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Chapter 1

Introduction to DNA
Computing and More..

After a long journey of more than half a century of semiconductor technology based
electronic computing devices it seems that limiting saturation point is not far away
when electronic computing era may start touching its natural physical limits due the
difficulties in fabrication technology like lithography bandwidth. Still hard problems
possibly will remain insurmountable even then. A new ray of hope has come from
the experimental demonstration by Leonard Adleman [Adle94] by solving an NP
complete problem, namely the Hamiltonian Path Problem (HPP), using none other
but the DNA (deoxirebonuclic acid) strands, the nature’s choice as carriers’ of the
definition of life.

In fact even before anyone could think of performing actual experiment demon-
strating direct application of DNA like large organic compounds as computing tools
R.P. Feynman in his visionary lecture [Feynman61)] envisioned molecular level com-
puting. But the road was not easy, since to perform computing in a controlled
fashion, structures (tools) must be stable and suitable to encode miormation, and
DNA nano-technology achieved successes in this type of controls only later. With
the help of these DNA nano-technology tools in 1994 for the first time Adleman car-
ried out an biological experiment for encoding and solving HPP using DNA strands
and standard DNA tool-kit operations. This opened a totally new vista in the field
of theoretical as well as practical computing, most importantly because Adleman
had demonstrated solving not something which conventional computing can easily
work with but a well known hard (in fact NP complete ) problem of solving HPP.
Though the instance of the problem was not large enough (a digraph with 7 vertices
with known Hamiltonian path), still that was a real ground breaking idea because
it opened a totally new vista of computing paradigm with lots of potential.

The most prima falsi reason that DNA, RNA (Rebonuclic acid) and other peptide
molecules have been worked upon more than any other possible alternative chemi-



cal compounds is the rapid and mature advancements in the area of gene and cell
Biotechnology and no mention to say that these are the technologies to work with
DNA and RNA molecules. Moreover the stable and robust structure is what makes
it extremely feasible to effectively work with these organic molecules.

Thus to start with, in a nut shell DNA computing is - "computing with DNA strands”
which definitely contrasts with conventionally known computational biology (which
is the study of computational tools for solving biological problems (especially related
to molecular biology, see for e.g. [Waterman95]))

1.1 Structure

DNA molecule is a composite organic compound [AKL86)] with crystalline (gives ro-
bustness) and amorphic ( storage for information) sturcture(See Figure 1.1 and 1.2).
Usually a long DNA polymer strand consists of mono structures called deoxyre-
bonucleotides (or simply nucleotide or dnt ). Each nucleotide basically contains a
deozyribose sugar , a chain of 5 carbon atoms (denoted) as 1’ 2’ 3’ 4’ and 5°. The
3’ carbon atom is associated with a Aydrozyl group(OH) with one open vacancy for
chemical bounding, and a phosphate group(P) which is attached with 5’ atom. The
1’ atom is connected with any one of the four nitrogenous bases (or simply bases):
Adinine(A), Cytocine(C), Guanine(G), and Thymine(T). These bases characterize
the whole of DNA! nucleotide. Say for example if in a dnt 1’ carbon atom is at-
tached with Adinine or Guanine base then the dnt is simply referred as A or G.
These four nitrogenous bases are chemically classified in two groups - purines (A,

() and pirymidines (C, T). (see figure 1.1)

1.2 Bonding - Giving Single and Double Strands

Chemically two main types of stable bonds possible between any two dnts are:

1.2.1 Phosphodiaster Bond

This covalent bond? is formed between the OH group at 3' carbon atom on one dnt
and P group at 5’ atom of other dut. The main property of this phosphodiaster bond
is its high strength, which gives rise to stable long DNA strands (human genome is
supposed to comprise of a sequence of nearly 30, 000 such dnts!) with long half-life
period. Another important issue due to this bond is that it gives a relative direction

1An another important polymer compound - RNA has its monomer, which differs from DNA
monomer only by having Urasil{U) base instead of Thymine base (T) and 2’ carbon atom of its
ribose sugar is attached with hydroxyl group (OH) rather than an hydrogen atom (H).

2A covelent bond is formed by sharing of electrons in outermost shell by participating atoms.



to each DNA single strand (ssDNA or simplex) such that a ssDNA is referred to
have 5’-3’ direction such that the dnt with free P group is at the left end and dnt
with free OH group is right end. As an example §’- GCAA- 3’ strand indicates that
this ssDNA has free P group at 5’ atom with (leftmost) dnt with Guanine base and
(rightmost) dnt with Adinine base has OH group free at its 3’ atom (because of this
understanding a 5’ - 3’ strand is also referred to as sumply 5'- ), similarly 3- GCAA
-5” (or simply 3'- GACC)indicates that leftmost dnt with Guanine base has free OH
group and rightmost dnt with Adinine base has P group iree for further bonding.
Some times in a relatively long chain these 5’ and 3’ ends may form a phosphodiaster
bond between themselves giving rise to a circular strand.

1.2.2 Hydrogen Bond

This bond which is ionic® in nature is formed between the purine and pirymidine
bases of two dnts abiding by the rule that A couples with T and Ccouples with G
(and vice-versa). This rule is popularly known as Watson and Crick complementary
principle and (A,T) and (C, G) are referred to as complementary base pairs. This
bond is relatively weak in nature and because of that, easy to get formed if the dnts
with complementary bases are present in close proximity under reactively moderate
temperature (about 38° C).

Most useful application of this hydrogen bond comes while forming DNA double
strands (dsDNA or duplex) from complementary ssDNAs (Note that two ssDNAs
are complementary when both the strands have reverse directions 5~ and 3'- (upper
and lower)and corresponding dnts are complements of each other.)If the strands are
not fully complement to each other then they may form partial bonding sometimes
giving rise to hanging double strnds.

It may be noted sometimes that dsDNA is referred to by its upper strand which by
convention is one having 5’- direction.

In case of RNA C and G are complementary and U complements (forms hydrogen
bonding with) both A and G.

Length of ssDNA is expressed as the number of monomers or dnts present in the
strand and written 'n mer’ if the strand consists of a chain of n dnts. length of
complete dsDNA is expressed in terms of numnber of complementary base pairs
(bps). Partial double strands can involve both. Short nucleotides of length about 20
to 30 (mer or bp) are usually called Oligonucleotides(or oligos).

3An ionic bond is formed when one atom (called donor) donates electrons from its outer shell to
second atom (called acceptor.



1.3 DNA tool kit (Recombinant) Operations

Controlied DNA manipulation is known as Recombinant DNA [Brown93]. A DNA
tool-kit is a set of basic operations to do this in molecular biology laboratories in a
routinic fashion. One of the inevitable agents in these operations are - enzymes -
the chemicals that cause all of the transformation to happen in a cell, especially in
genes or DNA strands. Some of the basic operations are:

Synthesis

Oligonucleotides may be synthesized to order by synthesizer by supplying it with the
four nucleotide bases in solution, which are combined according to a sequence entered
by the user. The instrument makes millions of copies of the required oligonucletide
(oligo) and places them in solution in a small vial.

Anneal

This 18 probably the most basic operation used in DNA computing. Single stranded
complementary DNA will spontaneously form a double strand of DNA when sus-
pended 1n solution. This occurs through the hydrogen bonds that arise when com-
plementary base pairs are brought into proximity. This is also called hybridization.

Melt

The inverse of annealing is melting. That is, the separation of double stranded DNA
Into single stranded DNA. As the name implies, this can be done by raising the
temperature beyond the point where the longest double strands of DNA are stable.
Since the hydrogen bonds between the strands are significantly weaker than the co-
valent bonds between adjacent nucleotides, heating separates the two strands without
breaking apart any of the sequences of nucleotides. Melting is a bit of a misnomer
because the same effect can be achieved by washing the double stranded DNA in
doubly distilled water. The low salt content also de stabilizes the hydrogen bonds
between the strands of DNA and thereby separates the two strands. Heating can be
selectively used to melt apart short double stranded sequences while leaving longer
double stranded sequences intact.

Ligate

Often invoked after an annealing operation, ligation concatenates strands of DNA.
While it is possible to use some ligase enzymes to concatenate free double stranded
DNA, it is dramatically more efficient to allow single strands to anneal together,
connecting up a series of single strand fragments, and then use ligase to seal the
covalent bonds between adjacent fragments.

Polymerase Extension
d dedn,

Polymerase enzymes a,ttachﬂto the 3 end of a short strand that is annealed to a
longer strand. It then extends the 3’ side of the shorter strand so as to build the



complementary sequence to the longer strand. The short strand here is called primer
sequence and the longer one is the template sequence.

Most of the polymerase enzymes do require only 3’ end of the primer sequence to
be open for adding new prescribed nucleotide but some polymerases like terminal

transferage don’t require any template for extension so they usually add ssDNA tails
to both sides of a dsDNA.

On the other hand the extension of a single strand proceeds in 3’ - 5 direction by
fixing the 5’ end to a rigid support.

Nuclease Shortening

The enzymes used to shorten a DNA strand (single or double )are known as nucleases.
These are of two types - based upon whether strand is being cut from the end
(exonuclease) or from the mid (endonuclease). Exonucleases remove one nt at a time
from the end of DNA strand. Different exonucleases differ the way they cut (5’ end
or 3’ end, single strand or the double, one end or both the ends).For e.g. Ezonuclease

IIT 18 a 3’- nuclease cutting at 3’ end and leaving overhanging 5’ ends, Bal3! works
on both the ends.

On the other hand endonucleases , which cut the DNA strand at the middle are
as well somewhat specific - S1 cuts only ssDNA (anywhere), DNasel works upon
both ssDNA and dsDNA and at any point (not site specific). There is a special
and useful class of endonucleases which are very much site specific, popularly known
as restriction enzymes (cut a strand of DNA at a specific subsequence). There
are over 2300 different known restriction enzymes that are specific to more than
200 different subsequences. These subsequences are usually on the order of 4 to 8
nmucleotides. Some restriction enzymes will only cleave single stranded DNA, while
others will only cleave double stranded DNA. Similarly, methylation of the Cytosine
nucleotides on a strand of DNA interferes with the activity of some restriction en-
zymes, but not others (see fig. below for EcoRI restriction Activity). Furthermore,
some restriction enzymes will cleave a wide range of subsequences of DNA. Again
some restriction enzymes leave hanging single ends (staggered cut)while others cut
straight away (blunt cut). That is, the specificity of activity varies across different
enzymes. (See Appendix B for some more often used restriction enzymes with their
restriction sites and cutting points). It may be noted that high temperatures deac-
tivate most restriction enzymes except for those that have evolved in thermophillic
archaebacteria.

Separate by Length

(rel electrophoresis is an important technique for sorting DN A strands by size [Brown93|.
Electrophoresis is the movement of charged molecules in an electric field. Since DNA
molecules carry negative charge, when placed in an electrical field they tend to mi-
grate towards the positive pole. The rate of migration of a molecule in an aqueous
solution depends on its shape and electrical charge. Since DNA molecules have the



same charge per unit length, they all migrate at the same speed in an aqueous so-
lution. However, if electrophoresis is carried out in a gel (usually made of agarose,
polyacrylamide or a combination of the two) the migration rate of a molecule is
also aflected by its size (migration rate of a strand is inversely proportional to the
logarithm of its molecular weight [OP94]).This is due to the fact that the gel is a
dense network of pores through which the molecules must travel. Once the gel has
been run, it is necessary to visualize the results. This is achieved by staining the
DNA with the fluorescent dye ethidium bromide and then viewing the gel under
ultraviolet light (the gel may be photographed for convenience). Each lane in the
gel corresponds to one particular sample of DNA (Usually the term tube in used
in abstract models [AmosTh97]). Therefore several tubes are run on the same gel
for the purposes of comparison. One marker lane also remains present containing
various DNA fragments of known length, for the purposes of calibration.

These basic manipulations can be combined into higher level manipulations.(See
Appendix A)

1.4 Why DNA computing?

Though not a single experiment has been conducted so far, which can really put DNA
computing at an edge over conventional computing devices, still from the theoretical
point of view and due to some salient properties of of DNA molecule some clear
advantages of DNA computing can be related as:

opeed. This should fall out from the massive parallelism of the approach, amortized
across the slow serial operations. in fact the excitement of DNA computing lies
mainly mainly its capability of massive parallel searches.

Energy efficiency. Since the molecules actually release energy when they anneal to-
gether, there is some hope that computations could be carried out using very little
energy.

Information density. Packing 10°° strands of data into a liter of volume would give
us an information density at least five orders of magnitude better than current hard
drive technology.

As for example in Adleman’s experiment [Adle94] the number of operations per
second was up to 1.2 x 10® . This is approximately 1,200,000 times faster than
the fastest supercomputer. While existing supercomputers execute 10° operations
per Joule, the energy efficiency of a DNA computer could be 2 x 10!'? operations
per Joule, that is, a DNA computer could be about 10!° times more energy efficient
(Adle94] . Finally, according to [Adle94], storing information in molecules of DNA
could allow for an information density of approximately 1 bit per cubic nanometer,
while existing storage media store information at a density of approximately 1 bit
per 10'%nm?. similarly as estimated in [Bea96], a single DNA memory could hold



more words than all the computer memories ever made.

1.5 Some Disadvantages with DNA computing

As compared to conventional computing (keeping super cornputing devices in mind)where
DNA computing has some definite advantages, it has some inherent difficulties as
well, apart from currently present errors or impreciseness (dealt in next section).

Slow. algorithms proposed so far use really slow molecular-biological operations.
Bach primitive operation takes hours when you run them with a small test tube of
DNA. Scale up to the vast amounts of DNA we’re talking about, and they may slow
down dramatically.

Hydrolysis. the DNA molecules can fracture. They have a life time of about six
months, after that they break - meaning A DNA computer, essentially needs over-
hauling after six months - a costly affair!

Unreliable. every operation in DNA computing is random. The components in the
DNA computer are probabilistic. Because there are some noisy components, the
computing sometimes 1s not reliable. If a tiny subcircuit is supposed to give the
answer "1,” it may yield that answer 90 percent of the time and ”0” the rest of the
time.

Not transmitieble. the model of the DNA computer is conceived as a highly parallel
computer, with each DNA molecule acting as a separate process or. In a standard
multiprocessor a Connection-buses transmit information from one processor to the
next. But the problem of transmitting information from one molecule to another in a
DNA computer has yet to be solved. Current DNA algorithms compute successfully
without passing any information, but this limits their flexibility.

Not practical. DNA computing is not a here and now practical technology as yet
rather than being a pie-in-the-sky research project.

No generality. till yet even though having universal DNA computing models no
precise standardization is there to work out efficiently any problem (computable).
Only some concrete algorithms are there for solving some concrete problems with
some constraints on it.

1.6 Errors, Pitfalls,and Perils in DNA Computing
with Possible Solutions

One of the major problem with the current state of DNA computing is the imprecise
nature of the results due to errors associated with most of the tool-kit operations.
Severity of the condition is such that when Kaplen and others ([Kaplan95]) tried
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to rework with the Adleman’s experiment with negative control they got confusing
answers. Moreover by now no one has experimentally demonstrated solving any
problem with even moderately large instance size using DNA computing. Still it
doesn’t undermine the potential of using DNA, which nature is using million of
years as genetic carriers.

Synthesis of a DNA strand can sometimes result in the strand annealing to itself and
creating a hairpin structure. Even the seemingly straightforward mixing operation
can sometimes pose problems: if DNA is not handled gently, the sheer forces from
pouring and mixing will fragment it. Also of concern for this operation is the amount
of DNA which remains stuck to the walls of the tubes, pumps, pipette tips, etc., and
1s thus lost from the computation.

Hybridization has also to be carefully monitored because the thermodynamic param-
eters necessary for annealing to occur are sequence dependent. This is important
because, depending on the conditions under which the DNA reactions occur, two
oligonucleotides can hybridize without exact matching between their base pairs. Hy-
~ bridization stringency refers to the number of complementary base pairs that have to
match for DNA oligonucleotides to bond. It depends on reaction conditions like salt
concentration, temperature, relative percentage of A’s and T ’s to G’s and C’s, dura-
tion of the reactions and it increases with temperature. One solution for Increasing
hybridization stringency is the choice of good encodings for the input information
of the problem, [DMRGFS97]. Another solution proposed in [Baum96] to avoid self
annealing and mismatches is encoding using specially chosen sequences as spacers
that separate the information bits.

Amplifcation by PCR is used with the assumption that by maintaining a surplus
of primer to template one can avoid undesired templatetemplate interactions. As
pointed out in [KGL96], this assumption is not necessarily valid. Indeed, experi-
mental evidence points to the possibility of the creation of complex structures like
folded DNA, complexes between several strands and incorrect ligation products.
This might further affect the accuracy of using the gel electrophoresis technique for
separation of strands by length. Indeed, in the presence of complex structures, the
mobility of the strands will not depend only on their length, as desired, but also on
the DNA conformation shape. As a possible solution, the use of singlestranded gels
for analysis is recommended in [KGL96]. Moreover, by keeping concentrations low,
heteroduplex doublestrands with mismatches in formation and template template
interactions can be minimized.

Separation of strands by length and extraction of strands containing a given pattern
can also be inefficient,and this might pose problems with scaleup of the test tube
approach. An alternative methodology has been proposed [LGCCLS96): the set of
oligonucleotides is initially attached to a surface (of glass, silicon, gold, or beads).
They are then subjected to biooperations such as marking, unmarking and destruc-
tion, in order to obtain the desired solution. This method greatly reduces losses of
DNA molecules that occur during extraction by affinity purification. Its drawbacks




are that it relies on marking and unmarking which, in turn, assume specificity and
discrimination of singlebase mismatches. While these processes have proved reli-
able when using 15mer sequences, they become more difficult for shorter or longer
polynucleotide strands. Another problem is that the scale of the computation is
restricted by the twodimensional nature of the surfacebased approach: one cannot
reach too high an information storing density. Fxtraction of those strands that con-
tain some given patiern is also not efficient enough, and may at times inadvertently
retain strands that do not contain the specified sequence. While the error rate is
reasonable in case only a few extractions are needed, if the number of extractions
is in the hundreds or thousands, problems arise even if 95% efficiency of extraction
18 assumed. Indeed, the probability of obtaining a strand encoding the solution,
while at the same time obtaining no strands encoding illegal solutions is quite low.
As another possible solution, in {AGH96] the operation remove was proposed as a
replacement for extract. The compound operation remove removes from a set of
strands all strings that contain at least one occurrence of a given sequence. The op-
eration is achieved by first marking all the strands that contain the given sequence as
a substring and then destroying the marked strands. The advantage of the method
1s that the restriction enzymes used for the remove operation have a far lower error
rate than extraction. One of the drawbacks is that, although the initial tube might
contain multiple copies of each strand, after many remove operations the volume of
material may be depleted below an acceptable empirical level. This difficulty can be
avolded by periodic amplification by PCR.

Cutting of a DNA strand by a restriction endonuclease is also referred to as digestion
of the DNA by that enzyme. The process may sometimes produce partial digestion
products. One must test all protocols for the effectiveness of the restriction enzyme
used, and 1t is often necessary to find means to remove undigested material. Similarly,
the accuracy of ligation is high, but not perfect.

A ligase may ligate the wrong molecule to a sticky end, if it bears a close re-
semblance to the target molecule. Detection and sequencing conventionally require
enzymatic reactions and gel electrophoresis that are expensive and laborious pro-
cesses. A possible solution to these drawbacks is using a technique that achieves
sequencing by hybridization, offering a onestep automated process for reading the
output, [Mir96]. In this method, target strands are hybridized to a complete set of
oligonucleotides synthesized on a solid surface (for example an array containing all
the possible 8mers) and then the target is reconstructed from the hybridization data.
obtained. However, to avoid errors arising from selfannealing, a restricted genetic
alphabet is recommended with this method, using only two of the four bases. In this
way, the test tube contents would be resistant to intramolecular reactions but not
to intermolecular reactions.

Besides the accuracy of biooperations, another peril of the implementation of DNA
computations 18 the fact that the size of the problem influences the concentration of
reactants, and this, in turn, has an effect on the rate of production and quality of



final reaction products. In [KMRS96], an analysis of Adleman’s experiment showed
that an exponential loss of concentration occurs even on sparse digraphs, and that
this loss of concentration can become a significant consideration for problems not
much larger than those solved by Adleman. For volume decreasing DNA algorithms,
an error resistant solution seems to be the repeated application of PCR to the in-
termediate products, [BDSL96]. However, this cannot always be the solution, as not
all algorithms are volume decreasing. Indeed, as pointed out in [Hart95], one barrier
to scalable DNA computation is the weight of DNA. In some cases, ([ARRWY96)), to
achieve the desirable error rate, approximately 23 Earth masses of DNA were needed.
Clearly, this is not an acceptable situation, and a combination of algorithm transfor-
mations (changing algorithms by using intelligent space and time trade offs might be
required to reduce the amount of DN A) [ARRWY6] ,[Adle96). This section, which
discussed implementation techniques and the associated error rates, indicates that
many substantial engineering challenges to constructing a DNA computer remain at
almost all stages. However, it can be pointed out that the issues of actively moni-
toring and adjusting the concentration of reactants, as well as fault tolerance, are all
addressed by biological systems in nature: cells need to control the concentrations
of various compounds, to arrange for rare molecules to react, and they need to deal
with undesirable byproducts of their own activity. Some recent approaches based
upon 1in vitro techniques ,as a step in this direction, is in IKMRS96] a mechanism
is suggested, based on membranes that separate volumes (vesicles) and on active
systems that transport selected chemicals across membranes (see section 2.2.5 ).
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Chapter 2

Solving Problems with DN A
Strands

HPP was the first problem to be solved using DNA strands. After that for several
other problems, solutions have been proposed ranging from 3 SAT (a conjunctive
boolean formula satisfiability problem with clauses of size 3), TSP (Travelling Salse-
man’ Problem), Maxclique, 3 Coloring of planer graphs, Dynamic Programming,
problem of evaluating transitive closure of a boolean matrix, Circuit ( bounded fan
in ) evaluation and others. All these solutions are more or less based upon the
massive parallelism !, which allows to explore several structures (solutions or inter-
mediate results) together, and Watson Crick complementarity, which ensures that
these structures bind together to form desired solutions of a processing step.

Adleman’s Solution: General idea behind the Adleman’s solution of HPP was to
encode vertices and edges of the graph in suitable way (as simplexes) to generate
in the frist step all possible paths in the graph (as duplexes }? and then in second
step discard all those paths which are not the correct solutions ? using substrand
extraction technique(see chap 1) for each vertex. Adleman encoded vertices and
edges as 20 mer oligos such that no two oligos representing vertices were same and
any edge (u,v) directed from vertex u to v was encoded by taking complement of
second half of oligo for vertex u and first half of oligo for vertex v (thus preserving
directionality of edges). Since in Adleman’s case graph had a solution path so after
hiltering phase test tube contained DNA duplexes for these correct paths.

‘Typical weight of a DNA molecule is around 550 Ds (dioptons : weight of a Hydrogen Atom)
so generally in a test tube about 2’ DNA molecules can fit together.

Solution Generation phase.

Filtering or Processing phase

14



2.1 Working Models

After the Adleman’s solution (and corresponding filtering model) several other mod-
els, charactrized by the kind of basic operations they allowed and their limitations,
were proposed. Since DNA is the underlying computational substrate of all models
described, its natural to assume that all abstract models operate on strings over a
four letter alphabet,X = {AC, G, T}. A test tube T can be regarded as a finite multi
- set of strings over ¥*. The operation set within a model is also constrained by
the availability of various molecular manipulation techniques. The implementation
of abstract operations will largely determine the success or failure of a model. Most
of the models described in this chapter use abstract operations common to the oth-
ers, such as set union. However, even though models may utilize similar operations
(e.g., removal of & string from a set), the chosen implementation method may differ
from model to model. Details of implementation may also impact in various ways

([GAH9T]):

1. The volume of DNA required (analogous to space in complexity theoretical
terms) to perform the computation may vary by exponential factors.

2. Each operation takes a certain amount of time to implement in the laboratory,
and so the sequence of operations performed determines the overall time com-
plexity of the algorithm. Thus, the techniques chosen have a direct bearing
on the efficiency of a DNA based algorithm. In addition, the time taken to
construct the initial set of strings and readout the final solution may be very
timeconsuming and must also be taken into account.

3. Each laboratory technique has associated with it a nonzero error rate. Some
techniques are far more error prone than others, so the choice of laboratory
techniques directly affects the probability of success of a DNA based algorithm.

Some of the more popular models are:

2.1.1 Adleman’s Restricted Model

As described in [Adle96] the basic set of operation are

o merge(T;, Tp,-, Ty). Make union of tubes T},Ts,-, T, by poring contents of
all tubes together.

o separate(T,s). Extract all the strands from tube T containing s as a substring.
Let the resultant tubes be +(T,s)(containing s) and - (T,s) (rest not containing

s).
o detect(T). Check if tube T is empty?
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Based upon this simple set of operation graph 3 - Coloring problem’s solution can
be formulated as following:

Let T contains all possible colorings of graph G = (V,E)with n vertices {v1,ve,...,v,}0n
3 colors 7, b, and g. Let c; to denote that vertex v; is colored with color ¢ € {r,, g}.

fori=1ton
{
Tr:=+(T,ri) and Tpy:= —(T,r;)
Ty = +(Tog,b) and T,:= —(Th,, b;)

for all j such that (v; & v;) € E

{

TT L= —(TT,TJ')
Tb = _(Tbabj)
Tg = _(Tg:gj)

T := merge(T,,T,T,)
detect(T)

}

comments

As can be seen restricted model of Adleman is simple enough for using only 3 basic
operations. And it’s powerful to solve graph 3 - Color abilityy problem (NP com-
plete) in O(n®)bio steps. So in principle it can solve any NP complete problem in
polynomial time. But the main problem of the model is that it lacks $trong expres-
sion power, that is, to encode any other problem it might be very diffitut to express
only in these terms and requires exponentially increasing number of DNA strands in
solution generation phase. Moreover it’s not univershal in nature and ibfact addition
of splicing operation makes it universal[Rowis96]. Again the Adleman’s implementa-
tion of saperate is based upon complementary annealings, which is not an error free
(see sec. 1.5). The main significance of this model seems to be in promoting other
models based upon it, like Liptons, Amos’ etc. As proved in [Winfree95]the class of
functions which the restricted model can invert (compute) in given time is exactly
those computed by the branching programs of the same size.

That is, RestrictedModel ~ BranchingPrograms
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2.1.2 Unrestricted Model

This model adds one more operation to the restricted model:
» Amplify(T). Make two copies of tube T as TyandTy using PCR.

Comments This model is more powertul than the restricted one since the class
of functions which the unrestricted model can invert (compute) in given time is

exactly those computed by the nondeterministic branching programs of the same
size [Winfree95.

That is, UnrestrictedModel ~ Nundetermiﬂ.ésticﬁmnchingProgmms

2.1.3 Lipton’s Model

Lipton in [Lip94] describes solution to SAT problem based upon the Adleman’s
model. He proposes that after generating all 2"possible assignments for a n variable
SAT problem, consisting of k clauses in conjunctive (normal) form , in the processing
or filtering phase each and every clause is scanned from the first for its every litral.
And all the strands which do not set the value true are filtered out. Thus at last the
tube contains the final satistying set of assignments , if at all.

Comments

Lipton’s solution to SAT problem solves the problem in O(km) bio steps, where m
is largest number of variables present in any clause but using exponential number
of strands. Other feature of his technique is that the filtering phase not only gener-
ates the satisfying assignment but gives approximation for the number of satisfying
assignments also, thus solving more than mere NP complete problem.

2.1.4 -Amos’ Model

Martin Amos, Alan Gibson and others describe in [AGH96] a less error prone filtering
based model. This model differs from the earlier ones, the way substrand extrac-
tion operation is performed - they construct the strands of type - p1e1pata...pniy,
where i1,1%,,.. are the value strands (defined according to the problem structure)
and pi,p2,.. are position markers, which contain different restriction sites in them.
Here in filtering phase the strands containing wrong value strands are destroyed by
cutting them with restriction enzymes. For e.g. they propose that the graph 3 -
Coloring problem for a graph on n vertices can be solved as follows:

1. generate all possible DNA double strands of type - picipacy...ppcy,, where each
t; takes 3 different values r, g ,b and p; work as position marker at position j
ranging from 1 to n. Thus the tube contains all possible 3,, colorings.
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2. for every vertex remove (destroy) all the strands which do not color it with
color ¢ € {r, g, b} or color its neighbors with color ¢ (in parallel for all 3 colors)

3. select the tube to check if the tube contains any strings (final solutions) or not.

In Amos’ model the rremoval of all those strands which contain any of the given sub-
atrands is carried out in parallel by adding the required restriction enzyme (SauMI)
in the tube. similarly they propose as a basic operation parallel copy opearation
;which develops several of copies of same tube They also propose solutions to other
hard problems like Subgraph Isomorphism, HPP, Mazimum Independent Set and

describe in their model the initial stages of implementation for graph 3 - coloring
problem {[AmosTh97])

Comments

Amos model like previous models is simple enough and error probability is less due
to their restriction enzyme ! implementation of operation remove, which in effect
actually achieves the same results as the extract operation in Adleman’s models.

One of the serious problem with their model is that implementation of remove oper-
ation is limited by the number of available diffrent restriction enzymes with different
restriction sites, which at présent don’t go beyond 200 mark, that 1s, no more than
200 different values can be considered in their model. Another limitation of increas-
ing exponential volume as noted earlier is as well present with their model.

2.2 Theoretical Models

Main aim behind developing the above discussed working models was to show better
feasibility in respect to error rates, choice of operations requiring different times, for
solving some specific hard problems. That way these models were not particular
about claims of universality in computation. On the other hand some other models
were proposed which fundamentally aimed the underlying universal computing abil-
ity by having a selected choice of operations. Some of these models were inspired
by language theoretic developments, for e.g., ’twin - shuffle’ languages, splicing sys-
tems, L systems, Watson - Crick Autometa (see [PRS98]). While others were proved
universal by exhibiting their turing machine simulation [Bea96, Rot96], or other uni-
versal system (see for example Agihara and Ray’s Boolean circuit simulation, and
cellular Automata simulation by Winfree’s model of self - assembly of DNA tilings

[Winfree96]).

‘see ref([15] p 9) in ([AmosTh97]) for the fact that restriction enzymes cut the site with 100%
SUCCess .
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2.2.1 Ogihara and Ray’s Boolean circuit model

Boolean circuits are an mmportant Turingequivalent model of parallel computation
(see [Harrison65]). An n input bounded fan in Boolean circuit may be viewed as a
directed, acyclic graph, S, with two types of node: n input nodes with in degree (i.e.,
input lines) zero, and gate nodes with maximum indegree two. Each Input node is
associated with a unique Boolean variable z; from the input set X = (z1, 22,5, ).
Fach gate node, g; is associated with some Boolean function f; € § where £ is set
of universal logic function!. S hag in addition, one unique output node, s, with out
degree zero. The size of a circuit S is the number of gates in S: and its depth, d,
is the number of gates in the longest directed path connecting an input vertex to
an output gate. In [OG96], Ogihara and Ray describe the simulation of Boolean
circuits within a model of DNA computation. The basic structure operated upon is
a tube, U , which contains strings representing the results of the output of each gate
at a particular depth. The initial tube contajns strands encoding the values of each
of the inputs X. Strands dsi(1) (ds;(0)) are synthesized for the output 1(0) of each
gate g; in 5. Gates are scanned (in parallel} starting from the first level (input gates)
to the output level, if gate g;is OR gate (V), then all the strands which set either of
Its inputs to 1 are appended with its output strand for 1 (ds;(1)) and rest strands
are appended with ds;(0). Similarly in case of AND (A) gate as well.

Comments As is the case with most of the theoretical models things are not yet
practical. Here it can be easily seen that simulation though correct yet misses im-
plementation practicality - scanning each gate and deciding what to add where is
as time consuming as obtaining the answer right away. Moreover as pointed out in
(IAmosTh97])that in more realistic strict model this mechanism of simulating the
circuit takes bio - steps of the order of size of the circuit not as the depth of the
circuit as required by procedure above, in their model.

One of the important contributions of Ogihara and Ray’s constructive model is in
direction of reducing volume of the tube by giving an algorithm requiring only liner
amount of different strands with the size of the circuit. Their technique has been re-
cently used by Yoshid and Suyams [YoSh00] for solving 3 - SAT problem using 2-°%n
volume. Similarly S. Pyne [Pyne01] also proposes an ”inverted model” for solving
3- coloring problem on random graphs using constant number of strands O(1) on
average with polynomial number of bio - steps.

2.2.2 Sticker Model

In [Rowis96] Rowis and others introduce the socalled sticker model. Unlike previous
models, the sticker model has a memory that can be both read and written to,
and employs reusable DNA. Each string is composed of k bits.each encoded by a
substring of some defined length (about 20 to 30 mer and bp). The sticker model

'Set of logic functions which can express all other functions, for e.g., NAND, or {v, A, -}
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represents a 0 as a sequence of 8s8DNA and a 1 as a sequence of dsDNA. The initial
and basic structure is a single fixed length strand representing a string of 0’s. Bit
positions are encoded by unique oligos.

Comments The problem of clearing a single bit position without clearing all the
bit positions has not yet been solved and remains a limitation of the sticker model
at present. one possibe but poor way in order to set bit i to 1 is that each string is
annealed to the complement of the sequence representing bit i. However, if we wish
to clear a bit (ie., set it to 0) we must remove the annealed strand. This can only
be done by heating the solution in which the strands are suspended, resulting in all
hydrogen bonds being broken and all bits being cleared.

2.2.3 Splicing Models

One of the reasons that working models are not expected to be universal in nature is
that they don’t support string rewriting (editing) operations. This makes it difficult
to see how the transition from one state of the Turing Machine (if simulation is being
done of Turing machine or any equivalent of it) to another state may be achieved
using DNA. However as it is provedone further operation, called splicing operation,
can provide full Turing computability .

Splicing operation Let S and T be two strings over the alphabet V. Then the splice
operation consists of cutting S and T at specific positions (restriction sites)and con-

catenating the resulting prefix of S with the suffix of T and concatenating the prefix
of T with the suffix of S .

Formally, a splicing rule is a string of the form r = uj#usSus#us where # and §$
are two special marker symbols not in V , and u; € V*(1 < 4 < 4). For such a rule
r, applying it to two strings x, y results in a string z such that

(z,y,2 € V)

(z,y) Fr 2 <= = = z1u1U2Z2, ¥ = Y1U3UsY2, and 2z = T ugtays, for some
T1,T2,Y1,Y2 € V.

Splicing Systems

Based upon the the above rule there are some of the restricted Splicing systems can
be defined as

H scheme. An H scheme is a pair 0 = (V, R) where V is an alphabet and R
C V*H#V*§V*#V™ is a set of splicing rules.

An H system o = (V; R) is used as a unary operator on languages. Applying conce
to a language L C V™* yields

o(L) ={z€V*| (z,y) b+ z; for some z,y € L,r € R}

20



This can be used to study a single application of an H scheme. It can be extended
to 1terated application o, as follows -

o’(L) = L;
oY L) = o*(L) Ua{c*(L))i > 0,
0x(L) = Uj»o0*(L)

An H system, though normally viewed as an operator, can be likened to productions
in the grammars of classical Formal Language theory. Classical grammars are ‘com-
plete’ devices for generating languages. They specify an alphabet, a starting point,
rules for combining generated strings into new ones, and terminal symbols out of
which the output strings may consist. Associated with them is one interpretation -
the language generated by the grammar. Following this analogy closely, the concept
of extended H system is defined as a quadruple:

H = (KT:A:R)

where V 1s an alphabet,T” € Vis the terminal alphabet, A € V* is the set of axioms,
and R C V*#V*$V*#V*is the set of splicing rules. For such an extended H system
p== (V; T; A; R), an underlying H system is o= (V; R) .

The language generated by u is defined as follows:
L{p) = o*(A)UT™

Variations of Splicing Systems

Similar to traditional grammars’ computational/generative tools - the form of the
productions ,within extended H systems, there are two generative tools - the classes
of languages from which A, the set of axioms, and R, the set of splicing rules,
are taken. E.g. [HPP96] shows that when both A and R are finite, extended H
systems can produce regular languages; and that when A is kept finite, but R regular,
the recursively enumerable languages can be produced. Some of the more obvious
variations of splicing systems are in which an H system is applied only once, and
splicing systems in which all symbols are terminal. Splicing systems on multi - sets
of strings, are of practical interest, since they can accurately model the fact that
strands are consumed in a splicing operation, as are splicing systems on circular
strings, studied in e.g.,[YK97], which can model the behavior of circular strands.
Both of these variations can achieve universal computation for A and R from simple
families in the Chomsky hierarchy. There are even generalizations of splicing to
graphs and other non - string- like structures.

Practical Splicing Systems

While splicing systems are interesting in themselves as abstract models in Formal
Language theory, they are of special interest mostly for their original purpose to
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model the languages of double strands of DNA generated under the domain of re-
striction enzymes and ligases.

Implementation Considerations. There are a number of aspects in which splicing
systems abstract away from practical biochemical limitations that become important
again, when considering practical implementation. First, in a practical model, the
amount of initial strands and the number of different restriction enzymes is finite,
so both the initial set and the set of axioms in a corresponding model will have to
be finite. Secondly, in practice, DNA strands are consumed in splicing when strands
w and z are generated from strands x and y, x and y are no longer available. This
requirement is quite strict and may not be demanded in full in most cases, the model
still works when we assume a large, but finite, supply of all strands involved. Thirdly,
the length of a recognition site of a restriction enzyme is limited to 6 to 8 bases -
restriction enzymes cannot recognize arbitrarily long sequences.

Candidate models for universal computation based on splicing When we
take into account the requirements just formulated, there are a few splicing system
models that are practical, and capable of universal computation. One is splicing
systems based on multi - sets, as introduced in [DG89],with universal computational
power. Another is that of splicing systems for circular strings, as studied in [YK97].
Lastly, [Pi96) proved the existence of a universal (for a given alphabet) multi - set
splicing system with finite axioms.

Difficulties

Splicing Systems at first sight appear to be an attractive model for developing prac-
tical Molecular Computation. However, there are as yet several severe problems that
hinder their applicability in this way. Only one type of chemistry. Splicing Systems
were explicitly developed as models for DNA re combination. There are several
other chemistries on which practical Molecular Computation might be based, like
RNA editing, or the ‘weird’ DNA complexes used by Winfree. Focusing on Splicing
Systems as the theoretical model for Molecular Computation would be voluntarily
blinding oneself to the other possibilities, for some of which theoretical models to
study their computational power may still have to be developed.

Unrealistic splicing. We have seen several barriers to directly implementing splicing
systems. For example, restriction enzymes are capable of recognizing only rather
short {6 to & base pairs) sequences, while splicing rules can recognize finite, but ar-
bitrarily long, subwords. Any potentially practical splicing system will have to use
only a few restriction enzymes, since they are quite expensive, and function opti-
mally under diverse reaction circumstances.

Finiteness. All practical systems have to be finite. Incorporating this finiteness di-
rectly into splicing systems (by using multi - sets, a finite number of axioms and a
finite number of splicing rules) easily results in models that are not capable of uni-
versal computation. In splicing systems, the number of tools that can be tuned to
produce a finite system is larger, and the tools are less well understood than memory.
The theory of Splicing Systems can enhance into approximations that may produce
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practical models. For instance, if a universal splicing system with a small number of
splicing rules, but which requires a regular set of axioms, an approximation would
be to use a large but finite subset from these axioms, and see how much practical
computing power is lost.

2.2.4 Contextual Insertion/Deletion systems

Generalizations of contextual insertion/deletion of words were discussed in [Kath96.
Authers study closure properties of the Chomsky families under the defined opera-
tions, contextual insclosed and delclosed languages and decidability of existence of
solutions to equations involving these operations. Moreover, they prove that every
Turing machine can be simulated by a system based entirely on contextual insertions
and deletions. Since contextual insertion and deletion are can be thought of relizable
in DNA computing by manipulations of restriction enzymetic activities with PCR
and some other tools from molecular biotechnology, therefore theirat least estab-
lishes the universality of these operations and gives hints regarding the degradation
of generative power under more realistic restricted conditions.

Given a pair of words (x, y)! called a context, the (x, y)contextual insertion of
a word v into a word u is performed as follows. For each occurrence of xy as a
subword 1n u, we include in the result of the contextual insertion the words obtained
by inserting v into u, between x and y. The (x, y)contextual deletion operation is
defined in a similar way. The contextual insertion operation is a generalization of
the concatenation and insertion operations on strings and languages - words can be
inserted into a string only if certain contexts are present. More precisely, given a
set of contexts we put the condition that insertion of a word can be performed only
between a pair of words in the context set. Analogously, contextual deletion allows
erasing of a word only if the word is siftuated between a pair of words in the context
set.

Insertion and deletion schemes

An insertion scheme INS is a pair INS = (X, I) where X is an alphabet with more
than one symbols and I € X* X X* x X* , I # ¢. The elements of I are denoted by
(z, 2z, y)ywitha,y,z € X™ and are called the contextual insertion rules of the scheme.
For every word u € X* , let

conztinsp(u) = {v € X™ | v € u ¢~(5,) 2,(z,2,y)1 € I} where
U =5 ) V= {U1ZvYyuz | U1, uz € X, u = u1zyus}

the (x,y)- conlzualinsertionofv € X*intou € X*.

‘under the same DNA alphabet {A,C,G,T}
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Informally, in a contextual insertion rule (x, z, y), the pair (x, y) represents the
context of insertion while z is the word to be inserted. If L € X™ and I is fixed, then

conxtinsy(L) = {cinsy(u) | v € L}

A deletion scheme DEL is a pair DEL = (X, D) with DC X* x X* x X*, D # ¢.
The elements of D are denoted by

(z, 2z, y) pwithx,y, 2 € X* and are called the contextual deletion rules of the scheme.
For every word u € X* | let

conzt delj(u) = {v € X™ | v € u =, 2,(z,2,y)p € D} where
U —Fp ) U = {U1Zyuy | u1,uz € X*,u = ujzvyus}

the (x,y) - contzual deletion of v € X* from u € X*. Informally, in a contextual

deletion rule (x, z, y), the pair (x, y) represents the context of deletion while z is the
word to be deleted. If L € X™* and I 1s fixed, then

conztdelp(L) = {conxt_delp(u) | u € L}.

An insdel system 1D is a quintuple, ID = (X, T, I, D, w} (X, I) is an insertion scheme,
(X, D) is a deletion scheme, I, D are finite, T C X is the terminal alphabet, and w
€ X7is a fixed word called the axiom of the insdel system.

If ue X* and v € conztansy(u) |J conzt.delp(u), then v is said to be directly ID-
derived from u and this derivation is denoted by u = v. The sequence of direct
derivations -

Ul => Uy => - = Up k> 1
is denoted by %1 =™ u; and uy is said to be derived from wu;.

The language Ly(ID)generated by the insdel system ID is the set -

L,(ID)={veT"|w=" v where w is the aziom }

and analogously the languageL,(ID) accepted by the insdel system can be defined
as

L(ID) ={veT"|w =" v where w is the axtom }

Result

If a language s acceptable by a Turing machine TM, then there exists an insdel
system ID accepting the same language. (see proof in [Kath96])
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2.2.5 P Systems - Computing with Membranes

Introduced in [Paun98] Membrane! Computing structures are inspired by biochem-
istry (from the way the living cells process chemicals and energy) and which proposes
cell - like computing models of a distributed parallel type. Basically, in the regions
defined by a membrane structure one places multi sets of objects which can evolve
according to given evolution rules. The rules are used in a maximally parallel man-
ner, nondeterministically choosing them and the objects to which they are applied.
The objects (described by symbols from a given alphabet) can interact and can pass
(selectively) through membranes, while the membranes can be dissolved or can be
divided. By such operations evolution happens through transitions from a configu-
ration of a system to another configuration, hence we get computations. A result is
associated with a halting computation in the form of the number of objects present
in the last configuration within a specified membrane. One of the important vari-
ants of such computing structures are P systems, which can compute all recursively
enumerable sets of natural numbers. When an enhanced parallelism is provided, by
means of membrane division (and, in certain variants where one works with string -
objects, by means of object replication), NP - complete problems can be solved in
linear time (of course, making use of an exponential space).

No experiment implementing such systems in biochemical media have been done, but
there have been several attempts to simulate/implement P systems on usual elec-
tronic computers. One of the potaintial natural simulations of § systems are DNA
controlled structures where DNA computing can play an active role. Another direc-
tion is hinted in [Paun98] by condidering a variant, with the objects being strings
over a given alphabet. The evolution rules are now based on string transforma-
tions. they investigate the case when either the rewriting operation from Chomsky
grammars (with respect to contextfree productions) or the splicing operation from H
systems investigated in the DNA computing is used. In both cases, characterizations
of recursively enumerable languages are obtained by very simple supercell systems?
: with three membranes in the rewriting case and four in the splicing case.

'A membrane is a construct which works like a delimiter for a group of objects in a selective
fashion. For e.g. biology and chemistry membranes keep together certain chemicals and leave to
pass other chemicals, in a selective manner, sometimes only in one direction.

%a supercell system is a membrane structure with objects in its membranes, with specified evolu-
tion rules for objects, and with given input output prescriptions. Any object, alone or together with
one more object, evolves, can be transformed in other objects, can pass through one membrane, and
can dissolve the membrane in which it is placed. All objects evolve at the same time, in parallel;
in turn, all membranes are active in parallel. The evolution rules are hierarchical by a priority
relation, given in the form of a partial order relation; always, the rule with the highest priority
among the applicable rules is actually applied. If the objects evolve alone, the system is said to be
noncooperative; if there are rules which specify the evolutions of several objects at the same time,
then the system is cooperative; an intermediate case is that where there are certain objects (we call
them catalysts), specified in advance, which do not evolve alone, but appear together with other
objects in evolution rules and they are not modified by the use of the rules.

25



2.2.6 Bearver Model

In [Bea95, Bea96], Donald Beaver designed a deterministic Turing Machine consisting
of a single DNA strand. At each step of the computation that we are going to
describe, a DNA molecule encodes a configuration of the Turing Machine: the content
of the tape, the current state and the head position. Each state transition requires
O(1) laboratory steps to be carried out. Finally, such method can be extended to
perform the computation of a nondeterministic Turing Machine.

Context Sensitive Substitution Beaver proposes a specific form of site - directed mu-
tagenesis - a small modification in a strand whose location is determined by a specific
base sequence - to implement this substitution. The replacement of a substring o X
S by oY in a string La X BR, in which o, 8 X, Y are finite strings over alphabet
¥ = {A,C,G,T } and where neither «, nor 8 occur elsewhere in the string.

To implement double strands containing X 8 are converted to single strands. Strands
of aY § are added, whose « and 8 parts anneal to their complements & and 8. There-
sult, except the X and Y sequences that cannot bind, is then made double - stranded
via PCR. This results in double strands that are properly aligned except for the part
between a and 3 where substitution is to take place. These strands are melted into
single strands again; primers that anneal to starts of L and ends of R are added, and
PCR is performed. Now tube contains two types of strands: double - strands that
encode for La'Y SR that are to be kept, and single strands La X8R, which need to be
removed. These undesired single strands are destroyed by cutting with S1 nuclease.
Thus the substitution is completed.

Turing Mechine Simulation

Let M = (Q, X,6,80 ) be a deterministic Turing Machine where Q is the state set
(containing the halt state h), T is a finite alphabet, dis the state transition function,
and sg is the start state. First, states and symbols are codified using the alphabet
of the four nucleotides: ¥ = {A, C, T, G }. Since Q and X are finite sets, such
encoding is obviously possible. We denote with the string agu8 the configuration of
the Turing Machine M that is in the state q € Q, whose head points to the beginning
of a string v inX™ that has the string « on its left end the string 8 on its right. Let
S{n) be the polynomial length of M ’s tape. The entire configuration of M is encoded
in a DNA single strand in the following way: the presence of the substrand u = E i,
v; ) indicates that the symbol v; € ¥ is in the " position of the tape. In the same
way, the presence of the substrand v = E(j, q) indicates that M is in the state q
€ Q and that the head points at the j* position of the tape. Thus, for example,
the configuration vyvs ... v-1qU;v441 ... Ug(n) 1s codified by the DNA strand E(1,
v1 )E(2, va )--- E(i - 1, vi—y )E(i, @EG + 1, v341 )--- E(S(n), Us(n) ) where each
E(k,v) or E(k; qp) with k € {1;2;:::;S(n)}; 0 € I; g, € Q is an opportune random
substrand.

In order to perform a state transition, once a DNA single strands encodes a config-
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uration, the idea is of substituting the portion of the DNA strand that is worked
upon by the transition.let us suppose that the Turing Machine is in the state q,
the head position is i where the symbol v;is pointed. That 1s, the encoding of the
configuration contains the substrand

E(Ui—-?:i - 2)E(Ui—15i - I)E(QTri)E(Ui: Z-)1'3'(1"’11+1:i + 1)

Moreover, the state transition that must be performed is

6(q,vi) = (¢',0', left)

where q,q4' € Qandv;_s,v;_1,v;,v;41,v € ¥. The substitution that performs this
state transition is LaX SR — LaY SR, where

a = E(vi_9;1 — 2),
X = E(vi_1;t — 1)E(q; 1) E(v;; ),
B = E(viy1;i+ 1),
Y =E(q';i ~ 1)E(v;—1;i — 1)E(q¢';4).

while L and R are respectively the left and the right side of (the encoding of) the
rest of the configuration. In this way a new configuration is encoded by the DNA
strand that contains the new substrand

E(vi2,i - 2)E(d,i ~ 1)E(¢', 1) E(vi-1,i — 1) E(vi1q,1 + 1)

In order to give the input to the Turing Machine, a initial testtube 7Pis created. Let
us suppose that the start state is ¢” and the tape contains the word x as an input,
the initial configuration would be ¢°x followed by S(|| X)— || z number of zeros. and
its encoding should be the content of 70 . Moreover, at the end of the computation
the final state must be recognized (we can suppose that there is only one halt state)
and a result (accept or reject of the input) must be given. We can suppose that the
input has been accepted if and only if the symbol ‘1’ is in the first position of the
tape at the end of the computation (and vice versa if the first symbol is ‘0’, then the
input is rejected). Thus, the biological operation

Detect{Extract(T, E(halt, 1)E(1, 1)))

realizes the termination. It extracts all the strands that contain the substrand E(halt;
1)E(1; 1), that are the configurations of the Turing Machine that reached the halt
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state and accepted the input (an analogous extraction with E(0; 1) instead of E(1;
1) would extract final configurations where the input is rejected). If at least one of
such configurations exists (that 1s, the detect operations finds there are DNA strands

that have been extracted), the computation terminates and the opportune result is
glven.

Finally, Beaver suggests to extend his method to simulate nondeterministic Turing
Machine computations: the strands (that encode configurations) can be amplified at
each step reaching a sufficient number to perform all the possible state transitions.
That is, if the current state is q and the pointed symbol is oe, the strands are ampli-
fied and separated in | 4(q, v) | different testtubes. In this way, in each testtube an
opportune state transition is performed. Beaver asserts [Bea95] such unconstrained
parallelism allows to perform any PSPACE computation, far beyond NP and rec-
ognizes that molecular massive parallelism is not exponential parallelism. This is
caused by the practical restrictions that are introduced (for the solution of NPcom-
plete problems require an exponential number of molecules, because each candidate
for the solution needs at least one molecule to be encoded).

Comments

There are several problems with Beaver's implementation of the substitution oper-
ator, noted in [Bea95]. Unintended complexes can form when the @ sequence of an
aY 3 sequence anneals to a different strand than its B sibling. This may be prevented
by temporary attachment of the strands on which substitution is to take place to
solid support. Another solution might be to use circular strands, causing unintended
complexes to have improper length, and filtering them out using gel electrophoresis.
For useful Turing machines, the length of a tape is unpredictable, and this trick
cannot be used (unless one is willing to give up on potential unlimited tape length,
and a priori choose a maximum length). PCR is involved twice in every substitution,
although it is slow, expensive and error - prone ([KGLY6]). The digestion of single
stranded DNA is done with S1 nuclease, which can work on double stranded DNA

t00, and which requires reaction circumstances that can destroy information stored
in DNA.

2.2.7 Rothemund Mode]

In [Rot96], a DNA restriction enzyme implementation of a Turing Machine is sug-
gested. Restriction enzymes are employed in nature by bacteria to cut DNA double
strands at specific substrands called restriction sjtes. Many of them cut DNA in two
pieces leaving sticky ends on the two new strands (see sec. 1.3 for details). There are
enzyme like EcoRI, which belong to the class IT endonucleases having the properties
of this type of enzymes that the two single strands that compose the restriction site
are identical: since each DNA strand has a polarity, and since two complementary
single strands are anti parallel, if read for example, the restriction site of the enzyme
EcoRI (see Appendix B) from the 5’ end to the 3’ end (or vice versa), that they are
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the same strand: GAATTC. Consequently, also the two sticky ends generated by the
cut are tdentical. This symmetry permits that a sticky end of a DNA strand cut by
the enzyme can anneal to a sticky end of another DNA strand that has been cut by
the same enzyme. This property of the class II endonucleases enzyme is the ground
of Rothemund’s idea of implementing a Turing Machine. In few words, any instan-
taneous description of the Turing Machine is encoded in a DN A strand and the state
transition is realized cutting the strand at an opportune substrand (recognized by the
eénzyme associated with the transition) and inserting a new (opportune) substrand
between the two sticky ends to obtain the new instantaneous description. To be
more precise, the elements of the Turing Machine are distinguished in constants and
variables. The transition table is constant, while the instantaneous description (also
ID from now on) is variable. Each ID is encoded in a single circular DNA molecule,
called plasmid. The state transition table - — that is the constant information-—is en-
coded permanently by oligonucleotides. These strands are opportunely chosen and
each one of them realizes—with few chemical steps—the correspondent transition
and it modifies the plasmid into a new one representing the new ID. This is obtained
in the following way : the plasmid encodes the symbols of the tape concatenating
double stranded fragments that encode each element. The current state and the head
position are also encoded in the plasmid. They both appear near the encoding of the
pointed symbol and they consist in subsequences that contain a restriction site. Each
state has its site and—consequently—its enzyme. The site (and then the enzyme)
also depends on the symbol that the head is reading; thus, there is a different site for
each entry in the transition table. The table is codified by a set of double strands,
one for each transition of the Turing Machine. Each one of these oligos contains
the encodings of the new symbol, the one of the new state and that of the move
(to the left or to the right) that the Turing Machine must realize to perform the
state transition associated with that precise oligo. Finally, the oligo has two sticky
ends that allow it to insert exactly in the site cut by the enzyme associated with old
state, with the old pointed symbol and—thus—with the performing state transition.
In fact, this substitution of that fragment of the plasmid results in a new plasmid
that encodes the desired new instantaneous description, including the encoding of
the new state and the new head position. This operation is realized—as we said—in
few chemical steps that, first, cut the old plasmid and detach the fragment that must
be removed and, then, circularize the DNA molecule with DNA ligase after the new
fragment is opportunely inserted.

There is a difference with Beaver's proposal because here the encoding of the new
elements are already in the molecules that encode the transition table (that Beaver
did not encode) and they must not be synthesized at each transition. In Rothemund’s
method, the table is encoded once at the beginning of the computation and each entry
s associated with commercially available restriction enzymes. |

Rothemund, as an example, designed the implementation of the BB3 Turing Machine
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of the entries of the transition table. Rothemund asserts that his implementation
of a Turing Machine is possible for machine in which this product is up to 60,
since this is the number of the commercially available enzymes of the opportune
class that are sufficiently different not to generate errors during the simulation of
the Turing Machine’s execution. Finally, Rothemund shows how his method—that
uses only commercially available reagents and performs operations that are routine
for molecular biologists-— can be applied to implement a Universal Turing Machine
(UTM), since Minsky designed a UTM with 7 states and 4 symbols (and 4 x 7 = 28 <
60). The chemical expression of a universal model of computation improves all the

Comment Rothemund’s scheme is specified mostly in great detail. It works entirely
with dsDNA, which is more stable than ssDNA Reasonable estimates are given that
1t scales up to at least the scale of the smallest known universal Turing machine.
This scale-up is in the size of the transition table

There are some problems to Rothemund’s scheme. It does not describe how to gener-
ate the initial tapes. For the ‘Busy Beaver’ running example, the initial tape is blank:
it is presurmably relatively easy to sequence the strand encoding for instantaneous
description of the Turing machine at the start of its computation, and then make
sufficient copies of it (e.g. via PCR) to compensate for the practical problems dis-
cussed below. However, a universal Turing machine requires an initial tape with the
encoding of the Turing machine to be simulated and its input; the initial strand can
be much longer than that for the Busy Beaver case, and is therefore more difficult to
generate. The Busy Beaver example is a deterministic one. One can therefore indeed
simply mix the transition oligos with the DNA Turing tapes. Rothemund does not
explain if his scheme is suitable for (or can be modified to suit) non - deterministic
Turing machines: simply adding all transition nucleotides could result in interference
in the reactions involving transition nucleotides that represent the different choices
possible at the current time - step, while sequentially adding them (either in a strict
order, or in random order) results in taking the same choice for all machines with the
same status instead of having part of the machines take one choice, and the other
machines take the other choices. It appears likely, though, that Beaver’s suggestion
to add random bits to the initial tape can be applied to Rothemund’s model too; the
‘fork using PCR’ approach may work too, but is an additional source of errors. The
scheme requires unfortunately many different kinds of restriction enzymes, some of
which may have poor performance or imperfect specificity of restriction. Failed re-
strictions can result in defective tapes. By incorporating suitable labels, these defec-
tive tapes can be removed directly after the step in which they have been generated,
thus preventing their interference with subsequent steps. Incorrect restrictions can

'The Busy Beaver problem for a Turing Machine with N states (that is BBN) consists in designing
a Turing Machine with N states and a twosymbol alphabet, {Black,White} that writes the greatest
possible number of Black symbols before halting
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occur, but do so only very infrequently, when the restriction is pertormed under the
recommended reaction circumstances. The number of different kinds of restriction
enzymes increases with the transition table size. Thus, Turing machines with large
transition tables cannot be implemented with this scheme directly; one has to re-
sort to simulation via a small universal Turing machine. The scheme can be used
to implement the smallest known universal Turing machine, but simulations by this
Turing machine are very inefficient. This is not a true problem, since Rothemund’s
goal was a proof of concept: universal computation is possible with Molecular Com-
putation. Also, the ligations involved may fail or even ligate mismatching pairs of
sticky ends and ligation may occur between two tapes, instead of between parts of
one tape. Suitable enzymes exist that can remove precisely the products of such
undesired reactions. Lastly, attachment of the DNA strands to solid support can be
used to simplify the removal of reagents after the step in which they were needed is
finished, and the tapes are kept separately, preventing them from ligating together.
The palindromic property of the type II restriction endonucleases enzymes can take
to undesired events during this implementation of a Turing Machine. For example,
since the two sticky ends generated by the cut are identical, a new annealing between
the two cut strands could happen. Besides - for the same reason - having control of
the orientation of the fragment that must be inserted is not possible. For these and
other reasons use of IIS restriction endonucleases preferred. These enzymes cut the
strand near the restriction site at an opportune distance (these enzymes are called
nonphilindropic), thus avoiding undesired events.

2.2.8 Erik Winfree - Model of Self Assembly of DNA tilings

Winfree ([Winfree96]) has developed a model, capable of universal computation, is
based on a very different model capable of universal computation: cellular automata
(CA). CA ([CAF)) consists of a collection of cells (e.g. a two dimensional array),
each containing a symbol from a finite alphabet, and a set of transition rules that
are applied in parallel to all cells at fixed time intervals. The transition of a cell’s
content from one ‘time tick’ to another is determined by its current comtent and the
contents of a finite number of ‘neighbours’ to it (e.g. for a two dimensional matrix,
the cells directly left, right, above and below it). There exist even one - dimensional
CA that are universal: for each Turing machine (including a universal one), one can
construct a cellular automaton whose initial array contents correspond to the initial
tape contents of the Turing machine, and whose transition rules simulate both the
transition table, the cell replacement and the head movement of the Turing machine.
A universal cellular automata(UCA) thus has a fixed set of transition rules, and is
programmed by providing the initial array contents.

One of the variations of UCA that is relevant to Winfree’s mode] is blocked CA
(BCA), a one - dimensional variation on partitioning CA. In this model, the transi-
tion rule is formulated for pairs of cells. There are two possible partitions, ways of di-
viding the cells into pairs of neighbours, in the array of a one - dimensional cellular au-
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tomaton (- -- CnCn41Cn+2Cn43Cnyq -+« can be paired like- - - (cncn+1)(cn+gcn+3)(cn+4-
or like - . -cn(cn+1cn+g)(cn+3cn+4) -++}. During successive time steps the two possible
partitions of cells in pairs are strictly alternated in the application of the transition
rule. Blocked cellular automata is universal due to construction analogous to that
for normal one - dimensional cellular automata.

Simulation of BCA Winfree simulates a universal blocked cellular automaton by
designing small units of DNA in such way that they self - assemble into two -
dimensional complexes according to the rules of the automaton in a hybridization
reaction. In these complexes, a slice in one direction corresponds to the state of
the whole automaton at a certain point in time, while a slice in the perpendicu-
lar direction shows the contents of one cell during the whole development of the
automaton.

Comments

Winfree’s approach seems to be one of the potential candidates for the futurestic de-
velopments in DNA computing because it utilizes the sofisticated structures mainly
specific to DNA molecules. It is conceptually much simpler than Beaver’s and Rothe-
mund’s models, using only one basic reaction (hybridization), in a straight - forward
simulation, requiring no external processing (it is ‘one - pot’). This illustrates the
necessity of studying the many different models of computation for their suitabil-
ity for implementation using molecular computational hardware, and of the search
for a model of computation natural to molecular computation. Also, it shows that
the asynchronous nature of parallelism in biochemical reactions does not necessarily
preclude approaches based on synchronous parallelism.

Though it depends on an unusual DNA structure, whose behavior in practice has
not been fully tested as yet. Some authors ([SZDC95]) discuss the large gap between
theory and practice of constructing unusual DNA structures, including the tendency
of DNA to form double stranded helices, difficulty in control and the Importance
of studying the actual three - dimensional structure instead of relying on two -
dimensional models. The problem in achieving substantial yield of desired results is
less acute here, since the building blocks are simple enough to produce in sufficient

quantities, and the complex structure forms as a result of the self - assembly of the
building blocks.

It may even be possible to use a similar self - assembling system to simulate Turing
machines, although such a system would probably require many more, likely com-
plex, building blocks, and would not use the parallelism that is natural to cellular
automadta.
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2.2.9 Reif’s Parallel Associative Memory Model

In [Rei95], Reif suggested his Parallel Associative Memory Model (PAM model), in
order to define operations on DNA strands that can be implemented with the aim
of calculating with DNA and how to compute with DNA implementing something
different from a brute force approach (requiring increasing exponential volume) to
a problem. Thus giving a formalism that expresses the molecular parallelism. The
operation that characterizes the PAM Model is the PAMatch operation. Let E(x)
be the encoding of x )! and let E(x,y) be the one of the pair (x, y). The PAMatch
operation is defined as:

E(z,y) > E(w,2) = {E(z,2) if y = w, .} L otherwise
The operation is applied to entire testtubes with the following meaning:
T T, ={3:M:1:,|$ET,$,E’E}

where x and z, are DNA molecules. In addition to this special operation, the PAM
Model uses the well known operations of union, extraction and detect. To evaluate
an algorithm, Reif suggests to consider the number of required steps (as a time
measure), the maximum number of strands that appear at a time in the testtube,
and the length of the longest strand in the testtube. Using O(t) PAMatch operations
and Ofs log s) operation (that are not the PAMatch), Reif shows how to:

¢ Simulate the behavior of a nondeterministic Turing Machine with space bound
o(s) and time bound 29()

e Simulate a CREW PRAM with M memory cells, P processors and time bound
D. Where s = O(log(PM )) and t = D + s.

¢ Find an assignment of values to n boolean variables that satisfies a circuit
constructible in s space with unbounded fanout and depth D witht = D + s.

e Do List and Tree Contraction for L sized inputs constructible in s space. Here
t = log L, each of the used tubes contains O(B+L= log L) aggregates and it
18 assumed that there is a pre computed tube of B aggregates.

comment

PAM Model is a high level one. Thus, it allows to express algorithm that should
be implementable at a lower level. In the case of DNA computing, the lowest level
involves DNA molecules. Reif formalized this aspect defining another model, the
Recombinant DNA Model (RDNA). 1t is shown how the operations of the PAM
Model are implemented by those of the RDNA Model, that is a lower level one. It is

'Recall that underlying alphabet set is T — {A,C,G,T}.
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an abstraction of the recombinant DN A techniques, available in a molecular biology

lab, that are at the bottom of any DNA computation. Finally, it is showed with a
low slowdown the probability of errors can be reduced.

* %k ke k ke k ko ke ok kK
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Chapter 3

Killer Applications in DNA.
Computing

In this chapter we try to search for some proposed ambitious applications of DNA
computing with the main aid of either theory e.g., applications in cryptography
or sophisticated DNA manipulation techniques like self assembly or surface based
techniques. A brief but succinct survey of this nature can be found in [Reif98).

Killer applications are possible because a DNA strand may need at most 1,000 bps to
encode desired information state ! and so a litre of DNA solution in water encodes the
state of approximately 10'® distinct processors giving the overall potential for about
10%° to 1016 operations per second, which is 1,000 tera, - ops (somethir‘g far beyond
even the most ambitious Supercomputers processing speed). While this number is
very large, it is finite, so there is a finite constant upper limit to the entanced power
of computation using DNA computing within moderate volume. Nevartheless, the
size of this constant is so large that it way well be advantageous in certain key
applications, as compared to conventional (macroscopic) computation method and
there are a wide variety of problems (up to moderate sizes) that may benefit from
the massive parallelism and nanoscale miniaturization avatlable to DNA computing.
Some of the most compelling applications are the following:

1. NP search problems. These are a class of computational problems appar-
ently requiring a large combinatorial search for their solution, bat requiring
modest work to verify a correct solution. NP search problems may be solved
by DNA computing by (i) assembling a large number of potential solutions
to the search problem, where each potential solution is encoded an a distinct

" strand of DNA, and (ii) then performing recombinant DNA operations which
separate out the correct solutions of the problem. DNA computing has been
proposed for the following NP search problems:

'if the information is changeable than the strand is equivalent to a processor state
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proposed for the following NP search problems:

(1) Hamiltonian path. In addition to Adleman’s [Adle94] first solution,Fu et al
[FBZ98] suggest further improvements his HPP DNA computing experiment.
(i) SAT. SAT is the problem of finding variable assignments that satisfy a
Boolean formula. Lipton [Lip94] proposed use of DN A computing for finding
satisfying inputs to a Boolean expression, and this approach was generalized in
(BDSLY5] to solve the SAT problem. Also Eng [Eng98] proposed in vivo DNA
computing methods for SAT.

(i) Graph coloring. Jonoska and Karl [JK96].

(1v) Shortest common super string problem. Gloor et al [GKG98).

(v) Integer factorization. Beaver [Bea94].

(vi) Breaking the DES cryptosystem. |BDL95] and [ARRW96].

. SurfaceBased NP search. Eng, and Serridge [ES97) give a surfacebase
DNA computing algorithm for minimal set cover. Liu et al [LEW98] give
an experimental demonstration of surface based DN A computing using a one
word approach to solve a SAT problem. Eng [Eng98] proposes in vivo DNA
computing methods for the NP complete problem of satisfiability of Boolean
formula in 3CNF form.

. NP search using RNA. Cukras, Faulhammer, Lipton, and Landweber |CFL98]
gave an experimental demonstration of a DNA computing method for the so-
lution of a class of SAT problems (derived from the knights problem in Chess),
that appears likely to scale to at least moderate number of Boolean variables
(say 18 to 24). Their method was also significant due to their use of RNA
rather than DNA and their development of a powerful evolutionary method
for doing the combinatorial search to optimize their DNA word codes.

. Whiplash PCR. Hagiya and Arita [HA97] use DNA computing method that
uses the end segments of DNA strands to do editing and processing within the
interior of the strand. Hagiya and Arita [HA97] showed that Whiplash PCR
can be used for SAT problems for a class of Boolean formulas known as 1 -
formulas, and Winfree [Winfree98] extended these techniques to solve general
SAT problems. Sakamoto et al [SKK98] describe how to do finite state tran-
sitions using Whiplash PCR, using a graduated scale of melting temperatures
to reduce the number of laboratory steps, and also describes implementations
of these methods.

. Decreasing the Volume Used in NP search. In all these methods, the
number of bio - steps grows as a polynomial function of the size of the input,
but the volume grows exponentially with the input. For exact solutions of NP
complete problems, we may benefit from a more general type of computation
than simply brute force search. The molecular computation needs to be general
enough to implement sophisticated heuristics, which may result in a smaller

L
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stant base of the exponential growth rate required to solve the SAT problem

The difficulty with many of these approaches for NP search is that they
initially generate very large volume containing all possible solutions. An al-
ternative heuristic approach of 1teratively refining the solution space. to solve
NP search problems has been suggested by Hagiya and Arita [HA97](also see
[YoSh00] for better result as described before in sec 2.2), and may in practice
give a significant decrease in the volume.

. Combinatorial Chemistry as NP Searches. Combinatorial chemistry
techniques (also known as diversity techniques) have been uged by biochemists
to do combinatoria] searches for biological objects with special properties.
These techniques were very similar to the use of massive parallelism in DNA
computing to solve NP search problems. Generally,they use recombinant DNA

[BS91] constructed large pool of random sequences and then isolated new ri-
bozymes. Also, Eigen and The disciplines of combinatorial chemistry and DNA
computing may benefit by combining some of their techniques. For example,
the search space of combinatorial chemistry might be decreased by sophisti-
cated heuristics used in NP search methods.

. Huge Associative Memories. DNA computing has the potential to provide
huge memories. Each individual strand of DNA can encode binary information.
A small volume can contain a vast number of molecules: DNA solution in one
liter of water can encode 107 to 108 terabytes, and we can perform massively
parallel associative searches on these memories. Baum [Baum95) proposed a
parallel memory where DN A strands are used to store memory words, and
provided a method for doing associative memory searches using complemen-
tary matching. Lipton [Lip98 96] describes the use of web data bases and
assoclative search within them to do cryptoanalysis. This idea for associative
memory can be extended to allow ys to execute operations in parallel, that is
to do concurrent word searches. From this follows the concept of a data base
molecular computer using DNA computing. The time and volume efficiency of
associative memory searches can be improved by the use of microflow device
technology (Gehani and Reif [GR98]) to segragate pools (microTest Tubes) of
DNA strands to be searched, and to apply the searches in parallel for each
pool.

supply massive computational power. DNA computing can be used ag 3 par-
allel machine where each processor’s state is encoded by a DNA strand. DNA
computing can perform massively parallel computations by executing recom-
binant DNA operations that act on all the DNA molecules at the same time.
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11.

12.

These recombinant DNA operations may be performed to execute massively
parallel local memory read /write, logical operations and also further basic op-
erations on words such as parallel arithmetic. DNA in weak solution in one
liter of water can encode the state of about 1018 processors, and since certain
recombinant DNA operations can take many minutes, the overall potential for
a massively paralle]l DNA computing machines is about 1,000 teraops. (This
assumes the parallel machine uses local rather than global shared memory. To
allow such a parallel machine to use global shared memory, we need to do
massively parallel message (DNA strand) routing. In Reif’s [Rei95] DNA com-
puting simulation of a PRAM with shared memory required volume growing
at least quadratically with size of the storage of the PRAM, but Gehani and
Reif [GR98] describe a microflow device technology that can do the massively
parallel message routing with a substantial decrease in the volume.

. Other Algorithmic Applications of DNA computing. DNA computing

may also be used to speed up computations that would require polynomial
time on conventional machines: Beigel and Fu [BF97] discuss approximation
algorithm for NP search problems, Baum and Boneh discuss DN A computing
methods for executing dynamic programming algorithms, and Oliver [096]
discusses DNA computing methods for matrix multiplication.

Neural Network Learning and Image Recognition. Mills, Yurke, and
Platzman [MYP98] propose a rather innovative DNA computing system for
errortolerant learning in a neural network, which is intended to be used for
associative matching of images. They use a DNA computing method for matrix
multiplication (Oliver [096]) to implement the inner products required for
neural network training and evaluation, and their proposed DNA computing
system also makes innovative use of DNA chips for I/0.

combined with Seeman’s DNA nanofabrication techniques may allow for the
selfassembly of DNA tiles into lattices in 2 and 3 dimensions and the construc-
tion of complex nanostructures that encode computations.

Biological Applications: Processing of Natural DNA. The field of DNA
computing has restricted its attention mostly to applications which are compu-
tational problems, e.g., NP search problems.DNA computing techniques may
also be used in problems that are not implicitly digital in nature, for example
the processing of natural (biologically derived) DNA. These techniques may
be used to provide improved methods for the sequencing and fingerprinting
of natural DNA, and the solution of other biomedical problems. The results
of processing natural DNA can be used to form wet data bases with recoded
DNA in solution, and DNA computing can be used to do fast searches and data
base operations on these wet databases. However, DNA computing techniques
might be ideally suited to solve problems in molecular biology which inherently
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13.

involve natural DNA, that is DNA that is biologically derived (as opposed to
artificially synthesized DNA which is coded over a given word alphabet). A
class of problems, including sequencing, finger printing and mutation detec-
tion may well be the killer applications of DNA computing due to the basic
involvement of DNA in these problems. An experimental demonstration, at
moderate scale, of a DNA computing method for solving a significant problem
in molecular biology with natural DNA inputs, will be a major milestone in
DNA computing.

Recoding DNA. One interesting approach to use DNA computing to solve prob-
lems concerning natural DNA is to allow natural DNA to be recoded. The
natural DNA is recoded as sequences of encoded nmers. This recoding allows
the DNA to be then operated in a purely digital manner. The processing of
recoded DNA can then be done by the usual DNA computing techniques.
DNA Sequencing. One possible application considered by [LL97] is DNA se-
quencing by hybridization. Redundant recoding of nmers may be used to
reduce errors due to incomplete hybridization. These redundant encodings
would be constructed and attached to the nmers using known DNA comput-
ing methods, yielding an encoded array of nmers providing the DNA sequence
information (also Boneh and Lipton [BL95] have a quite distinct divide and
conquer approach to DNA sequencing).

Further Processing of Recoded DNA. Once natural DNA is recoded, general
DNA computing methods may be used to speed up many other key appli-
cations in biology and medicine [SM97], such as fingerprinting and mutation
detection. Recoded natural DNA derived from many sources can be used to
assemble large wet data bases containing DNA that encodes data of biolog-
ical interest, without the problem inherent in I/O to an electronic medium.
DNA computing, with its huge memory capacity, has a considerable advantage
over conventional technologies for storing such biological data bases. Once the
wet data bases are assembled then we can do further processing using DNA
computing techniques, for example fast associative searches ([Baum96])can be
done in these wet data bases.

Approximate Counting of DNA. Faulhammer, Lipton, and Landweber
[FLL98] give a DNA computing method for estimating the number of DNA
strands within a test tube. This may make possible to even solve problems
beyond NP, e.g., counting approximately the number of possible satisfying
solutions of a SAT formula.
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Chapter 4

Recent Experimental
Advancement in DNA N ano
Technologies and Paradigms

ered highly sophisticated are now routine, and many have been automated by robotic
systems. As a further byproduct of the industrialization of the biotechnology field,
many of the constraints (such as timing, pH, and solution concentration, contami-
nation ete.) critical to the successfyl execution of recombinant DN A techniques for
conventional biological and medical applications (but not necessarily for all DNA
computing applications), are now quite well understood, both theoretically and in
practice.
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4.1.2  Alternative Recombinant DNA Methodologies

The most pervasive enabling biotechnology for DNA computing is solution - based
recombinant DNA, that is the recombinant DNA operations are done on test tubes
with DNA in solution. However, there are a number of alternative enabling biotech-
nologies, that allow similar and sometimes enhanced capabilities.

1. Solid Support DNA computing

An example of an alternative recombinant DNA methodology is the solid sup-
port of individual DNA, for example by surface attachments. In solid support,
the DNA strands are affixed to supports of some sort. In surface - based chem-
i1stry, surface attachments are used to affix DNA strands to organic compounds
on the surface of a container. This can allow for more control of recombinant
DNA operations, since this insures (i) that distinct DNA strands so immobi-
lized can not interact, and also (ii) allows reagents and complementary DNA to
have easy access to the DNA, and (iii) allows for easy removal of reagents and
secondary by - products. Also, handling of samples is simpler and more read-
ily automated. Surface - based chemistry has been used in protein sequencing,
DNA synthesis,and peptide synthesis. Surface attachment methods can also
be used for optical read - out (e.g., via fluorescent tagging of specific DNA
words) on 2D arrays. A possible drawback of surface attachment technology,
in comparison to solution - based recombinant DNA techniques, is a reduction
on the total number of DNA strands that can be used.

2. Automation and Miniaturization of DNA computing

Some of the current limits of DNA computing stem from the labor intensive
nature of the laboratory work, the error rates, and the large volumes needed
for certain bio - molecular reactions to occur (e.g., for searching and associative
matching in wet data bases). [GR98] propose the use of MEMS micro - flow
device technology for DNA computing which may provide several advantages:
it would allow automation of the laboratory work, parallel execution of the
steps of a DNA computing algorithm (for improved speed and reliability), and
for transport of fluids and DNA among multiple micro - test tubes. [GR9S8]
provide a model for micro - flow based bio - molecular computation (MF - DNA
computing) which uses abstractions of both the recombinant DNA (RDNA)
technology as well as of the micro - flow technology, and takes into account both
of their limitations (e.g., concentration limitations for reactants in RDNA, and
the geometric limitations of the MEMS device fabrication technology). [GR98]
also give a time and volume efficient MF - DNA computing architecture for
routing DNA strands among multiple micro - test tubes (this gives a substantial
decrease in the volume required for the PRAM simulation of [Rei95]).
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4.2 New Experimental Paradigms for DNA computing

4.2.1  General - purpose Molecular Computers using DNA com-
puting

DNA computing machines using molecular parallelism and providing large memo-
ries, are being constructed at Wisconsin, [LTCSC97] and USC [Adle96]). In both
projects, a large number of DNA strands are used, where each DNA strand stores
multiple memory words. Both these machines will be capable of performing, in par-
allel, certain classes of simple operations on words within the DNA molecules used
as memory. Both projects developed error - resistant word designs.Successful pro-
totyping at moderate scale of either of these machines will be a major experimental
milestone in DNA computing. The Wisconsin project is employing a surface to im-
mobilize the DNA strands which correspond to the solution space of a NP search
problem. Since they are all on the same surface, all DNA strands are operated in
a Single Instruction Multiple Data (SIMD) fashion. Their operations on words are
restricted to mark, unmark, and destroy operations, which suffice for certain NP
search problems. A key challenge in their approach is to provide scaling to a suffi-
ciently large number of DNA strands within the constraints of surface attachment
technology. In contrast, the USC project uses a combination of solution - based and
solid support methods, which are used to improve the efficiency of the separation
operations. In this method, the computation is done without formation and breaking
of covalent bonds. Their operations on words include the Boolean logic operations.
All DNA strands within a given test tube are operated on in a SIMD fashion. How-
ever, their approach allows splitting of the solution space Into separate test tubes,
and thus potentially allows for DNA strands to be operated on in a very limited
Multiple Instruction Multiple Data (MIMD) fashion, where the number of distinct
Instructions executed at the same time is limited to the number of test tubes used
in parallel. A key challenge in their approach, and the major focus of their effort, is
to provide for efficient error - resistant separations.

4.2.2 The Local Assembly Paradigm

The local parallelism (LP - DNA computing) paradigm for DNA computing allows
operations to be executed in parallel on a given molecule (in contrast to the par-
allelism where operations are executed in parallel on a large number of distinct
molecules but execute sequentially within any given molecule). Before we describe
these local assembly techniques, we first discuss DNA nano - assembly techniques,
and some previously known tiling results, which provided the intellectual foundations
for local assembly.
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4.2.3 DNA Nano - Fabrication Techniques

Feynman {Feynman61| proposed nano - fabrication of structures of molecular size.
Seeman nano - fabricated in DNA ([SZDC95] ): 2D polygons, including interlinked
squares, and 3D polyhedra, including a cube and a truncated octahedron. Seeman’s
constructions used for basic constructive components:

DNA junctionsi.e., immobile and partially mobile DNA n - armed branched junctions
DNA knots: i.e., ssDNA knots rings,

DNA crossover molecules: i.e., double helix(IDX) molecules,the octahedron used solid
- support, to avoid interaction between constructed molecules. (See Figure 77)

Figure 4.1: Other Possible Graph like Structures of DNA Molecule

4.2.4 More on Computation via Local Assembly

A class of tiling problems are defined as follows: we are given a finite set of tiles of
unit size square tiles each with top and bottom sides labeled with symbols over a
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- finite alphabet. These labels will be called pads. We also specify the initial placement
of a specified subset of these tiles, and the borders of the region where tiles must be
- placed defining the extent of tiling. The problem is to place the tiles, chosen with
replacement, in all these square regions within the specified borders, so that each
palr of vertical abutting tiles have identical symbols on their contacting sides. Let
the size of the tiling assembly be the number of tiles placed. Berger [B66]| proved
that given a finite set of tile types, the tiling problem is undecidable if the extent of
tiling is infinite. As discussed in last chapter Winfree proposed idea is to do the tiling
constructions §y application of the DNA nano - fabrication techniques of Seeman
et al [SZC94|, which may be used for the construction of small DNA molecules
that can function as square tiles with pads on the sides. The pads are ssDNA. As
described in chapter 1,#f two ssDNA are sticky (i.e., Watson - Crick complementary
and 3’ - 5’ and &’ - 3’ oriented in opposite directions), they may hybridize together
at the appropriate conditions into doubly stranded DNA. The assembly of the tiles
15 due to this hybridization of pairs of matching sticky pads on the sides of the tiles.
This innovative paradigm for DNA computing can be termed as unmediated self -
assembly since the computations advance with no intervention by any controllers.
The advantages of the unmediated DNA assembly idea of Winfree is potentially very
significant for DNA computing since the computations advance with no intervention
by any controllers, and require no thermal cycling. It is a considerable paradigm
shift from distributed molecular parallelism, which requires the recombinant DNA
steps (which implement the molecular parallelism) to be done in sequence.

To simulate a 1D parallel automata or a one tape Turing Machine, Winfree et al
[Winfree98] proposed self - assembly of 2D arrays of DNA molecules, applying the
recombinant DNA nano - fabrication techniques of Seeman et al [SZC94] in com-
bination with the tiling techniques of Berger [B66]. Winfree et al [Winfree98| then
provided further elaboration of this idea to solve a variety of computational problems
using unmediated DNA self - assembly. For example, they propose the use of these
unmediated DNA assembly techniques to directly solve the NP - complete directed
Hamiltonian path problem, using a construction similar to the NP - completeness
proof of {GJ79] for tiling of polynomial size extent. Winfree et al [WYS96] also
provided amexperimental test validating the preferential pairing of matching DNA
tiles over partially non - matching DNA tiles. Winfree [Winfree98] made computer
simulations of computing by self - assembly of DNA tiles.

Erik Winfree, et al [WLW98| recently experimentally constructed the first large
(involving thousands of individual times) two dimensional arrays of DNA crystals
by self - assembly of nearly identical DNA tiles. The tiles consisted of two double
- crossovers (DX) which self - assemble into a periodic 2D lattice. They produced
spectacular atomic force microscope(AFM) images of these tilings (by insertion of
a hairpin sequence into one of the tiles they created 25 nm stripes in the lattice).
They also verified the assembly by the use of "reporter” ssDNA sequences. This
experiment provided strong evidence of the feasibility of large scaling self - assembly,
but it was not in itself computational. LaBean, et al [LYR98] recently designed and
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experimentally tested in the lab a new DNA tile which 1s a rectangular shaped triple
crossover molecule with sticky ends on each side that can match with other such tiles
and with a "reporter” ssDNA sequence that runs through the tile from lower left to
upper right, facilitating output of the tiling computation.

What remains is to experimentally demonstrate: (1) DNA self - assembly for a (non -

trivial) computation, and (ii) DNA self - assembly of a (possibly non - computational)
3D tiling.

4.2.5 Assemblies of Small Size and Depth

To increase the likelihood of success of assembly, Reif [Reif97} proposed a step - wise
assembly which provides control of the assembly in distinct steps. The total number
of steps is bound by the depth of the assembly. Also, [Reif97] proposed the use of
frames, which are rigid DNA nano - structures used to constrain the geometry of the
assembly and to allow for the placement of input DNA strands on the boundaries
of the tiling assembly. Using these assembly techniques, [Reif97] proposed LP -
DNA computing methods to solve a number of fundamental problems that form the
basis for the design of many parallel algorithms, for these decreased the size of the
assembly to linear in the input size and and significantly decreased the number of
time steps. For example, the prefix computation problem is the problem of applying
an assoclative operation to all prefixes of a sequence of n inputs, and can be used
to solve arithmetic problems such as integer addition, subtraction, multiplication
by a constant number, finite state automata simulation, and to fingerprint (hash) a
string. [Reif97] gave step - wise assembly algorithms,with linear assembly size and
logarithmic time, for the prefix computation problem. [Reif97] gave DNA computing
methods for perfect pair - wise exchange using a linear size assembly and constant
assembly depth, and thus constant time. This allows one to execute normal parallel
algorithms using DNA computing in logarithmic time. Also, this implies a method
for parallel evaluation of a bounded degree Boolean circuit in time bounded by
the circuit depth times a logarithmic factor. Previously, such operations had been
implemented using Dynamic Programming - DNA computing techniques [Rei95] in
similar time bounds but required a large amount of volume; in contrast the Linear
Programming - DNA computing methods of [Reif97] require very modest volume. All
of these LP - DNA computing algorithms of [Reif97] can also use DNA computing
to simultaneously solve multiple problems with distinct inputs (e.g. do parallel
arithmetic on multiple inputs, or determine satisfying inputs of a circuit), so they
are an enhancement of the power of DNA computing. Jonoska et al [JKS98] describes
techniques for solving the Hamiltonian path problem by self assembly of single strand
DNA into three dimensional DNA structures representing a Hamiltonian path.
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4.2.6 The Cellular Processor Paradigm

DNA computing may make use of micro organisms such as bacteria to do computa-
tion. A cellular processor is a microorganism such as a bacteria, which does compu-
tation via a re - engineered regulatory feedback system for cellular metabolism. The
re - engineering involves the insertion of modified regulatory genes. whose DNA has

been modified and engineered so that the cell can compute using regulatory feedback
systems used in cellular metabolism.

* %k Kk Ak ke H %k ke ok ok
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Chapter 5

Basic DNA Arithmetic:
Recursive Implementation

In this chapter we describe a new efficient recursive DNA computing technique for
working with basic arithmetic operations like addition and multiplication of binary
numbers, based upon their set representation. The major significant features of our
technique are:

(1) Its fully procedural in nature, that i8, the structure of output is exactly similar
with that of inputs. This way result can be further reused without any changes,
making iterative as well as parallel operations feasible.

(2} Technique requires number of different DNA strands at most of the order of size
of the binary number. That means it avoids the problem of Increasing volume.

(3) Time required by the technique for addition is O(logon) and for multiplication
it is O(nlogon), where n is the size of the binary numbers.

9.1 Related Work

5.1.1 Horizontal Chain Reaction Technique

One of the earliest attempts to perform arithmetic operations (addition of two pos-
itive binary numbers) using DNA are by Guarneiri and others [GFBY6], utilizing
the idea of encoding differently bit values 0 and 1 as ssDNA, based upon their posi-
tions and the operand in which they are actually appearing. This enabled them to
propagate carry successfully as horizontal chain reaction using intermediate place-
holders because of the presence of appropriate complementary substrands, which
annealed together and PCR gave way to insert correct value of carry and way to
further propagate it. Though their technique yields correctly result of addition of
two given binary numbers but is highly nonprocedural in nature since the output
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strand is vastly different in structure from the input strands (which themselves are
coded differently!) making it of little use in effect.

5.1.2 Truth - Table Mapping Technique

The later attempts were by Vineet Gupta and others (GPZ97] to perform logic and
arithmetic operations using the fixed bit encoding of full corresponding truth tables.
They construct the strands for bits in first operand (level one)and corresponding to
cach bit value (0 or 1) all possible bit values (00, 01, 10, 11)! in second operand(level
two) such that in the next phase when first operand - strands are pored 1nto the pot
containing all possible second operand - strands (including the correct one Jannealing
results in correct in a structure which can be interpreted according to the type of the
operation. In case of arithmatic operation in later stages of computation they add
all possible intermediate results and successively propagate carry from the lowest
weighted bit to highest weighted bit.

‘Though the encoding works well with logic operations but arithmetic operation are
not so easy as the technique requires that all the possible intermediate results to be
coded and added manually one by one during processing which in effect is a labor
intensive and time consuming job.

Other later attempts are due to Z. Frank Qin and Mi Lu [QL98|, which use sub-
stitution operation to insert results (by encoding all possible outputs of bit by bit
operation along with second operand) in the operand strands. Though they propose
to extend the radix of numbers from binary to any other higher radix like octal,
decimal etc but this does not decrease the possible number of encoding of different
intermediate results (which are exponential in number). Again in case of addition
operation quite against to their claim and given example one step procedure does
not seem to propagate the carry from the first bit to the last bit yielding the cor- |
rect result. Moreover the cleansing operation which they claim making the output
similar to first input, for reuse in further operations, is itself not an error resistant
operation.

5.1.3 Generalised Techniques

Some generalized techniques are there due to Ogihara and Ray and by Amos and oth-
ers [0G96, AD97), who present methods to realize any Boolean circuit (with bounded
fan in) using DNA strands in constructive fashion. Here though the the operations
are feasible but problem is of constructing large Boolean circuits for arithmetic op-
erations, manually or automating the process, leaving the technique for theoretical
importance only.

‘In fact they use along with usual dnts other nucleotides like Uracil(U), 7 -deaza adenine(P) to
achieve some additional complementary structures
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5.1.4 Other Results

Other new suggestions to perform all basic arithmetic operations are by Atanasiu
[Ata00] using P systems (as introduced earlier in sec. 2.2.5 and already having several
of variants with universal computing power}, in [Fri00} using splicing operation under
general H systems by encoding operands and results (in base one in the same strand)

with redundancy, then gradually by filtering the wrong ones out , and by Hubert
and Schuler {HS01]

5.2 Recursive DNA Arithmetic

5.2.1 Underlying Mathematical Model

Let us suppose that the n -bit binary numbers to be operated uponare 4 = A, --- A
and B = B, --- By where A; , B; € {0,1} V1 <7 <n. And that

XA ={i:A; = 1}and X|B} = {j: B; = 1};

which actually are the sets containing the position numbers where binary represen-
tation these number sets bit to 1. Next we define

7 ={2+i:z€ Z, zandiareintegers yand ZT = Z'* |
X19Xe = {zmxze X1UXo but 2 ¢ X; N X2} (symmetric dif ference), and

Val(X): outputs the binary number represented by set X (of positive integers) as for
example Val(X[A]) = A and Val(X[B]) = B and Val (¢) = 0.

In terms of this symbolism we can state the abstract recursive procedures for addition
and multiplication of the given two positive binary numbers as follows:

Add(A, B) = Val(RecursiveAdd(X[A], X[B])) Where

RecursiveAdd(Y,Z) =Y ifZ =9
—ZifY = ¢
= RecursiveAdd{ (Y &® Z), (Y} Z)™ ) otherwise.

Since Add{A, B, C) = Add(Add(A, B), C), we have

Mul(A, B) = Add( {Val( X[4J1)}p,=1) .
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The Multiplication procedure actually realizes, using successive additions of left
shifted A’s, the following formula:

Where multiplication of a binary number with power of 2 is nothing but the left
shifting of the number by that exponent, and the set containing all the positions

where binary representation contains 1 is given by adding j’s to each of these inte-
gers together.

Subtraction operation for integer arguments can be performed as 2’s complement
addition ([Hayes88] p 23).

Division. Once we can perform addition and subtraction operation then mapping
of division operation in terms of these can be done using any of the standard dig-
a1 arithmetic techniques ([Hayes88| p 250). For example here we will consider
nonrestoring division ([Hayes88] p 253) which requires an average n additions or
substractions.

5.2.2 DNA Algorithm

Since the procedure described above ‘q recursive in nature and as can be seen easily
‘0 context of currently available DNA tool - kit operations and other high level op-
erations as suggested 1n [BDSL95], that the most important operation to be realized
s incrementing all the integers in the sets like X[A] by one. Actually whole of the
coding of numbers and various other steps basically rest upon the ease with which
this step can be realized. Keeping this point in mind we propose the following DNA
algorithm:

DNA Encoding of Binary Numbers

Each binary number 18 represented as a test tube ( a multi set of strings over S
= {A, C, G, T}) of dsDNA encoding the integers ( positions where bit is set to
1) from 1 to n, such that a dsDNA for integer I’ 18 - (following the notations in

'Bis98], discussed in appendix B) ds; =1 So(GAATTGCP)GAATTC ( Note that J
GAATTC is restriction site for EcoRI ),here Sp may be any suitable 20 to 30 base -
pair long dsDNA not containing GAATTA as a substrand.

For e.g.we may consider test tube T[A] representing binary number A as

T{A] = {ds;:1 € X[A}},

similarly T{B] for B.
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1. Addition

Step0. Check whether any of T[A] or T[B] is empty. If yes then second tube
contains the final result (which can be obtained by detecting the presence of
all different strands using gel electrophoresis or extraction technique (for all
the strands (for each integer i from 1 to n) one by one, followed by Test if
Empty operation to check whether there is any strand in the tube as a result
of extraction ), else go to step 1. Initially T[A] and T[B] represent the test
tubes encoding A and B respectively.

Stepl. Melt ds’ in T[A] and T{B] to extract up - strands with respect to T So
from T[A] and down - strands with respect to | So from T[B]. Now mix these
two extracts so that complementary strands can get annealed to form stable
ds’. As can be seen the resulted ds’ i1 the tube are exactly those coming from
T[AJU T[B} and single strands are those coming from T[A] /T[B] (up - strands
with 1 So) and from T{B] /T[A] (down strands with | Sp). Using standard
DNA toolkit operations single strands can be separated from double strands
and then using PCR the ssDNA can be complemented using So¢ as a primer,

Let T{A] now contain these dsDNA obtained after PCR (i.e. T[A] & T[B]) and
T{B] the annealed dsDNA (i.e. TIAJUT[B]).

.. Step2.(Increment by One). Add restriction enzyme EcoRI to T[B] to cut all
R g the dsDNA at ehmirz3emd. This restriction enzyme activity leaves double

MwJ\M strands with B @\ hanging ends, of the form
MY GRRTYC

1 So(GAATTGC®)'G 1 AATT.

Now down strands
| AATTGCP?GAATTC

and ligation enzyme is added to test tube which results in the strands of the
form { SU(GAATTGCE’)*GAATT | GCPGAATTA. These strands can now
be polymerized to form

1 So(GAATTGC®) T GAATTA,

Thus now T[B] contains strands representing (X[AJUX IBD .

Step3. Go back to stepl.

2. Multiplication

Stepl. Vj € X([B]

Construct test - tubes T;[A] similar to step2 above with the difference that
for annealing add | AAT’I‘GCﬁ((;?Af-l’l”l’G‘CE’)j -1GAATTC instead of adding
| AATTGCPGAATTC (add it when j=2). |

52



Step2. If the test tubes obtained in stepl are Ty, (A}, Tj [A], T, [A] - etc do
the following:

Step2.1 perform Addition operation (described above) with tubes T}, 1A}, T, [ Al
T.et the result be kept in T.
Step2.2 Repeat the following V j; such that >3

perform Addition operation (above) with tubes T and Tj;[A] and keep the
result back in L.

~ Subtraction

The subtraction operation can be done utilizing ideas from the conventional
digital arithmetic, that is to say as per 2s complement method. To perform
A - B we do the following:

Stepl. Construct T[A] and T[B} and T, which consists of the ds; for all 1 €

1, nl.

Step2. Obtain T} =T & T[B] as described above with Addition operation or
as a set extract operation described in [BDLS 98|.

Step3. perform addition operation with T[A] and T1 and keep the result 1n
T1.

Step4. Perform addition operation with T1 and T[N=1] (consist of only one
type of dsDNA SoGAATTGCSGAATTC).

Stepb. Post - processing of the result by comparing 1t with 27 gives the desired
result.

" Division: NonRestoring Division

Let us suppose that number A is dividend and B 18 divisor.the result of division
are quotient Q and shifted remainder finally in A. Let corresponding test tubes
are T[A], T{B] , and T[Q], (initially T(Q),is empty) . Let Test tube T contains
(as above In substraction procedure) the dsDNA strands ds; for all ¢ € 1, n).
A DNA algorithm is performed as follows:

Step0. Perform steps 1, 2, and 3 of the subtraction procedure above 1O get
tost tube representing 2’s complement of B as Tube T[2'B].

Repeat the following Vi<i<n—1

Stepl. Perform last two steps (4 and 5) of substraction procedure (above)
with tubes T[A], and T[2'B] (to get A - B).

Step2. Perform increment by one operation on T[A] as described above in
addition procedure’s stepl. Step3. If the result is positive (from the last

03



stepd of substraction procedure above), then

Step3.1if i € X[Q] so add ds; (already manufactured ) to T[Q].

Step3.2 Perform stepl. |

Step4. Else if the result is negative (in stepl above) , then

Perform addition operation with tubes T[A], and T[B] (i.e. A + B).

Result 1. Perform stepl.

2 If the result is negative, perform addition operation with tubes T[A], and
T[B](i.e. A + B).

3. Quotient is X[Q] or T[Q) and shifted remainder (2® R) is T[A] which can
be read as describes in addition operation (step0).

5.2.3 Complexity Analysis

Time Complexity of Operations

Addition. As each level of recursion in addition operation involves fixed number
of bio steps, therefore average time complexity of the procedure would be same as
expected number of recursion levels in the abstract model. Since the procedure i8
simple enough thus even the following semi formal arguments can lead to the answer:
Qince the probability that at cach position bit will be set 10 1 (or 0) is 1/2, therefore
expected number of 1s’ in any randomly chosen binary number of length n are n/2.
Similarly probability that at any position both the numbers (A, B, randomly chosen)
<et the bit to 1 is (1/2)*(1 /2) = (1/4), therefore expected number of positions where
both the numbers set bits to 1 are n/4, that is the expected size of X[AJUX[B] and
consequently of (X[A]UX[B]+). Similarly probability that at any position both the
numbers set bits differently 18 (1/2)%(1/2) + (1/2)%(1/2) = (1 /2) giving expected
number of 1’s in A®B as n /2, which is same as the expected number of integers
in X[Al®X[B]. Now for 2nd level of recursion probability that position number 1
is present in both the sets from the 1st step 1s (1/2)%(1/4) = (1/8) , therefore
expected number of integers after set - intersection and shifting by one are I /8 while
expected number of integers after symmetric difference of the sets are n/2 because
probability that an integer is present In only one of the two sets is (1/2)%(1/4) +
(1/2)*(3/4) = (1/2). Following the same argument it can be seen that after ith level
of recursion expected size of set resulting after set intersection and shitting will be
n/2t1. Therefore expected number of recursion levels will be [/ ogon) - 1. Thus the
average number of biosteps needed in the addition operation are O(logan). It’s not
diffcult to see that worst case complexity 18 as well O(logon). In case when the final
result is obtained by performing extraction {followed by Mest if Empty’ ) operation,
total steps might increase to O(n + logan) = Ofn).

Multiplication. SInce multiplication is nothing but repeated addition (at most logan
times), as above, therefore average number of steps will be (n/ 2)* logan 1.€. O(nlogan).

¢y, btraction. Similarly 1t can be seen that subtraction operation requires on average
O(logan) bio steps. Qince 2’s complement of the 2nd operand to be subtracted can
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be obtained in at most O( 1 +loga2n) steps, then rest addition operation requires
O(logyn) bio - steps.

Division Its clear from the division procedure that non restoring division technique
above requires n additions or subtraction, amounting O(nlogon) number of bio - steps

an average to perform complete devision operation with n bit long integer operands
in base 2.

Volume Complexity

Since at any step of the above procedure we need only test tubes containing DNA
strands representing integers from 1 to n, the space complexity {volume) is linear in
the size of binary numbers i.e. O(n).

5.2.4 Error Analysis

Errors in DNA computing experiments are one of the main reasons of prumary con-
cern and active areas of current research [BDSL96, AWHOG98, AYT98, CW99I.
One potential source of error in the above suggested algorithms seems to be partial
annealing [YYSHTSMO99]. But as far as the correct and effective {procedural )
realization of the abstract model is concerned it seems unlikely that any other en-
coding (instead of C° ) will fully overcome this error, though this does not mean
anyway that it can’t be reduced. Infact choice of C5 is chosen to make results of
partial annealing less stable as compared to the correct matches . Other types of
errors (like as loss of strands during separation of ss’ and ds’ from the tube) are
actually experimental errors and can be minimized using only more sensitive and
effective tools.
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Appendix A

Composite Operations

Append

This adds a specific subsequence to the ends of all the strands. This can be done by
annealing a short strand to a longer strand so that the short strand extends off the
end of the longer strand. Then the complement of the subsequence that is extending
off the end can be added to the longer strand either through the use of a polymerase
enzyme, or through the introduction and annealing of that sequence, cemented by
ligase.

Polymerase Chain Reaction or PCR

Tt’s one of the most useful operation, which is used to amplify a known DNA se-
quence. Usually the strand is double, which is melted to form two complementary
sequences then primer subsequences for both these strands are added together with a
polymerase enzyme , which extends these sequences to form two full double strands
as original one. This cycle can be repeated 1 times to get 2! copies of the original
double strand.

How to select a set of primers to use for PCR? Try to keep the primer 50% G -
C give or take 15%. If overly G - C rich, add a string of As or Ts at 5" end; If
overly A - T rich, do the same with Gs and Cs. Try to avoid Gs and Cs at 3’ end
of the primers. This may increase the chance of forming primer dimers. Avoid self
- annealing regions within each primer([InGel90]). A good practice is to check the
target DNA sequence if 1t 18 known for mis priming areas. A quick check scanning
the sequence of vector for approximately 70% and above homology regions can help
prevent obtaining multiple contaminating bands in PCR. Use of a computer program
may help eliminate the use of a poorly designed pair of primers.

Substituting

substitute, insert or delete DNA sequences by using PCR site - - specific oligonu-
cleotide mutagenesis (see [Kath96), [Kari97]). The process is a variation of PCR 1n
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which a change in the template can be induced by the process of primer modification.
Namely, one can use a primer that is only partially complementary to a template
fragment. (The modified primer should contain enough bases complementary to the
template to make it anneal despite the mismatch.) After the primer is extended by
the polymerase, the newly obtained strand consist of the complement of the template
- which a few nucleotides have been substituted by other, desired ones.

Detecting and Reading

given the contents of a tube, say YES if it contains at least one DNA strand, and
NO otherwise ([Adle94] [Adle96], [Kari97)). PCR may be used to amplify the result
and then a process called sequencing is used to actually read the DNA strands In
solution. The basic idea of the most widely used sequencing method is to use PCR
and gel electrophoresis. Assume to have a homogeneous solution, that is, a solution
containing mainly copies of the strand we wish to sequence, and very few other
strands. For detection of the positions of As in the target strand, a blocking agent
s used that prevents the templates from being extended beyond As during PCR.
As 2 result of this modified PCR, a population of subsequences is obtained, each
corresponding to a different occurrence of A in the original strand. Separating them
by length using gel electrophoresis reveals the positions where A occurs in the strand.
The process can then be repeated for each of C, G, and T, to yield the sequence of the
strand. Recent methods use four different Auorescent dyes, one for each base, which
allows all four bases to be processed gimultaneously. As the fluorescent molecules
pass a detector near the bottom of the gel, data are output directly to an electronic
computer.

Subsequence Extraction

This operation involves the extraction from a test tube of all those single strands,
which contain a specific short sequence {€.&., extract all strands containing the se-
quence 5 -AGACTG ).To extract single strands containing the sequence X wWe first
create many copies of its complement, 7. We attach to these oligonucleotides a biotin
molecule (biotination)which bind in turn to a fixed matrix of avidin molecules at the
cross points. If we pour the contents of the test tube over this matrix, strands con-
taining x will anneal to the anchored complementary strands. Washing the matrix
removes all strands that did not anneal, leaving only strands containing x. These may
then be removed from the matrix. This opearation can be performed with specific
types of sequences using other methods (e.g., restriction enzymes as in [AmosTh97}).

Mark

This operation tags strands so that they can be separated or otherwise operated
upon selectively. Marking is commonly implemented by making a single strand into
a double strand through annealing or the action of a polymerase. However, it can
also mean appending a tag sequence to the end of a strand or even methylation of the
DNA or (de)phosphorylation of the 5' ends of the strands. Unmark The complement
of the marking operation. Unmark removes the marks on the strands.
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Substitution

Qubstitute, insert or delete DNA sequences by using PCOR site specific oligonucleotide
mutagenesis ({[BDSL5]). The process .« 2 variation of PCR in whichachange in the
template can be induced by the process of primer modification. Namely, one can
use a primer that is only partially complementary 1o a template fragment. The
modified primer should contain enough bases complementary to the template to make
it anneal despite the mismatch. After the primer is extended by the polymerase, the
newly obtained strand will consist of the complement of the template 1n which a few
oligonucleotides have been substituted by other, desired ones.

Destroying

The marked strands by using exonucleases, or by cutting all the marked strands with
5 restriction enzyme and removing all the intact strands by gel electrophoresis. By
using enzymes called exonucleases, either doublestranded or singlestranded DNA
molecules may be selectively destroyed. The exonucleases chew up DNA molecules
from the end inward, and exist with specificity to either singlestranded or dou-
blestranded form.

% 4 K Kk kK kK kK ok kR
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Appendix B

Common Restriction Enzymes

" SN. || Enzyme Restriction Site Result Cut Type
] EcoRI T GAATTC 1 G | AATT sharp .

2 Xmal HpaH, Mspl || 1 CCCGGG +C | CCGG sharp

3 Pstl 1 CTGCAG 1 C1TGCA sharp

4 || Smal t CCCGGG t CCC blunt

5 BamHI 1 GGATCC 1 GLGATC sharp

¢ | Ball 1+ TGGCCA + TGG blunt

7 Haell T (4/G)GCGC(C/T) 1 (4/G) 1 GCGC sharp

8 Haelll 1 CCOGGG 1 GG blunt

9 | HindIl 1 GT(C/T)(A/G)AC || I GT(C/T) blunt

10 || HindIil 1 AAGCTT 1 A} (AGCT) sharp

11 || Hpal t GTTAAC t GTT blunt

12 | Hpall 1 CCGG 1C1CG sharp

Note: Conventions have been adopted from
sent a ssDNA x with §' - 3 direction,
5! direction; this way Tx and x are comp
A mix of both 1 and | indicates that each

starting from that arrow towards right until
are reached.
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similarly

[BDSL95] abd [Bis98). Where Tx repre-
}x represents the ssDNA x with 3’ -
lement to each other. §x indic
strand has structure directed by one arrow
either of right end or the other arrow

ates dsDNA.
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