T OF CIRCUIT STRUCTURE

Rl - L - P
S | j;ll;.-l “ - 4 Y " '
T L 1 n

ON PATH DELAY FAULT TESTABILITY

IN VLSI DESIGN

a dissertation submitted in partial fulfilment of the
requirements for the M.Tech. (Computer Science)

degree of the Indian Statistical Institute
By

Biplab Sarkar (MTC9619)

Prof. Bhargab B. Bhattacharya
Advanced Computing and Microelectronics Unit.
INDIAN STATISTICAL INSTITUTE
203 , Barrackpore Trunk Road
Calcutta - 700035

' ' oI
; . ’S-“C» iNS Ty
: - ,.-’!‘ :1;‘\ . {s rs |
. _.;_f' {_;%‘ _‘,,-a-*'“""""_* . TNy |

1998 i

Certificate of Approval
This is to certify that the project work entitled Effect of circuit structure on path delay

fault testability in VLSI design submitted by Biplab Sarkar, in partial fulfilment of the
requirements for M .Tech in Computer Science degree of the Indian Statistical Institute ,

Calcutta , is an acceptable work for the award of the degree.

Date : July 29, 1998.

(Supervisor) (External Examiner)

Acknowledgement

I pay my sincerest gratitude to Prof .Bhargab B. Bhattacharya , for his guidance , advice ,
enthusiasm and support throughout the course of this dissertation .

I would also like to thank Dr. Subhas Chandra Nandy , one of my teachers for his
valuable support during the course of this project .

My special thanks to the CSSC unit for providing me with computing facilities.

I thank all of my classmates , who gave me numerous suggestions during my project , and
also for a friendly atmosphere during my two years at ISI, Calcutta .

Finally , I express my heartiest thanks to the members of the M . Tech . Dissertation
Committee, '

INDEX

Page
1.1 Introductiono ioviiveiiesensnrsoncoansosessasrronssaososa 3
1.2Related WorKkSccivivinererenraeescrsessanssnnssnsanss 4
2.0 Definitionsand Notations ccovreivneeceererccenscarons S
2.1 General Transformations...........coiieeerinenencctarinnans 9
SOAIgorithm ..o iiv it iiiinreriiietecracassatossarssvosssvanes 10
4.0 Experimental Resultsciiiiiiiiiiiiiiiiiiiiiiecnnse 16
00 JU0HY 1 Tl L1 1:3 {1) 1 Y PPN 20
BOReference.......cciviiiieiiiiiieiiiiiiiieriiiaiaes cosens 21
7.0 SO tWALE .« . oo ittt eeevoscncassasssascsssssrsonssnssacsss 21

Abstract

Failure that cause logic circuits to malfunction at the desired clock rate and
thus violate timing specifications are currently receiving much attention .Such
failures are modeled as delay faults. They facilitate delay testing. Since design for
testability is the approach followed now-a-days several synthesis for path delay fault
(PDF) testability is studied in much depth. Local transformation is one such
approach. A new approach for applying local transformations is considered here.
This approach can be used along with the existing local transformation approaches to

get better results.
Additionally , a software implementation of the proposed algorithm is also

considered here and the experimental results are quiet attractive in comparison to

existing local transformation algorithms.

Keywords: design for testability , path delay fault model , testability preserving

transformation, testability improving transformations .

1.1 Introduction

Testability is one of the most important aspects during the design and
production of Integrated Circuits. All circuits are to be tested for its correctness of
behaviour after designing is over. But in order to keep testing cost to the minimum
designers have to consider testability aspect very early in the design phase itself . For
this fault models are defined and tests for faults in the fault models are conducted. A

large amount of physical defects are not actually covered by static fault models, which

only checks the logical behaviour of the circuit to be tested. Digital system designers
always tries to maximise the system clock frequency in order to extract the maximum
performance from the hardware. The maximum allowable clock rate is determined by
the propagation delays of the combinational logic part of the circuit . The propagation
delay must be lower than the system clock interval in order to avoid delay faulits

affecting the circuit performance.

Keeping all these aspects in mind more powerful fault models like the Path
Delay Fault (PDF) [Smith85] is used , which covers a lot of other fault models e.g. the

stuck-at, the stuck-open and the stuck-on fault model.

1.2 Related Works

(Becker95] applied Local Transformations to enhance path delay fault
testability. A System for Applying Local Transformations (SALT) was also
introduced . A number of local transformations were proposed viz. T;, T>, T3, T4 & T;
. (Table 1) .[Karkare97] also proposed some more new transforms. The most
unfortunate part of this method is that one has to maintain a database of the possible
transformations and try to apply those transformations by checking the existing circuit.
This method doesn’t seem to be very impressive . But the performance of SALT is
impressive for the test circuits that it has been tested upon. The algorithm to be
presented iﬁ this thesis tries to look at this from a different perspective. The heuristic
is to avoid redundancy of logic in the circuit. It is also discussed how to incorporate

the existing SALT database technique to this new algorithm thus giving a more

powerful algorithm.

Table 1. Compilation of specific transformations from { Becker95] .

(ab)A; +(ab)A; + ... +(ab)A, | CA, + CAs + + CA, withC =ab |

iy R "

A, B, + A B, [A, (B, + By) |

abA + a'B + b'B | MA + M’B with M = ab |

(ab’ + a’b)A + (a’b’ + ab)B MA +M'B with M=ab’ + a’b

a’bA + acA + a’b’B + ac’B MA+MB withM=ab+ ac |

Before proceeding further some definitions and notations are presented here .

These terms and notions are used throughout the text.
2.0 Definitions & Notations

A Combinational circuit 1s modeled as a directed acyclic graph whose nodes
are labelled with a basic cell type (AND , OR, NAND , NOR , XOR, XNOR, NOT)

or with the name of a primary input or a primary output .

It is well-known that, even if the circuits are correctly designed , a fraction of

them will behave faulty because of physical defects caused by imperfections during the
manufacturing process. Fault models which covers a wide range of possible defects
have to be defined and tests for faults in the fault models have to be constructed . The
fault model adopted here is the Path Delay Fault model. Unfortunately , fault
coverage for Path delay Fault model is quiet poor for typical combinational logic
circuit [Reddy87][Fuchs91] .Therefore , several synthesis approach for PDF Testability
have been developed . most of these approaches use Testability Preserving Transforms

(TPT) and Testability Improving Transforms (TIT) .

¢ Path Delay Fault

In Path Delay Fault model , any path with a total delay exceeding the system
clock interval is said to have a path delay fault. This models distributed defects that

affect an entire path . For each physical path , two corresponding delay paths , the

rising path and the falling path is defined. The rising (falling) path is the path
traversed by a nising (falling) transition at the input of the path and changes the

direction of transition whenever it passes through an inverting gate .

¢ Size of a circuit
The Size of a combinational circuit is the sum of the numbers of inputs for all

cells in the circuit. (note : Buffer is not taken as a cell) .

¢ Path in a circuit

A path P of a combinational logic circuit is given by an alternating sequence
of nodes and edges (vo,o,v1,€1, ... ,Vy ,€n, Vnsi) Starting at a pnmary input vO and
ending at a primary output v,,; . Inputs of nodes on the path where no edges e; the

path ends are called side inputs .

A nsing (0 —1) or falling (1-— 0) transition at v, (primary input) propagate
along P if a sequence of transitions ty,t;, ... ,t,,; occur at the nodes Vo, vy, ... ,Va ., Vaul

such that t; occurs as aresultof t; ; .

For the detection of a PDF a vector pair < t;, t; > is required rather than a
single input vector as in static model. t; (t;) is called the initialization (propagation)

vector . In the following some further classifications of PDF are given.

e Robust PDF Test

A vector pair < t;, t, > is called a robust PDF test, if the considered PDF is
detected by < t;, t,> independent of all other delays in the circuit and all other delay

faults not located on P.

¢ Hazard-free Test

A PDF test for a path P is said to be hazard-free if no hazards can occur on P

during application of the test.

® Single (Multiple) Path Propagation

A PDF test is called single (multiple) path propagating if a transition 1s

propagated to a primary output through exactly (more than) one path.

e Single (multiple) Input change
A vector pair < t;, t;> 1is called a single (multiple) input change test , 1t t, and

t, differ at exactly (more than) one position.

¢ Controlling Value
A controlling value at the input of a node i1s the value which compietely

determines the value at the output. e.g. 1 (0) is the controlling value for OR { AND)
and 0 (1) is the non-controlling value for OR (AND).

e Static Value

The value of a signal is called static if it remains stable during the application of
the initialization and the propagation vector, 1.e. the value is not invalidated by hazards

or races.

¢ ON (OFF) Implicant
An input vector ¢t € B " of function is called ON (OFF) Implicant , iff f(t) =
1¢0).

Using a single path propagating PDF test for onc transition along a path P
every side input has a static non-controlling valuec. A single propagating PDF test for

the complementary transition along p can simply be obtained by interchanging the

initialization and propagation vector .

® Testable { Untestable)

A transition propagating along p is called restable iff a PDF test for transition

exists ; otherwise the transition is called untestable.

According to the above mentioned correspondence a path P is testable , iff

both transitions propagating along P are testable .

e (Complete Test Set
A set T of vector pairs is called a complete test set if it contains a PDF test for
every testable path in the circuit . If there is a test for every path, T is called a full test

sel .

® Local Transformations
A Local Transformation is the substitution of subcircuits by new realizations
which have better properties with respect to the current goal of optimization. The

search pattern circuit (SPC) represents the subcircuit to be transformed and the

substitution pattern circuit (SubPC) describes the subcircuit which will be substituted
for the SPC .

Now we Jook at the conditions to be checked to ascertain that a

transformation preserves PDF testability .

Theorem 1. Let T be a full test set for a circuit N, and let K, be a single output
subcircuit of N; . If conditions (1), (ii)and (iii) hold for a circuit K, then T is a

Jull test set for the circuit N,, which originates from N1 by substituting K, for K, .

(1) K has the same input sequence and performs the same function as K.

(1) Ifatest set T, tests all paths in K, then T, tests all paths in K,.

(1) If a vector pair < t;, t; > produces a static value at the output of K, then
<i,t2> produces a static value at the output of K,.

Proof. Details of the proof is in [Begker%j. Q.E.D

A local transformation is said to improve PDF testability if condition (ii) in

Theorem 1 can be strengthened to

(11) If atest set T, tests all paths in K, then a proper subset T, T, exists such

that tests all paths in K, .

¢ Testability Improving Factor

Let T be a local transformation of the SPC K; by SubPC K and for all inputs
A of K; and K; let P4(K;) be the number of paths in starting at input A and ending at

the output of K; . Then the testability improving factor of input A is :
TIFr (A) = Pa(K;) / Pa(K3)

2.1 General Transformations

De Morgan’s laws and factorization are the basic transformations used in the
synthesis process. Its is well-known that de Morgan’s laws and factorization retain
PDF testability [Devadas90]. A number of transformations are given in [Becker95] and
[Karkare97] . It was shown in [Becker95] that distributive law may not preserve PDF
Testability. It may introduce some hazards to the transformed circuit . The proposed
algorithm uses these basic transformations viz. De Morgan’s law and factorization for

minimization.

3.0 Algorithm

The basic heuristics in the proposed algorithm for PDFT Enhancement

(PDFT_En) is to see that the circuit minimizes the number of redundant logic. Since 1n
general , the redundancy in a circuit is leading to untestability of a circuit path . So
,one can have a non-redundant circuit with all the paths sensitizable which will help in
making PDF testability possible .This idea has made the algorithm to go for an
incremental build-up of the circuit starting form the primary inputs and gradually
adding more and more logic gates to it taking care that redundant logic is avoided at
every stage of insertion of new logic gate. This means create a new logic gate in the
circuit if that logic doesn’t exist in the circuit constructed so far . The algorithm

assumes that a logic may exist in one of the following forms in the circuit.

(1) Exactly in the same form as one is trying to look for or as its inverse or de

Morgan equivalent or some other equivalent forms.
(11) Factorise out from some existing logic. e.g. a four input OR 1s same as a

cascading of two or more OR gates with lesser number of 1nputs.

The main bottle-neck in the implementation of this algorithm is to maintain a
fast access database for all the logics created in the circuit so far using some coded
. notations. Before starting-the algorithm some preprocessing is to be done on the input
circuit’s netlist . The circuit gates are to be levelled such that for any gate G (A, B)
having inputs A & B, level (G) > level (A) and level (G) > level (B) . This
levelling 1s required because the algorithm is an incremental one . It assumes that the -
logic created so far are made as rredundant as possible , by the logic matching scheme
adopted by the algorithm . So, gates are to be inserted in the circuit database according
to increasing order of levels , starting form the primary inputs which are given the

minimum level value.

10

The pseudo-code for the algorithm is given here :

Procedure: PDFT_Enhancement

Input: The Circuit Netlist with all gates levelled according to their depth from
the input gates.

Output: The Circuit netlist with better PDF Testability .

Aim: - The procedure inputs a netlist of logical gates and tries to minimize
the netlist inorder to enhance Path Delay Fault Testability by avoiding

generation of redundant logics and trying to reuse existing logics .

Variables: MAXLEVEL : Gives the maximum number of levels (depth) in the
CIrcuit.

MAX GATE_AT THIS LEVFEL: Maximum number of gates at a
particular level.

G(i,j):Thei-th Gate G at level j.
start
(Introduce levels in the circuit gates so that the dependencies are easily
understood.)
Level Adjusting().
for j=1to MAXLEVEL do
for i = 1 to MAX GATE_AT THIS LEVEL do
(See that if the logic generated by this gate exists already in the
circuit database constructed so far . Use various equivalent
forms of the logic to answer this query. Use some
preprocessing of the fanins of the logic so as to minimize the
size and the pathcount.Infact use factorization to achieve this.)
Pre_Process((i, j)) .
endfor
endfor
(Now the minimised circuit is created . But it exist in the database in a form

that makes each gate related to the other only by the fanin relations. The

11

netlist to be generated must be related by the fanin as well as the fanout from

each gate. So a circuit extraction module is called. }

Extract_Circuit().

end

Procedure:
Input:
Output:

Aim:

Variables:

start

end

Procedure:
Input:
Output:
Aim:

Variables:

start

Level _Adjusting
The circuit nethist .
The levelled circuit netlist.

The circuit gates are levelled so that the dependencies are easily
understood. Any gate G(A,B) having input A and B will have
level(G) > level(A) and level(G) > level(B).

G 1s a logic gate.

Do a breadth-first traversal and set the levels to all gates starting form

the primary input side and going towards the primary output.

Pre Process

A gate G.

No Output.

The input logic is tested if it can be minimized using the factorization
technique . This infact improves the circuit characteristics. After that,
the logic gate is inserted in the netlist by checking if any existing logics
can be reused instead of generating a new logic.

G is a logic gate.

If the logic G can be factorised

factorise the fanins and INSERT new logics formed in the database .

else create a new logic and INSERT it in the database.

end

12

Procedure: INSERT
Input: A gate G.
QOutput: No Output.
Aim;: To insert a new logic gate in the circuit database
Variables: G is a logic gate.
start
(Look in the database to see if the logic gate already exists or not.)

if gate G i1s not found in database create a new entry in the database.

end

Procedure: Extract Circuit

Input: No Input

Output: Circuit Netlist .

Aim: The circuit formed in the database is inter-related by the fanins only.
But

we want to get a netlist having inter-relation by both fanins as well as
fanouts . So we start extracting the circuit from the primary output side
and gradually come to the primary inputs on the way building the
fanouts for each gates .
Variables: G is a logic gate.
start
(Starting from the primary output use breadth-first traversal and form the
fanout list forthe gates which are in its fanin list .Gradually build up the
fanouts and proceed forth.)

end

13

The Logic equivalence that is tested here looks into the following equivalent forms:
(i) Exact form or its inverse. c.g. (A + B) is equivalent to (A’. B’)’ or inverse of
' (A+B) or(A’.B").
(i) The logic may also exist in association with some other logic. e.g. a 4-input
OR gate can be expressed as a cascade of more than one 2-1nput OR gates.
(1) There may be some more equivalent forms which may be good. Here the idea

of Local transformations may be used . (this is an improvement over the
algorithm)

Analysis:
Let us denote the number of gates in the circuit to be n for the next of our

discussion. Here we shall be considering the above algorithm considering a simple

database . No hashing technique is assumes. A crude way of data accession is

considered .

Lemma 1. The Size of the database is of order O(n’).

Proof. Since at each iteration we want to either reuse some existing logic or try to
build some new logic, there is at maximum insertion of n new gates in the database at
each iteration. This insertion takes place when factorization is done on the fanins .

As the fanins are of the order O(n) . Q.E.D.

Lemma 2. The complexity of the search (INSERT) algorithm is of the order O(n’) .
Proof. Since the size of the database which contains the gates is of the order O(n’)
the complexity for any search is the complexity for finding out the gate and the
complexity to compare the fanins. Each gate can have fanins of the order O(n) . So
the complexity is of the order O(n’) considering linear access time for finding out the

gate of interest and looking into the fanin of the gate..

14

Lemma 3. The complexity of the Levei_Adjusting and Extract_Circuit is of the order
O(n’).

Proof. Since a breadth-first search is only used. QE.D

Theorem 2, The complexity of the PDFT_FEnhancement algorithm is of the order
o(n’).
Proof. The algorithms inner loop is having a complexity of the order O(n’) . The

outer loops are in total for n times .
QED

If hashing technique is used the accession time from the database can be
reduced to a constant time. This would have resulted in order O(n) looping followed
by order O(n®) breadth-first searches giving the overall complexity to be of the order
O(n’). The algorithm tries to minimize the use of gates . The use of NOT gates are
minimizes as and when possible. BUFFER gates may be used if requires as it is
assumes that primary outputs don’t have any fanouts. In all cases the size and the
number of paths are minimised but never increased. The depth of the circuit may be
changed . The number of primary outputs may be reduced . In such case more than one

output gets merged into one output . The number of primary may also get reduced as a

bidirectional check is used to see if all outputs and inputs are infact useful or not. If an

input is unable to cause any effect on the output side it is removed. Similarly the

outputs are also checked .

Improvement:

The Algorithm is robust enough to be able to incorporate the local transformation
algorithm of PDFT enhancement as proposed by [Becker95} but using somewhat a
bigger search space for the substitution circuit. In the implementation two
transformations viz. T4, Ts as proposed by [Becker95] are introduced as a case study

. By default the transformations T;, 7,4 T; are taken care of be the algorithm itself
without any special treatment. So one can improve upon this algorithm by using a
good data accessing technique and incorporation the local transformation technique as

proposed by [Becker95] to get a better result.

[5

4.0 Experimental Results

The experimental results are quiet impressive when compared with the results
obtained by [Becker95] using SALT. So a comparative tabulation (Table 2) is done

here. The ISCAS85 benchmark circuits are used for testing. The implementation was
done in C++ on a Sun SPARCStation-1 under Sun0S-4.0.x. having 4MB RAM .
Because of the hardware constraints the CPU timings may not be accurate (enough
swapping.). The timings for the main algorithm is only given , the post processing

times are not included here.

17

Table 2. Results of Transformation on different ISCAS8S5 circuits.

el Ve el [et]

—

VL
13
SALT

'PDFT _En 12

Original 8642 383 25 1.125
SALT 7546 29
| 8642 333 22 2.246
c432 336 83926 160 18 0.253
- SALT
PDFT_En | 309 83926 136 15 0.539
c499 Original 376 9440 170 10 0.359
SALT — | - N
PDFT_En | 344 8544 142 12 0.496
| c1355 Original | 1032 | 4173216 546 25 2436
| Bl SALT 804 | 397888 19]
"PDFT_En | 1000 | 3775776 518 27 5.482
1908 Original 1330 | 729056 875 41 l 7.535 |
SALT
PDFT_En | 955 | 726965 597 2 | 6014
c2670 Original 1829 | 679954 1143 2 | 18.184
| _ SALT | 1862 | 228727 - | 32 l
PDFT_En | 1420 | 168252 919 36 30.231
c3540 Original 28265874 1611 48 35435 |
SALT 21140286 52 | -
PDFT_En 8845346 | 1163 52 40.694 l
¢5315 | Original 1341305 2296 | 50 |
SALT 1173865 — [49 |
PDFT_En 1111569 1960 52
c6288 Original | 4800 9x 10" 2416 125
SALT 3872 | 8.70x 107 94
| PDFT_En | 4784 | 9x 10" 2400 125 179.469
¢7552 | Original | 5573 | 726494 3475 44 185.711
| SALT 5588 | 576694 44
PDFT En | 4267 | 533581 2587 43

18

e e e e

el H FHHH -
e

> f
H . e
L H
vty T Hrak P
e T
e R L I I e il
R e
A T
f e e P
s
RN
HH

FHAY
e
i
LR
o

s
R
ki

R L

L L T

e e

A

T

S
A

5

oy
R
o

< :-\.%?,-.-
[
£

ran H ok
e TS R ot R A L T
A s ek e A A 3 et RO,
R R ?ﬁﬁ.u..”ai.w.?sﬁmik R
O s : H ﬁ....... L
"

Ly
ey
M AT
R e T A
S 5 : R i
L . Sy R A :
by o H b P, H e et HiH
. S G
-r...,_,.... S, R S I RN e
e s e e > EEE e R R
e e T e o
......,.W&...Wnﬁ...m”..ﬁﬁ.. L by =

e
R, P ."..................,......“w,.....,“.v
T ..r.ur....,..w....r

G
SR

pHC
S
L
L T,

A MY o Y Ea LAY
Mt H FEHEH FEEERATE A
AT N R e e o L f A L T e
AT H AN HHRR I,

u.wn.w...,..n.......,. R F]

i

FHR
L :
Rk
: S EHL 5
- Lo S .
3 R R L iy Pk
A At o]
TN R Ty e e) R
ARt e L o
R L,
H - e o
RM.,. .u..”.w.....,...,........u.......f.,..,. 15
)
o e
e
A e i D]
T R A T e

...
o

R AT

TR

:

e
R
e
] ._.{l "

=

G
L
L3
S,
"
i
S
G5
i

[y
E

i
S

i

.

...

s Rt

R H

AT LR ERNE
et HH

i

4
.-\._'\;i

st ":-E;f{"‘-:

i S
A PR TN
] e
; T
5 ¥ FETEPH
SR
T I
WAL R e

+.
R
AR
P
H...H.....,...,........

S

FEEEEL,
ne e
AT
o
e

CHE !
e L D e
G S AR
e e T SRS
e =m..,...,................m...w... GiEH L H“..... i
..:.

o

Zhand

m
- -
LEROT
PR P, e et PP et
] SR i R,
3 i A
x&%ﬁ;ﬁﬁ 2 %& .,f.m.?ﬂ.??,u.,,..n i Bk S

e
S
AR L g Ly
e
L HH
P PO ..."...“.“n,..,.,.....”.......
R e
e i
SRR
HOr P
R

Lt

pE
e H H
RN
PR
it b 2 o
T
E e LT A
SRR
- LT R,
TR
A
oL,
PR A
ey e el
R o
R

HH H B
e o s s A L
R
R
R
; T
Py A
LT T
e AT
e
Ho Hh i, :
R 5 e
] : S s A B T A A A-
S e A S Hﬂhﬁ.ﬁ&fkﬁ%ﬁf
i i B et e ;
HeH 0 A e T
T e
SR e R T e T
gyn,........ a?}k}ﬂxcﬂﬁ.wxg g ,wﬂf#.nﬁ.vwﬁuﬂﬂ.w{ﬁmhﬁh{
e 0 ey - " b it o
jf?{%f{iﬂrﬁ{xﬂﬂwﬁm&ﬁﬁf s S i
..,.......".,......H,.." o,.......“N,.,...f....}.?..... T Anw... b S o
e T Sty AR, ; SR s h.%ﬁ@ﬁh&ss e e T
] , St A R e AL AR i
ey o Y N -, g
i S i S s

R ; IR AR e

e
¥n.... o 4
gt E i : e i A e I T ﬁﬂ%ﬂmﬁnﬂ?} #.c:frx.wﬂm;ﬁxwﬁ..% e
ks +.__....+f_. - fﬁ_n.fy u. e I, 5 ﬂ.um..ﬂ..".. i AR Hit) IR I Au..... eyn........u.,..".ﬂ e, m.mawaﬁ.pﬁ.é ...mm e, .,.n.........,....ﬁ...m ?,,.{..n..”.n,.{...?: .n.....u_,.-”.r. ¥y ..,."......."..na.“.?.n.ﬂ.,,m:.- ..,.m,..,...........n,.....m..,.ﬂ i Ja,.m“....nu.,“.“.....nmu Pn?....v.n;.ﬁ. .._,.........,.....}}..m,.{ ffmﬂ%f)‘/y‘
B R SRR R U S P G S R e SR S

’ i
R R R

The Size of the circuit is reduced which in most of the cases is better than that
done by SALT (Figure i) . The counting of path is done in the post processing phase
using simple breadth-first algorithm which is of order O(n”). The path count is much

better in SALT (Figure ii) . Of coures in some case PDFT_En is having an upper
hand..

As one can see that the pathcount in PDFT En is not as good as that of SALT.
But the Size is impressive as compared to SALT. This is because PDFT En is based
upon modifying the existing circuit logic only and not adding any thing new. It tries to
reuse existing logics. This helps in reducing the size to some extant. But for Path
Count reduction PDFT_En has to use factorization as much as it can . So for some
circuits the result is not quiet impressive when the Path Count is taken into account.

And use of factorization is an inherent property of the circuit and can’t be predictable.

SALT on the other hand is based upon the philosophy to replace existing circuit
module with better modules. So it can focus on some transformations which will result
in high Path Count reduction. This gives a new proposed algorithm which will
combine both PDFT_En and SALT . The new algorithm should look at both size and
Path Count together. The algorithm PDFT En also tries to implement this new
algorithm just by having a small database of Local Transformation Circuits. So, in
order to get impressive results one has to increase the size of the database for the local

tranfromations. The current implementation has just two such circuits .

20

5.0 Conclusion

To conclude PDFT_En is an O(n’) algorithm if implemented carefully. SALT
seems to be a good but complex algorithm which can be used on top of PDFT_En as
the underlying algorithm thus leading to better results. The hybrid system is having the
potential of improving the Path Delay Fault Testability at the same time reducing the

Size and PéthCount of the circuit.

21

6.0 Reference

1. [Becker95] H. Hengster , R. Drechsler and B. Becker .’ On Local

Transformations and Path delay fault Testability “ . Journal of Electronic

Testing: Theory and Applications, Vol - 7 ,1995, pp. 173 - 192 .

2. [Smith85] G. L. Smith , “ Model for Delay Faults Based Upon Paths .” Prob.
Of Int’l Conf. 1985, pp. 342 - 349.

3. [Reddy87]S. M. Reddy , C. J. Lin and S. Patil ;” An Automatic Test Pattern
Generator for the Detection of Path Delay Faults .” Proc. Of Int’'l Conf. On
CAD, 1987, pp. 284 - 287.

4. [Fuchs91]) K. Fuchs , F. Fink and MM H Schulz, “DYNAMITE: An Efficient
Automatic Test Pattern Generation System for Path Delay Faults.” /EEE
Trans. On CAD, Vol - 10 (10) . pp. 1323 - 1335, 1991.

5. [Devadas90]. S. Devadas and K. Keutzer, “ Necessary and Sufficient Condition

for robust Delay - fault testability of Logic Circuits.” Sixth MIT Conference on
Advanced Research on VLSI, 1990, pp. 221 - 238 .

6. [Karkare97] A. Karkare , M. Singha and A. Jain . “ Testability Preserving and

Enhancing Transformations for Robust Delay fault Testability “. IEEE
Computers. 1997. Pp . 370 - 373.

7.0 Software

The source code for the software developed is available free at the author’s

web site. URL. http://members.tripod.com/~biplabsarkar/.

22

