M. Tech. (Computer Science) dissertation Series

Domestic Airlines Tour Planning Software

R

a dissertation submitted in partial fulfilment of the requirements
for the M. Tidl (Computer Science) degree of the
ndian Statistical Institute

By
Harekrushna Patel

under the supervision of

Probal Sengupta

(Computer Vision and Pattern Recognition Unit)

—_— e T
e .

e \CAD NS

! Y ;,ﬂ"?ﬁ“ﬁcv"‘k] f} U #:.:'" .
JEN ;

s -~

Fs

. B4
L
- { R
. H
- &

INDIAN STATISTICAL INSTIT
203, Barrackpore Trunk Road,
Calcutta - 700 035

31° July 1998

Certificate of Approval

This is to certify that the dissertation entitted Domestic Airlines Tour
Planning Software submitted by Mr. Harekrushna Patel, towards partial fulfilment
of the requirement for the Master degree of Technology in Computer Science at the
Indian Statistical Institute, Calcutta, embodies the work done under my supervision.
His performance in the said project is satisfactory and has achieved good results. 1
wish him all success in his future endeavours.

Date : 31% July 1998

Asron 1 e K2 %zﬁj YIAY
(External examiner) 31§ 78 (Probal Sengupta)
Professor

Computer Vision and Pattern Recognition Unit
Indian Statistical Institute
Calcutta

ACKNOWLEDGEMENTS

I am expressing my sincere regards, to my project co-ordinator and guide,
Prof. Dr. Probal Sengupta, whose deep involvement in the project, ispiration, strict
schedule, love and affection towards me, enabled me to complete this project in due
course of time. During the development and implementation stages, his timely
issuance of approaches, ideas and lessions have helped me to simplify the
development to a great extent.

] thank each individual of the CVPR Unit for providing me all kind of help in
many different ways. |

I would like to take this opportunity to thank my teachers for their excellent
teaching during the M. Tech. course, which helped me in this work.

It is very much difficult to acknowledge all individuals, who are directly or
indirectly involved, but I especially thank Mr. Rajeev Verma, Mr. Rajesh Babu, Mr.
Biplab Sarkar and Mr. Parveen Gupta for their helpful suggestions on the occasions
and providing me resources to complete this work.

At this moment, I would like to acknowledge my friends Mr. Balakrishna
Reddy, Mr. Sudhakar Rao, Mr. Rajeev Sinha, Mr. Pawan Kumar Singal, Mr. Manas
Ranjan Jagdev, Mr. Piyush Ranjan Kumar and all my classmates, who shared those
moments of joy and frustration and made my two years stay at ISI enjoyable.

I shall pay my gratitudes towards my parents, brother-in-law Mr. Baldevbha
Patel, cousin Mr. Govindbhai Patel and my elders whose unseen blessings,
encouragements and support can’t be measured in words.

Harekrushna Patel
31% July 1998

Chapter

Cbn tents

Topic

Certificate of Approval
Acknowiedgement
Abstract

Introduction and Problem Spectfications
1.1 Motivation
1.2 Problem Specification

Problem Analysis and A Proposed Solution

Design and Implementation of The System
3.1 Design Issues

3.2 Data Structures

3.3 Algorithms

The User Guide
4.1 The Installation
4.2 The Maintenance

Results and Conclusion
5.1 Results

5.2 Conclusion

References

Page no.

h Uh

10
10
13
16

20
20
20

21
21
22

23

ABSTRACT

In this project, a system is considered that can plan a tour within India through

domestic airlines. The administrator can maintain the system. Normal users can plan a
tour using the system.

To make the system varsatile, the application is made text based. The original
data about domestic airlines is available on the Internet. The database required for the
system can be created from the data and can be updated by the administrator at certain
time intervals. This database can reside on the system itself.

The application is planned to be hosted on an Internet Word-wide-web site so
that anyone with an access to the internet can use the software to plan his or her tour.

1. Introduction and Problem Specifications

1.1 Motivation

During the past few years, India has grown as a global economy in the world.
It has achieved growth in the industry. People therefore need to travel from one place
to another as quickly as possible, for purposes related to industry, business or any
other. Air travel is undoubtedly the fastest mode of travel With the increase in
industrial and business activities, the number of persons travelling by air in India has
increased significantly. Air travel in India is still a costly alternative, given the high
fares of travel and the relatively low income of average Indians. However, under
certain circumstances, a traveller may not mind the extra fare provided certain other

requirements are fulfilled. Considering an average Indian air traveller, his/her
requirements could be:

1. Having to pay the minimum amount in air fare.
2. Completing the journey in the minimum possible time.

3. Having to wait at airports of intermediate stoppages for a minimum amount of
time.

In the earlier days of less (air) travel an average traveller used to fly only from
one of the few major cities to another. But nowadays, the incidents of travellers
having to fly from a smaller city to a major city, or vice versa or between two smaller
cities, is on the rise. However, the airlines infrastructure in the country is not
sufficiently geared up to provide direct flights even for a small fraction of such ‘non-
standard’ journeys. A traveller making such a non-standard journey therefore has to
rely upon his/her own judgement (or, in actual practice, on the judgement of the travel

agent) regarding the flight pattern given the flight schedules of the different airlines -
companies plying in India.

The present project is aimed at creation of a software that can act as an aid to a
person wanting to plan a travel or tour in India, through domestic airlines.

1.2 Problem Specification

The title of this project is “Domestic Airlines Tour Planning Software”.The
problem is to design a system, which have database about all domestic airlines within
‘India. The system should be able to reply the users’ queries.

The queries are related to plan a tour within India through domestic airlines.
The possible queries are:

1. Query about a flight.
2. Query about a city having an airport.

3. Query about list of flights available to travel from one place to another with
certain constraints in mind (like minimum cost, minimum time, minimum waiting

time during the travel, fixed time interval to start the travel etc. or any possible
combination of these constraints).

4. Query about the estimate of fare, time required to travel from one place to another.

The original database about domestic airlines is available on the Internet. The
database required for the system can be created and reside on the system. This

database can be updated at certain time of interval and is used to reply the users’
queries.

Some of the airlines companies (for example, Jet Airways,

http://www jetairways.com) even maintain a query system similar to the ones talked
about here but for their own flights only. However, to the best of our knowledge, no
airlines company offers a service of the sort talked about here where:

e All airlines companies are taken into consideration.

e Relative weightages among at least three constraints can be stipulated by the user.

2. Problem Analysis and A Proposed Solution

From the specification of the software, it is clear that:

* The ‘raw’ data for the software is acquired from the database of flight schedules
maintained by differenct airlines companies. The databases are assumed to be ‘on-
line’ and accessible at all times through the Internet.

e Different airlines companies may maintain their databases in their own chosen

schema format. However, insofar as our software is concerned, the queries that are
allowed must be in a uniform format.

* The most important type of query answered by our system is that of constraint
based route planning spanning multiple airlines. Such a query may require some
non-trivial computations to be carried out to arrive at the result.

* ltis worthwhile carrying out certain types of computations only at longer intervals
and store the results of such computations locally.

* While data of flight schedules are not likely to change very frequently, they would
change sometimes. Under such circumstances, the above mentioned computations
must be repeated (at least partially) the keep local data consistent.

* A special user should be there who decides when to trigger the recomputation of
local data.

¢ Normal users should remain oblivious of above mentioned administration duties.

Some definitions of important components of our software may be in order.
The global database

The global database is our abstraction of a host of flight databases maintained
by individual airlines companies operating in India. Of course, each airlines have its
own style and organization of the database. However, considering all airlines

companies together, the following common set of information is always available in
the public domain:

A Flight Number that is associated with the day (of week), time of departure
from the starting airport, intermediate hops (giving the intermediate stoppage airport,
day and time of arrival and day and time of departure) and finally, the day and time¢ of

arrival at the final destination. We consider the above above mentioned abstraction of
flight data of all companies as the global database.

The local database

To reply users’ queries, it may be necessary to compute certain things and,
given the nature of the queries, some of the computations are likely to be repeated
again and again. For example, suppose the user wants to know the shortest path to
travel from one place to another with certain constraints in mind, the system would
have start from all practically feasible paths between the places. In a later query
involving the same two places but with possibly different constraints, the same
practically feasible paths need to be computed again. However, the actual number of
airports in India is not very large and a one-shot computation (or “pre-computation”)
of all practical feasible paths between all possible pairs of start and destination points,

Is quite feasible computationally. Of course, the result of such a computation may get
invalidated by the introduction/withdrawal of particular flights or even by

rescheduling of flights. Since such changes are not very frequent, it may be
worthwhile to carry out the computations on the available data and store the same in a
local database. The Administrator can maintain this database by periodically

refreshing its contents through repeat computation on the most current airline data in
the global database.

User geuries will always be replied using the local database.

The database handler

The global database will of course change with time. Such changes necessarily
update the local database to keep the local database consistent with the global

database at all times. As per our assumptions, the global database consists of several
actual databases available on the Internet and these databases may have different

formats. In our system, we propose an abstraction called the database handler that is
responsible for providing a uniform monolithic view of the data (perninent to the
queries mentioned earlier) of all airlines companies taken together.

One major task of the database handler is to upgrade the local database to keep
the computaed paths stored in it consistent with the global database. In our proposed
system, we asssume the esistence of a special user called the ‘Adminstrator’ who
triggers the upgradation. For the administrator, our software provides with the

necessary interfaces to trigger the upgradation. The special options for the same are
protected from normal users through a password mechanism.

The query processor

On the user side, the user can use the system to plan the travelling in India
through domestic airlines. To plan a travelling, he can have queries. The system can
reply these queries and for that, both the local and global databases need to be
accessed. The component that deals with the queries, is called a query processor. The

user’'s query may make the query processor access either or both the local and the
global databases.

Thus, the overall situation is shown in the figure below.

User Mod dministrator Mode

Abnormal
Termination

By User

Password Available

- | Read-Write Access‘

Database Handler

[_IPassword Mechanism

_Password Not Available

Juery Processor

Global Database

| Local Database

Fig. The overall view of the proposed system.

3. Design And Implementation Of The Systfem

3.1 Design Issues

The possible queries arc:
. To know about a particular flight.
2. To know about a particular city having an airport.
3. To know about a particular airport.

4. 'To know the shortest path from one place to another with certain constraints like
minimum time, minimum waiting time, minimum fare, fixed time and date to start
the journey or any possible combination of these constraints.

5. To estimate the time, waiting time, fare for journey from one place to another.

We assume that the global database consists of several databases available at

various sites on the Internet, one for each airlines company (that is, each airlines
company has a site having database about it).

For a query of type [, 2 or 3, no computation is needed. For a query of type 4
and 5, we need to compute all practically feasible paths (see below) from one place to
another or (o estimate the time, waiting time, fare. To avoid repeatition of feasible
path computation, we use a local database consisting of all practically feasible paths
and the estimation of time, waiting time and fare required for journey for all possible
pair of source and destination. Further, the global database stores data for all airlines
companics. The local database has access to data about all cities, airports, and general
data aboul airlines through the global database.

Practically feasible path

To travel from one place to another, it may be possibie that direct flight is not
available. The traveller may have to change flights, i.e., the journey may have hops.
We feel that a path having a large number of hops is impractical, even if it takes less
time than other paths. We have made an assumption that one can travel comfortably
from one place to another making at most three hops.

We have also made a few other assumptions taking into consideration the ease
and comfort of travel. The assumptions are:

1{)

e Any practically feasible path has atmost three hops. That 1s, it consists of atmost
four flights.

e A traveller will not watt for any (intermediate) flight for more than one day.

o A flight may have stoppages in between. However, the number of stoppages
between source and destination will not be more than four.

The query processor
The query processor can process the following possible queries:

. Query about a particular flight. Serviced by querying the appropriate Web-based
database of the concerned airlines company. Atrlines companies’ data ar
abstracted by the global database.

2. Query about a particular city having an airport. This pertains to basic information
about the city and/or its airport(s). we assume that data for answering queries
would also be available online and therefore be abstracted by the global database.

ot

Query to get the list of flights available to travel from one place another with
certain constraints like:

e want to travel i mimmimum time

e want to travel with minimum waiting time

e want to travel with minimum fare

e want to start the journey in fixed time interval

e any possible combination of the constraints given above

This query is the major concern of our design and would be answered using the
local database containing all possible pre-computed practically feasible paths.

4. Query to estunate the time, waiting time and fare required to travel from one place
to another. This query is actually an extension of the previously mentioned query
whose results come as a by-product of the computations involved therein.

In the work reported in this thesis, we could not create a properly functioning
global database. The main reason was that till very late stage of our work, a
reasonably fast access to the internet was not available, Also, many of the airlines
company operating in India has still not made their flight information available on the
Internet that can be effectively accessed. Nevertheless, we proceed with an abstract
design of the (global) database with the expectation that the present work can be

[l

practically extended to properly connect to components of the global database as and
when data of airlines are accessible through the Internet.

The figure given on the next page describes both the databases altogether by an
E-R relationship diagram.

(,l_ly I CH@ N lAlrport Airlines

1 N I

ourne @erat@

Nj|
| .
City ——Stops at > NI Flight
: N

@nl ll}WD

IN
Path 1

Fig. The E-R relationship diagram.

Entity attributes

1. City : City id, City name, State, Status.

2. Airport : Airport id, Airport name, Airport address, Airport city id, Level of
operation.

3. Airlines : Airlines id, Airlines name, Airlines I-net address.

4. Flight : flight id, Source airport id, Destination airpott id, Days of operation flag,
Departure time, Arrival time, Number of stopages, Array of airports (stopages)
including source and destination, Associated airlines id, Fare, Capacity.

3. Path : Source city id, Destination city id, Departure time, Days of operation path
flag, Number of flights in path, Arrays of flight information (flight information

includes flight id, departure time, arrival time, where to catch a flight, where to
leave it), total time, waiting time, total fare.

Relation attributes

. Stops at : Associated airport id, Arrival time, Departure time, Previous stopage
airport id, next stopage airport id, Time stays at stopage.

2. Journey : Source city id, Destination city id, Estimate of time required, Estimate of
waiting time, Estimate of fare.

3.2 Data Structures

An “in-memory’” view of the various entities can be described by the following
data structure.

1. Flight

Deals with the data of a flight. The contents are:

Flight 1D

Source Airport 1D
Destination Airport 1D
Departure Time
Arrival Time

Days of Operation FLAG
Number of Stoppages
Array of Stoppages

Route Number

Type of the Aircraft
Airlines ID

2-dimensional Array of Fare-structure. There is one entry for each pair of
stoppages. The 1 X 7j -th entry contains information of fare from

stoppage 1 to (o stoppage j. A Fare-structure element stores a) fare for the

economy class, b) fare {or the executive class and ¢) fare for the student
concession class.

® (Capacity of Flight

® & & & & ¢ & 9 ° ° S °

Note : If a new class of journey is introduced at a later data, we can add a
fare for the new class to the Fare-structure.

2. Airport

R

The contents are :

Airport 1D

Name

Address

City 1D

Level of Operation

3. Alrlines

The contents are :

4. City

Airlines ID
Name
Address

The contents are :

e & & @

City ID
Name

State or Union Territory
Status

o. Stoppage

6. Path

The contents are :

Stoppage ID
Arrival Time
Departure Time

Airport 1D of Previous Stoppage .

Airport ID of Next Stoppage
Time Flight Stays

The contents are

14

Start City 1D
End City 1D
Number of Hops

1-dimensional Array of Flight-structure. There is one entry for each flight.
The i -th entry contains information of flight i. A Flight-structure element
stores a) Flight ID b) Airport ID, from where to catch the flight ¢) Airport

ID, where to leave the flight d) Flight Arrival Time and e) Flight Departure
Time

Days of Operation FLAG
Departure Time

Total Time to travel on the path
Total Waiting Time on the path
Total Fare

7. Journey
The contents are :

Start City ID

End City ID

Minimum Time
Maximum Time
Minimum Waiting Time
Maximum Waiting Time
Minimum Fare

Maximum Fare
8. Time
The contents are :

® Hour
Minute
Date

9. Date

The contents are :

e Day
® Month

15

® Year
® Typce of Date (sunday to saturday)

3.3 Algorithms

1. Algorithms to compute all practically feasible paths

At any instance, we have the data of all practically feasible paths for every pair
of source and destination. This data depends on the flights available. Therefore, any
kind of updation in the data of all flights will need the updation in the data of the

paths.

Now there can be three types of updation in the data of flights:
e Insertion
¢ Deletion

e Modification

Insertion will introduce some new paths and the estimates of journey will
change. Deletion will make some paths invalid and it also changes the estimates of
journey. Modification may cause both introduction of new paths and deletion of some
paths. Here we will insert new paths for insertion of new flight and delete old paths on
the deletion of a flight. On modification of a flight, we first delete the paths involving
that flight (before modification) and then insert new paths for the modified flight (
after modification).

Algorithm - Add Paths For Flight :

Input - The flight inserted
Output - Message of success or failure

Scheme -
Begin |
I. (* Find all new paths with no hops *)
For each pair of two stopages of the inserted flight (including the
source and destination) do
[
Make a new path with no hop, from the stopage where the
flight arrives first to another and store it temporary as a new

path with no hop.
}

2. (* Find all new paths with one hop *)
For each old path with no hop pathl and each new path with no hop
path2 do

16

if pathl is joinablc with path2 or path2 is joinable with
pathl do

join two paths and Store it temporary as new path
with one hop.
(* Here for two paths pathl and path2, pathl is joinable
with path2 if destination of pathl and source of path2 are
the same, pathl and path2 have no common flight and

travelling along path1-path2 does not cause a pass through a
same plcae. *)

}

3. (* Find all new paths with two hops *)

For each old path with one hop pathl and each new path with no
hop path2 do

{
if pathl is joinbale with path2 do

join two paths as pathl-path2 and store it as a new
path with two hop.

}

For each new path with one hop pathl and each old path with no
hop path2 do

{
if pathl is joinbale with path2 do

join two paths as pathl-path2 and store it as a new
path with two hop.

}
4. (* Find all new paths with three hops *)

For each old path with one hop pathl and each new path with one
hop path2 do

{
if pathl is joinable with path2 or if path2 is joinable with
pathl do

join the two paths and store this path after joining
temporarily as new paths with three hops.

}
3. (* Store new paths in the local database *)
For each new path pathl do

[

Insert this new path pathl and update tha data of the journey

with the source and the destination same as those of this new
path pathl.

}
EndOfScheme

Algorithm - Delete Paths For Flight :

Input - The flight to be deleted

|7

Output - Message of success or failure

Scheme -
Begin
1. for each path pathl involving the flight to be deleted do

delete pathl.

2. Rewvise All Journeys.
EndOfScheme

2. Algorithm to compute the shortest path from source to destination,
with given constraints :

Algorithm - Shortest Path :

Input - Source, Destination, Time Interval To Start Journey, Priorities, Class Of
Journey

Output - A Shortest Path or Message of Failure
Scheme -
shortest - shortest path till moment
current - path 1n question at the moment
current square - sum of deviations
least square - least of all squares tiil moment
max time - maximum time required for the journey
min time - minimum time required for the journey
max wail - maximum waiting time required for the journey
min wait - minimum waiting time required for the journey
max fare - maximum fare required for the journey
min fare - minimum fare required for the journey
Begin
shortest = nuli
least square = infinity
1. for each path current with given source and destination do
[

iIf the departure of path is in given time interval do

{

current square = zero

max time - total time
max time - min time

importance for time =

if importance is less than priority for time do

add square of difference in importance and priority
to current square

importance for waiting time = 'NaX Wait - wailing time_
max wait - min wait

if importance is less than priority for waiting time do

X 1

|8

add square of difference in importance and priority
to current square

. max fare - total fare
importance for fare = % 100

max fare - min fare

if importance is less than priority for fare do

add square of difference in importance and priority
to current square

iIf current square is less than least square do

{

least square = current square
shortest = current

}

2. 1f shortest 1s not null do
output shortest

else output message of failure
EndOfScheme

19

4. The User 6Guide
4.1 The Installation

Install the system

Create a seperate directory, to install the software. Copy all files in it. Compile

the programs using the C++ Compiler. Run the initialization programme. This
programme will set the password(s) meant for the administrator and access the global
database available on the Internet to create the local database consistent with it. At the
end of execution of this programme, you will have the system installed.

4.2 The Maintenance
Keep the system up-to-date

You fix some time of interval (one week is recommended). Run the database
updation program in the administrator mode at the time of interval, fixed by you. This

programme will access the global database and update the local database. In this way,
you can keep your system up-to-date.

20

5. Results and Conclusion

5.1 Results

The software developed so far has been used to plan travelling from
Bhubaneshwar to Amritsar with various constraints. The results are given here.

1. Totravel on 1, Jan 1998 in minimum time
The path we got is :

From : Bhubaneshwar

To . Amritsar

Total tme ;20 hours and 45 minutes
Wailting time : 14 hours and 25 minutes
Total fare

e Economy class : Rs. 16990/-

o FExecutive class : Rs. 25240/-

e (Concession class : Rs. 12400/-
The flights are :

IC 744 from Bhubaneshwar at 15 : 30 to Calcutta at 16 : 20
1C 765 from Calcutta at 18 : 00 to Chennai at 20 : 05

1C 539 from Chennai at 23 ; 05 to Delhi at | ; 35

CD 486 from Delhi at 11 : 20 to Amritsar at 12 : 15

2. Totravel on 1, Jan 1998 in minimum waiting time
The path we got is :

From : Bhubaneshwar
To . Amritsar
Total time : 20 hours and 45 minutcs
Waiting time : 14 hours and 25 minutes
Total fare
¢ Economy class : Rs. 16990/-
e Executive class : Rs. 25240/-
e (Concession class : Rs. 12400/-
The flights are :
1C 744 trom Bhubaneshwar at 15 : 30 to Calcutta at 16 : 20
IC 765 from Calcutta at 18 ; 00 to Chennai at 20 : 05
IC 539 from Chennai at 23 : 05 to Delhi at 1 : 35
CD 486 from Delhi at 11 ; 20 to Amritsar at 12 : 15

3. To travel on 1, Jan 1998 paying minimum fare

The path we got is :

21

From : Bhubaneshwar

To . Amritsar

Total time : 20 hours and 45 minutes
Waiting time : 16 hours and 55 minutes
Total fare

¢ FEconomy class : Rs. 9320/-

e Executive class : Rs. 13790/

e (Concession class : Rs. 6900/-
The flights are :

o IC 744 from Bhubaneshwar at 15 : 30 to Calcutta at 16 : 20
o [C 402 from Calcutta at 17 : 30 to Delhi at 19 : 35
e CDA486 from Delhiat 11 :20to Amritsarat 12: 15

4. To travel on 5, Jan 1998 in minimum waiting time, paying minimum
Jare

The path we got is :

From : Bhubaneshwar
To . Amritsar
Total time : 22 hours and 5 minutes

Waiting time : 17 hours and 15 minutes
Total fare

e Economy class: Rs. 11115/-
¢ Executive class : Rs. 16425/-
e (Concession class : Rs. 8100/-

The flights are :
e]JC 706 from Bhubaneshwar at 14 : 10 to Guwahati at 14 ;
50

o JC 704 from Guwahati at 15 ;: 30 to Calcutta at 16 : 40
e IC 402 from Calcutta at 17 : 30 to Delhi at 19 : 35
e CDA486fromDelhiat If :20to Amritsarat 12 : 15

5.2 Conclusion

Here we have developed a software, which can help 2 common man in
planning a travelling by air in India. In this project, we have assumed that a traveller
want to travel from one place to another. We can upgrade this software so that it can
help to plan a tour (visiting more than one place) through airlines within India.

22

References

. “Software Engineering - A Practitioner’s Approach” by Roger S. Pressman. The
Mcgraw Hill Companics Inc., New Delhi.

. “An Integrated Approach to Software Engineering” by Pankaj Jalote. Narosa
Publishing House, New Delhi.

“Database System Concepts” by Korth and silberschatz. The Mcgraw Hill
Companies Inc., New Delhi.

23

