameters, as well as workload allocation. is tvpically done within this phase.



The second phase is computation, The third phase is collection results and display of output; during this
phase, the process group is disbanded or terminated.

3.1.2 Tree Computations

The second model is tree computation. In this model processes are spawned ( usually dynamically
as the computation progresses ) in a tree like manner, there by establishing a tree-like , parent-child
relationship ( as opposed to crowd computations where a star like relationship exists ). This paradigm,
although less commonly used, is an extremely natural fit to applications where the total work load is not
known prior to the computation,

3.1.3 Hybrid Computations

The third model which we term “hvbrid,” can be thought of as a combination of the tree and
crowd model. Essentially , this paradigm possesses an arbitrarv spawning structure: that is. at any point
during application execution, the process relationship structure may resemble an arbitrary and changing
graph.

3.2 Workload Allocation

In the preceding section, we discussed the common parallel programming paradigms with respect
t0 process structure . In this secthon we address the issue of workioad allocation. subsequent to

establishing process structure, and describe some common paradigms used in distributed memory paraliel
computing. Two general methodologies are commonly used:

Data decomposition
Function decomposition

The first, termed data decomposition or partitioning, assumes that overall problem involves applving
computational operations or transformations on one or more data structures and ., further. that these data

structures may be divided and operated upon. The second. called function decumpoﬂtmn .divides the work
based on different operations or functions.

3.2.1 Data Decomposition

As a simple example of data decomposition , consider the addition of two vectors. A[1..N] and
B[1..N], to produce the result vector, C[1..N]. If we assume that P processes are working on this problem,
data partitioning involves the allocation of N/P elements of the resulting vector. This data partitioning
may be done erther “statically,” where each process knows pror ( at least in terms of the variables N and
P ) its share of the workload, or “ dvnamically,” where a control process ( €.g., the master process)
allocates subunits of the workload to processes as and when thev become free. The principal difference
between these two approaches is “scheduling”. With static scheduling individual processes work load are
fixed; with dynamic scheduling, they vary as the computation progresses.

In a real execution of even this trivial vector addition problem, an issuc that cannot be ignored is
input and output. In other words, how do the processes described above receive their workloads. and what

do they do with the result vectors? The answer to these questions depends on the application and the
circumstances of particular run, but in general:

1. Individual processes generate their own data internally, for example. using random numbers or
statically known values. This 15 possible onlv in very special sitvation or for program testing purposes.

2. Individual processes independently input their data subsets from external devices. This method is
meaningful in many cases, but possible only when parallel /O facilities are supported.



3. A controlling process sends individual data subsets to each process. This is the most common SCEenario.
especially when parallel /O facilities do not exist. Further this method is also appropriate when input data
subsets are derived from previous computation within the same application.

The third method of allocating individual workloads is also consistent with dynamic scheduling
in applications where interprocess inferactions during computations are rare or nonexistent. However
nontrivial algorithms generally require intermediate exchanges of data values, and therefore only the
initial assignment of data partitions can be accomplished by these schemes. In order to multiply two
matrices A and B, a group of processes is first spawned , using the master-slave or node-only paradigm.
This set of processes is considered to form a mesh, the matrices to be multiplied are divided 1into
subblocks, also forming a mesh. Each subblock of matrnices A and B is placed on the corresponding
process, by utilizing one of the data decomposition and work load allocation strategies listed above.
During computation , subblocks need to be forwarded or exchanged between processes. At the end of the
computation, however, result matrix subblocks are situated on the individual processes, in conformance
with their respective positions in the process grid, and consistent with a data partitioned map of resulting
matrix C.

3.2.2 Function Decomposition

Parallelism in distributed memorsy environments may also be achieved by partitioning the overail
workload in terms of different operations. The most obvious example of this form of decomposition is with
respect to the three stages of typical program execution. namely . input processing. and result output. in
function decomposition, such an application may consist of three separate and distinct programs . each
one dedicated to one of three phases. Parallelism is obtained by concurrently executing the three programs
and bv establishing a “pipeline” ( continuous or quantized ) between them. Note. however. that 1n such
scenario. data paralielism may also exist between within each phase.

Although the concept of function decomposition is illustrated by the trivial example above. the
term is generally used to signifv partidoning and workload ailocation by function within the
computational phase. Typically, application computations contain several different subalgorithms-
sometimes on the same data ( the MPSD or Multiple Program Single Data scenario ). sometimes in a
pipelined sequence of transformations. and sometimes exhibiting an unstructured pattern of exchanges.

10



3.3 PVM User Interface

In this section we give a brief description of the routines in the PVM3 user library. All the routines are
clearly explained in the book PVM: A user’s guide and Tutorial for Networked Parallel Computing.

3.3.1 Process Control
1. int tid = pvm_mytid(void)
The routine pvm_mytid() returns the TID of the process and can be called multiple times, It
enrolls this process into PVM if this is the first PVM call.
2. int info = pvm_exit(void)

This routine pvin_exit() tells the local pvind that this process is leaving PVM.

3. int numt = pvm_spawn(char *task, char **argyv, int flag, char *where, int ntask, int *tids)

The rontine pvm_spawn starts up ntask copies of an executabie file task on the virtual machine.
argy 1s a pointer to an array of arguments to task with the end of the arrav specified by NULL. If the task
argument takes no arguments, then argv is NULL. To find out about the flag argument refers to. see the
PVM manual.

4. int info = pvm_kill(int tid)

The routine pvm_kill() kills some other PVM task identified bv TID.

5. intinfo = pvm_catchout( FILE *ff)
The routine pvm_catchout causes the calling task to catch output from tasks subsequently
spawned.

3.3.2 Information

6. inttid = pvm_parent( void )

The routine pvm_parent( ) returns the TID of the process that spawned this task or the value of
PvmNoParent if not created by pvm_spawn( ).

7. int dtid = pvm_tidtohost(int tid)

The routine pvim_tidtohost(int tid) returns the dtid of the daemon running on the same host as
TID.

8. int info = pvm_config(int *nhost, int *narch, struct pvin_hostinfo **hostp)

11



The routine pvm_config() returns information about the virtual machine including the number of
hosts, nhost, and the number of different data formats,. narch. hostp 1s a pointer to a user declared array
of pvmbhestinfo structures.

9. intinfo = pvm_tasks( int which, int *ntask, struct pvmtaskinfo **taskp )

The routine pvim tasks() returns information about the PVM tasks running on the virtuat
machine. The integer which specifies which tasks are returning information about.

3.3.3 Dynamic Configuration

10. int info = pvm_addhosts( char **hosts, int nhost, int *infos )
1. int info = pvm_delhosts(char **hosts, int nhost, int *infos )

These routines add or delete a set of hosts in the virtual machine.

3.3.4 Setting and Getting Options

12. it oldval = pym_setopt( int what, int val )
13. intval = pvin_getopt( int what )

The routine pvm-setopt( ) is a general purpose function that allows the user to set or get options
1n the PVM system. In PVM3, pvm_setopt( ) can be used to set several options. including automatic error
message printing, debugging level. and communication routing method for all subsequent PVM calls.

3.3.5 Message Passing

Sending a message comprises three steps in PVM. First. a send buffer must be imtalized by a call to
pvin_initsend() or pvm_mkbuf(). Second, the message must be "packed” 1nto this buffer using amy
number and combination of pym_pk*() routines. Third. the completed message is sent to another process
by calling the pvm_send() routine or multicast with pvm_mcast() routine.

3.3.5(i) Message Buffers:

14. int bufid = pvm_initsend(int encoding)

The routine pvm_initsend() clears the send buffer and creates a new one for packing a new
message.

15. int bufid = pym_mkbuf( int encoding )

used for packing messages-.-
16. mt info = pvm_freebuf( int bufid )

The routine pvm_freebuf( ) disposes of the buffer with identifier bufid. This should be done
after a message has been sent and is no longer needed

12



3.3.5(if) Packing Data :

17. int info = pvm_pkbyte( char *cp, int nitem, int stride )

18, int info = pvm_pkcpix( float *xp, int nitem, int stride )

19. int info = pvmm_pkdcpix( double *zp, int nitem, int stride )
20. injinfo = pvm_pkdouble( double *dp, int nitem, int stride )
21. infinfo = pvim_pkfloat( float *fp, int nitem, int stride )

22. int info = pvie_pkint( int *np, int nitem, int stride )

23. int info = pvm_pklong( long *np, int nitem, int stride )

24. int info = pvm_pkshort( short *np, int nitem, int stride )
25. int info = pvm_pkstr{ char *cp )

Each of the above C routines packs an array of the given data tvpe into the active send buffer. The
arguments for each of the routines are a pointer to the first item to be packed, nitem which is the total
number of items to pack from this array. and stride which is the stride 10 use when packing. A stride of 1
means a contigunous vector is packed. a stride of 2 means everv other item 1s packed and so on. An
exception is pvin_pkstr( ) which by definition packs a NULL terminated character string and thus does
not need nitem or stride arguments.

3.3.5(iii) Sending and Receiving data :

26. int info = pvm-send( int tid, int msgtag ) .
27. int info = pvm_mcast( int *tids, int ntask, int msgtag )

The routine pvim_send() labeis the message with an integer identifier msgtag and sends it
immediately to the process TID. The routine pvm_mcast( ) labels the message with an identifier msgtag
and broadcasts the message to all tasks specified in the integer arrav tids (except itself ) . The tids array is
of length ntask.

28, int info = pvm_recv( int tid, int msgtag )

The blocking routine will wait until a message with label msgtag has arrived from TID. A value
of -1 in msgtag or TID matches anything (wildcard).

3.3.5(iv) Unpackin_g Data :

29. int info = pvm_upkbyte( char *cp, int nitem, int stride )

30. int info = pvm_upkcplx( float *xp, int nitem, int stride )

31. int info = pvm_upkdcplx( double *zp, int nitem, int stride )
32. int info = pvm_upkdouable( double *dp, int nitem, int stride )
33. int info = pvm_upkfloat( float *fp, int nitem, int stride )

34. int info = pym_upkint( int *np, int nitem, int stride )

3S. int info = pvm_upklong( long *np, int nitem, int stride )

36. int info = pvm_upkshort( short *np, int nitem, int stride )
37. int info = pvm_upkstr( char *cp )

The above routines unpack data tyvpes from the active receive buffer. In an appiication thev

should match their corresponding pack routines in tvpe. number of items. and stride. nitem is the number
of items of the given type to unpack.

13



3.4 Dynamic Process Groups

The dynamic process group functions are built on top of the core PVM routines. A separate library
libgpvm3.a must be linked with user programs that make use of any of the group functions.

38. int inum = pvm_joingroup( char *group )
39. int info = pvm_lIvgroup( char *group )

These routines allow a task 10 join or leave a user named group. The first call to
pvin_joingroup() creates a group with the name group and puts the calling task in this group. This
function returns the instance number (inum) of the process in this group. Instance numbers range from 0
to the number of group members minus 1.

40. int tid = pvm_gettid{ char *group, int inum )
41. intinum = pvm _getinst( char *group, int tid )
42. 1nt size = pvm_gsize( char *group )

the routine pvm_gettid() returns the TID of the process with a given group name and instance
number. The routine pvm-getinst() returns the instance mumber of TiD in the specihied group. The
routine pvm-gsize() returns the number of members 1n the specified group.

43. int info = pvm-barmier( char *group, int count )

On calling pvm_barrier() the process blocks until count number of members of a group have
called pvin_barrier.

44. int info = pvm_bcast( char *group, int msgtag )
pvim_bcast() labels the message with an integer identifier msgtag and broadcasts the message to
all tasks in the specified group except itself ( if it 1s a member of the group ). |

45. int info = pvm_reduace( void (*func)(), void *data, int nitem, int datatype, int msgtag, char
*group, int root )

pvm_reduce() performs a global arithmetic operations across the group, for example , global

sum or global max.

These are some of the routines in the PVM3 user library. An alphabetical listing of all the
routines is given in Appendix B of the book PVAM: Parailel Virtual Machine, A user’s Guide and Tutorial
for Networked Parallel computing.

14



Chapter 4

Program Examples

In this chapter we discuss several parallel algorithms which are implemented for solving many matrix
problems, such as finding the product of two matrices, computing the inverse, transpose and eigen values
of a matrix. These algorithms demonstrate how to implement parallel algonthms and how to schedule
the work load evenly among the processes for such matrix operations. Since here we have a network of
three unix workstations, all the processes were spawned and run on three workstations. We have tried to
simulate different interconnection schemes using PVM library calls. At the end we have discussed some
interesting results that we came across in the process of exploring PVM. We make a comparative study
of the different times for completion of a computation for different number of processors for a given
topology. The interconnections topologies between tasks that we have considered are torus and mesh. We
have chosen different operations on matrices and observed the timing values by varying number of
processes which are distributed egually among the processors present in the network. The problems are
also studied taking into consideration the “load” on each processor. The load on a workstation is taken
as the number of ready processes at the time of execution of a program. When the tasks are created this
load is taken into consideration and processes are distributed accordingly among different processors.

4.1 Matrix multiplication on a torus

This program uses node only computation for matrix multrphication. The algorithm 1s as follows..
# Matrix multiply program using Pipe-Multiply-Role Algorithm #
# processor O starts up other processes #

- if(<process-number> = 0) then
for 1= 0 to Meshdimension*Meshdimension
spawn the process;
end for
end if

forall processes Pij. 0 <= Lj < Meshdimension
for k := 0 to Meshdimension - 1
# Pipe #
if row = (column+k) mod Meshdimension
Send A to all Pxy, x = row, v != column,;

else
recerve A,
end if

# Multiply : Running totals are maintained in C #
Multipty(A.B.C).

# Roll matrix B subblocks #
Send B to Pxy, x = row -1. v = column: #i.¢.sending the biocks upwards#
Receive B; # i.e. receive from down #



end for
end for

This algorithm shown in fig 1 multiplies matrix subblocks locally, and uses row-wise multicast of matrix
A 1n conjuction with column-wise shifts of matrix B subblocks.

4.2 Matrix multiplication on a mesh interconnection network

This program computes the product of two » x » square matrices. This algorithm uses mxm Processors
arranged in the form mesh. Here 7 is equal to m x block size, where m is the number of processors in
each row and block size is the dimension of each subblock into which the original matrices are broken up
into. E.g. 300 x 300 matrix can be broken up into 9 subblocks each of size 100 x 100.

Here we have used the master-siave model in which a separate “control” program termed the
master 1s responsible for process spawning, initialisation, collection and displav of results. The slave
program performs the actual computations involved.

Assume that we have a grid of m x m tasks. These tasks have all been created by a master
process. Mash rows are numbered 0....(m-1) and columns are numbered 0....(m-1). Matrices A and B
are fed to the boundary processors in column 1 and row 1 respectively. as shown in the figure at the end

of thus chapter.

At the end of the algorithm. block Cij of the product matrix C resides in the processor Pi,;
Inmitialty Cij is zero. Subsequently, when Pi,; receives two input blocks a and 6. it

multiplies them.

adds the result to Cij,

sends a to Pi,j+/ unless ; = m. and
sends b to Pi+/,j unless / = m.

ualibea gl b

Here the two matrices a and b are actually two submatrices. Note that processor PJ,2 lags one time unit
behind processor P1,7 (as shown in the figure 2), because it waits for P/, 7 to be over with its submatrix
multiplication of B// and 4717 before receiving 477. The other processes also lag behind accordingly,
depending on their row and column positions. Elements Amm and Bmm take 3m-2 steps from the
beginning of the computation to reach Pm,m. Since Pm,m is the last processor to terminate, this many
steps are required to compute the product.

4.3 Matrix Inversion

The best known sequential algorithm for matrix inversion is the O MN: <x <25 algorithm. According to
this algorithm, the inverse can be computed as follows. We begin by writing

Air AI;] i 0 .—f;n 0— _1 AH'}A;‘I
A = | =
Ay Anl (AxAn” 1] |0 Bl L0 [ _
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where dij are n2) x /n 2) submatrices of 4, and B = A+ - Azpdidi: The i 2} x (n”2) matrices [ and 0
are the identity matrix and zero matrix respectively. The inverse of .4 is then given by the matrix product

| 1 A40 T4, 01 [7 0
A' —
0 / 0 B} {-AzA;7 1

where A;; and B are computed by applving the same process recursivetv. This requires two inversions
two inversions, six multiplications and two additions. In sequential computation the time required to
compute the inverse of an 7 x » matrix using the above algorithm matches, up to a constant
multiplicative factor, the time required to multiply two n x n matrices.

Since the algorithm for finding the inverse reduces to multiplication of matrices, the parallel
implementation of this algorithm is nothing but wnting a parallel program for matrix multiplication.
Any parallel algorithm for matrix multiplication can be used. Here for this purpose we have used matrix
multiplication on mesh.

4.4 Computing Eigen Values Of A Given Matrix

The algebraic eigen values problem derives its importance from its relation to the problem of solving a
system of » simultaneous linear differential equations of first order with constant coefficients. Such a
system 1S written as

dx/dt = 4x
where A is an n x n matrix and x is an n x 1 vector. For some vector u = 0 . x=ue™ is a soiution of the
preceding system if and only if Az = 4u. Here . 4 is called an eigen value and » an eigen vector. The
algebraic eigen value problem is to determine * and ».

For an n x n matrix B and an n x I vector v. iIf we apply the transformation x = By to the system
of differential equations, we get

dv:dt = (B 1B)y.

The eigen values of B'45 are same as those of .1. We therefore chose B such that the eigen values of 5
"AB are easily obtainable. For, example if B48 is a diagonal matrix (i.c. all the elements are zero except
on the diagonal), then the diagonal elements are the eigen values. One method of transforming a
symmetric matrix 4 to diagonal form is Jacobi s algorithm. The method is an iterative one, where the ™
tteration is defined by

Ae=RARy fork=12.... .

with

M
=

|
N

17



The n x n matrices R, are known as plane rotations. Let a,_-,-‘" denote the elements of .4,. The purpose of
Ry is to reduce the two elements of a,,” and a,,"” to zero (for some p<q depending on k). In reality |
each iteration decreases the sum of the squares of the nondiagonal elements so that 4, converges to a
diagonal matrix. The process stops when the sum of the squares is sufficiently small. or more specifically
. when

dy = (L=t 2= (ﬂ;))#f < C
for some small tolerance c. At that point , the columns of the matrix R, 'R."....R," are the eigen vectors.

The plane rotations are chosen as follows. If aﬂ*’ ‘ is a nonzero off-diagonal element of 4,.;, we
wish to define R, so that a,," = a,,* = 0. Denote the elements of R, by r,;, We take

| 3 E_

£k kL
Yog = Fgp = SIN &

r,f = ] for i=p or g,

r g‘k = 0 Othﬁm’ise,
where cosé, and sin & are qbtaine:d as follows. Let

O = (84" -y W25,
and

B = Usign(apl{abs(a) + (1 + ax)'"],
where sign(a;) is +1 or -1 depending on whether a; is positive or negative. respectively. Then

cos@, = 1/(1 + ﬁkf)fﬂ and sin & = ﬁtQOS O .
The only question remaining is : which nonzero element a,,*’ is selected for reduction to zero during
k" iteration? Many approaches are possible. one of which is to choose the element of greatest magnitude
since thus would lead to the greatest reduction in d..

This algorithm converges in O(n”) iterations. Since each iteration consists of two matrix
muitiplications . the entire process takes O(n’) time , assuming that the (sequential) procedure for marrix
multiplication 1s used.

~ Jacobi’s method itself lends to parallel implementation. It is seen clearly that for the parallel
implementation , parallel procedure for matrix multiplication is used. Any paraliel algorithm for matrix
multiplication can be used. We have used matrix multiplication on mesh for this purpose. The algorithm
is as follows. ...

procedure EIGENVALUES(A,¢)
while 4 > ¢ do
I. Find the off-diagonal element in 4 with largest absolute value.
2. CreateR.
3. A « RA
4. Create R”.
5. A « ART
end while.

18



Analysis : Since matrix multiplication on mesh takes O(n) time . the time per iteration is O(n). Since
convergence is attained after O(n~) iterations. the overall running time is OUr) .

19
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Chapter 5

Timing Values

In this chapter, we compare the timing values of various programs if they are executed on single
processor, fwo processors and three processors. The programs are executed on dec ALPHA machines.
Here we have a network of three Digital ALPHA Station255 with Digital UNIX. The programs are
executed on one, two and three processors and the results are compared. The tasks created are equally
distributed on all the processors.

The timing values are given in number of clock ticks. Number of clock ticks for our dec ALPHA

machine 1s 60 ticks per second. When we measure the execution time of a process, we see that Unix
matntains three values for a process.

¢ cClock time
e user CPU time
e system CPU time

The clock time 1s the amount of time the process takes to run. and its value depends on the number of
other processes being run on the svstem.

The user CPU time is the CPU time that is attributed to the user 1nstructions.

The svstem CPU time is the CPU time that can be attributed to the kernel. when it executes on behalf of
the process.

The sum of user CPU time and the system CPU time is often called the CPU time,

In this chapter we have noted the real time of completion of execution of parallel program. We
have also noted the maximum CPU time taken by any Process.

The execution time for different matrix sizes and different number of processors are also shown
graphically at the end of this chapter.
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Matrix Size( row x col )

Number ngrooesses =]

240 x 240

360 x_3J60

480 x 480

]

1364
1349
3
740
21 (22 {22 || 79 189
| . _ X Number of Processes=3x3 . L
NoofProcessors | 1 | 2 | 3 { 1 |2 [ 31 [ 2 13 1 [ 2 [ 3
Real Time 42 28 22 155 | 103 | 90 446 | 271 | 204 || 1125 { 709 | 536
Max CPU time 3 3 31115 16 15 46 49 47 125 | 121 122
. _Number of Processes = 4 x 4 _ _ )
Noof Processors | 1 | 2 3 || 1 2 il | 2 3 1 2 3
Real Time 63 37 26 165 | 98 96 386 | 245 | 201 1032 | 562 | 486
Max CPUtime |3 |2 2 1}9 10 19 127 |28 63
| . Number of Processes = 5 x 5
No.of Processors | 1 2 3 ] 2 3 :l i 2 3
Real Time 93 42 31 193 ll6 | 114 || 510 | 273 435
Max CPU time | 2 1 2 7 716 Jl18 |20 43
L _ Number of Processes = 6 x 6
| No.of Processors | 1 2 3 I | 2 | 3 1 2 3
H—
Real Time - 63 |42 |]- 148 [ 121 |/ - 299 454
Max CPU time | - 2 2 - 5 4 |- 15 29

Table S.1: Execution Time for the Matrix Mulitiplication on Torus Interconnection

14

network

( Pipe-Multiply-Role Algorithm )

Real time : real time taken for completion of the program.
Max CPU time : Maximum CPU time taken by any process in the paralle] program.

21

~ ** indicates given number of processes can not be created on given number of processors.




Matrix Size( row x col )

Number of Processes = 1

Time (60 X sccs) 120 x 120 240 x 240 360 x 360 480 x 480
No.of Processors 1 1 1 1
Real Time 17 197 883 2752
| Max CPU time 14 114 L 458 1359
| L _ Number of Processes = 2 x 2 _
NoofProcessors | 1 | 2 | 3 |[ 1 | 2 31 [ 2 T3 1 2 3
Real Time 30 |23 (28 |j160 |108 |121 ||612 |412 | 433 || 1483 | 880 | 842
Max CPUtime |6 |4 |5 31 129 130 J[109 | 110 | 110 || 234 | 240 | 249
. ~ Number of Processes = 3 x 3
No.ofProcessors | 1 | 2 | 3 F 1 2 [ 3 1 T 2713 I: 1 [ 2 ] 3
Real Time 55 137 |35 |[171 [120 [112 |} 531 |319 | 288 || 1342 [ 814 | 666
Max CPU time | 4 3 3 jJ10 |14 114 [[46 |44 [a5 |l115 | 116 | 115
_ _ Number of Processes = 4 x 4 i
No.of Processors | 1 | 2 | 3 1 2 [ 3T 1 [ 2 13 I: 1 [ 2 ] 3
Real Time 92 |60 [54 [1205 [120 [105 |{ 541 {295 |249 || 1189|653 | 597
Max CPU time | 3 I 1 fl1o (8 |8 127 |25 |28 [{60 [59 |60
Number of Processes = x5
NoofProcessors | 1 | 2 [ 34 1 [ 2 T 3T 1 [ 2 [ 3][ 1] 2 [ 3
Real Time 144 |96 |68 |[{257 |164 | 130 || 594 |320 | 285 {| 1252 [ 726 | 708
Max CPU time | 3 39
No.of Processors ] ! 1_2 {3
Real Time 231 820
Max CPU time 2 28

Table 5.2 : Execution Time for the Matrix Multiplication on Mesh Interconnection

Real time : real time taken for completion of the program.

network

Max CPU time : Maximum CPU time taken by any process in the paralie]l program.




Matrix Size( row x col )

Number of Processes = |

Time (60 X secs) 32x 32 64x64 ||  128x128 256 x 256
]:Iio.of _Processﬁ 1 _ 1 U 1 1

Real Time 6 27 | 87 316
! Max CPU time | 2 23 80
'_No.o'i‘PmmIr_'l [ 2 2 [ 3

Real Time 5 |6 523 | 479

Max CPU time 3 3

___Number of Proc;sses = 4x-{

100 | 104

NoofProcessors | 1 | 2 | 3 ] 1 [ 2 | 3] 1 T 2 I 3T 1T 27 3
Real Time 8 |6 |6 [|246 |156 | 113 ([ 525 (364 |257 || 1248 | 905 | 6os
Max(PUtme 3 |3 3 (138 [30 |26 |18 [73 |70 {|19a 187 |18
_ _ ___ Number of Processes = 8 x 8 )
No.of 1 3 [ 3 ][ 1 3 EE
0.of Processors 2 | 4 | ! 2 1
Real Time - 48 7 - 1755 1sos (|- 11877 D asel| - | 234 | 2543
MaxCPUtme |- |3 |4 || 118 [ 108 |- 1307 |287 |[- |710 |67

&b

Table 5.3 : Execution Time for the Matrix Inversion

- * indicates given number of processes can not be created on given number of Processors.

Real time : real time taken for completion of the program.
Max CPU time : Maximum CPU time taken by any process in the paraliel program.
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Chapter 6

Conclusions

In the previous chapter we have given a comparison of the time taken by different programs by varying
number of procesgors. Here we have a network of three Digital ALPHA UNIX workstations. So all the
programs are exc¢uted on one, two and three processors and the time taken to complete execution of
programs are compared. We have implemented different operations on matrices and the timing values are
noted(as given in the previous chapter). It is obvious from the tables that as the size of the matrices
increases, the parallel programs take lesser time to complete execution, than the corresponding
sequential programs.

From the graphs given in the previous chapter, it is obvious that as the matrix size increases, dividing a
program into number of sub-tasks results in faster execution of a program. But just dividing a program
into any number of sub-tasks will not yield faster computation as it is obvious from the graphs given in the
previous chapier. For small size matrices, dividing a program into number of sub-tasks involves overhead
in the form of process switching. So the time increases as number of sub-tasks increases for smaller size
matrices. But for a bigger problem dividing the program into number of sub-tasks involves less
computation time. As is shown in the graphs. for a larger size matrices as the number of tasks increase, up
to some point. the titne decreases and then tiine taken increasés as we increase the number of processes
further. This 1s because of the overhead involved in process switching between tasks. That point gives the
optimum value in terms of number of processes for a given size of the matrix.

For a given size matnx,

We have implemented different operations on matrices and the details are given in chapter 4. All the
programs are executed on one, two and three processors. When multiple tasks are run on a single
processor a substantial amount of overhead 1s incyured in the form process switching. But when the
programs are run on more than one processar, message passing time, and not the process switching time
will contribute to the maximum overhead time.

So if we run a program on two processors, the time is not reduced to half as can be thought of because of
message passing overhead time. Suppose if we have » number ¢f processors and we create » number of
tasks, distributing each task to one processar, the time is not sedsoed by n because of the message passing
time involved. So it is not the only criteria of dividing the a proliiem into number of tasks as the number
of processors available, but we aiso have to take inte account the message passing time involved. So we
have to find the optimum number of tasks that a given problem can be divided into and optimum number
of processors onto which the created tasks are distribated.

The timing values are noted by distributing the number of tasks equally among the number of processors
present. These are given in the previous Chapter. the timimg values are also observed taking into
consideration the Joad on each processor. The load on each processor is taken as the number of ready
processors present at the time of distribution of tasks. More number of tasks are given to the processor
which has less load. There is comparable decrease in the timme values when the tasks are distributed
according to the load. At the same time we have to take into consideration message passing time while
distribution of tasks. There are many other factors which have to be taken into consideration like
processor speed, network distance etc. Since all the machines in the network here are of same tvpe, the
~ speed of each processor is same. If we have a environment where we have machines of different
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architectures, this factor becomes important. We can assign a complicated task to the machine which has
faster speed. So by taking all these into consideration one can make a task scheduler.

Here we have dealt with some problems on matrices, but many other problems like sorting, solving partial
differential equations, etc. can be parallelized 1n a like manner, by breaking up into sub-tasks.



