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1 Introduction

Data encryption (cryptography) is utilized in various applications and environments. In general, cryp-
tography is used to protect data while it is being communicated between two points or while it is
stored in a medium vulnerable to physical theft. Communication security provides protection to data.
by enciphering it at the transmitting point and deciphering it at the receiving point. File security
provides protection to data by enciphering it when it is recorded on a storage medium and deciphering
it when it is read back from the storage medium. In the first case, the key must be available at the
transmitter and receiver simultaneously during communication. In the second case, the key must be
maintained and accessible for the duration of the storage period.

The most well-known symmetric encryption algorithm is the Data, Encryption Standard (DES). It
defines a block cipher with 64-bit blocks and 56-bit keys. Because of its small key size exhaustion of the
-DES (i.e., breaking a DES encrypted ciphertext by trying all possible keys) has become Increasingly
more feasible with technology advances. Following a recent hardware based DES key exhaustion attack,
National Institute of Standards and Technology (NIST) [13] no onger supports the use of single DES

for many applications and suggested the use of triple DES (i.e. applying single DES 3 times). Triple
DES is currently the most widely used encryption standard.

In 1997, NIST initiated a process to select a symmetric-key encryption algorithm, to be called
Advanced Encryption Standard (AES), which is atleast as secure as tripla DES and capable of
protecting sensitive government information well into the twenty-first century. NIST expects that the
algorithm will be used by the U.S. Government and, on a voluntary basis, by the private sector.

The organization of this report is as follows: In section 2 we review DES, triple DES and
their cryptanalysis. In section 3 we sketch the development process for the AHS and a brief overview
of the five finalists of AES. In section 4 we discuss the proposed AES (Rijhdael) and a software
implementation by Dr.Brian Gladman [7]. In the section 5 we briefly discusk the main features of
Encryption Modes with Almost Free Message Integrity for AES sugtmted by Charanjit S.
Jutla [11] and our implementation of that mode for AES. The mode has two variations 1) Integrity
Aware Cipher Block Chaining Mode (IACBC) and 2) Integrity Aware Paralle§zable Mode (IAPM).

The Appendix contains the C implementation of IAPM. Minor changes are required in this code to
implemant IACBC. |



2 DES, triple DES and their cryptanalysis

2.1 Data Encryption Standard (DES)

The algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control
of a 64-bit key! of which 56 bits are randomly generated and used directly by the algorithm. The other
8 bits, which are not used by the algorithm, may be used for error detection. The 8 error detecting
bits are set to make the parity of each 8-bit byte of the key odd, i.e., there is an odd number of ”1"s
in each 8-bit byte. Deciphering must be accomplished by using the same key as for enciphering, but
with the schedule of addressing the key bits altered so that the deciphering process is the reverse of
the enciphering process.

Enciphering

A block to be enciphered is subjected to an initial permutation IP. The permuted input block is
then the input to a complex key-dependent computation. The output of that computation, called the
preoutput, is then subjected to a permutation which is the inverse of the initial permutation IP~1,

The computation which uses the permuted input block as its input to produce the preoutput block
consists, but for a final interchange of blocks, of 16 iterations of a calculation that is described below
in terms of the cipher function f which operates on two blocks, one of 32 bits and one of 48 bits, and
produces a block of 32 bits.

Let the 64 bits of the input block to an iteration consist of a 32 bit block L followed by a 32 bit
block B. We then denote this by LR. Let K be a block of 48 bits chosen from the 64-bit key. Then
the output L' R’ of an iteration with input LR is defined by:

L' =R (1)

R = L& f(R,K)

where @ denotes bit-by-bit addition modulo 2.

As remarked before, the input of the first iteration of the calculation is the permuted input block.
If L' R is the output of the 16th iteration then R' L’ is the preoutput block. At each iteration a different
block K of key bits is chosen from the 64-bit key designated by KEY..

With more notation we can describe the iterations of the computation in more detail. Let K'S be
a function which takes an integer n in the range from 1 to 16 and a 64-bit block KEY as input and
yields as output a 48-bit block K,, which is a permuted selection of bits from KEY. That is

Ky =KSn,KEY) | (2)

with K, determined by the bits in 48 distinct bit positions of KEY. KS 18 talled the key schedule
because the block K used in the n'th iteration of (1) is the block K, determ'ﬂed by (2).

As before, let the permuted input block be LR. Finally, let Lo and Ry He respectively L and R
and for 1 < n < 16 let L, = R._

Rn - Lﬂ—l $.f(Rn—-1=Kn)
The preoutput block is then R;gL15. The key schedule produces the 16 K, for the algorithm.

Decsphering

L = R @& f(L,K)

Consequently, to decipher it is only necessary to apply the very same algorithm to an enciphered
message dlock, taking care that at each iteration of the computation the sgme block of key bits
K is used during decipherment as was used during the encipherment of the Bock.

From (1) it follows that: R = I

Blocks are composed of bits n?mbered from left to right, i.e., the left most bit of a block is bit one.
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2.1.1 Differential Cryptanalysis of DES

Differential Cryptanalysis is a potent cryptanalytic technique introduced by Biham and Shamir {2].
Differential cryptanalysis is designed for the study and attack of DES-like cryptosystems. A DES-like
cryptosystem is an iterated cryptosystem which relies on conventional cryptographic techniques such
as substitution and diffusion.

Differential cryptanalysis is a chosen-plalntext /chosen-ciphertext cryptanalytic attack Cryptana-
lysts choose a large number of ciphertexts Y, Y’ whose corresponding plaintexts X, X satisfy a known
difference D = X & X', where @ is componentwise XOR. They then study the difference between the
members of the cnrrespanding pair of ciphertexts. Statistics of the plaintext pair-ciphertext pair differ-
ences can yield information about the key used in encryption. In the basic Biham-Shamir attack, 247
such plaintext pairs are required to determine the key for DES. Substantially fewer pairs are required
if DES is truncated to 6 or 8 rounds. In these cases, the actual key can be recovered in a matter of
minutes using a few thousand pairs. For full DES this attack is impractical because it requires so many
known plaintexts.

The general form of the new variant of the attack can be summarized in the following way: Given
a characteristic with probability p and signal to noise ratio S/N for a cryptosystem with k key bits, we
can apply a memoryless attack which encrypts % chosen plaintexts in the data collection phase and has

complexity of <2 W trial encryptions during the data analysis phase. The number of chosen plaintexts

can be reduced to ; by using appropriate metastructures, and the effective time complexity can be
reduced by a factor of f < 1 if a tested key can be discarded by carrying out only a fraction f of the
rounds. Therefore, memoryless attacks can be mounted whenever p > 2% and §/N > 1.

The performance of the new attack for various numbers of rounds is summarized in the following
table:

"Rounds | Chosen | Analysed complexity

Plaintexts | Plaintexts | of Analysis
8 214 4 27
9 224 9 232
10 234 214 9 15
11 231 2 232
12 231 221 221
13 239 2 232
14 239 229 229
15 247 27 23?
16 247 236 23?

This specific attack is not directly applicable to plaintexts consisting of ABCII characters since
such plaintexts cannot give rise to the desired XOR differences. By using seéveral other iterative
characteristics one can attack the full 16-round DES with a pool of about 2% chosen plaintexts (out
of the 2°¢ possible ASCII plaintexts).

3.1.2 Efficient DES Key Search

Despite recent improvements in analytic techniques for attacking the Data Encryption Standard (DES),
exhaustive kay search remains the most practical and efficient attack. Key seardh is becoming alarm-
ibgly practical. In [16] Michael J. Wiener describes how to build an exhaustive DBS key search machine
for §1 million that can find a key in 3.5 hours on average. The design for such & machine is described
in detail in [16] for the purpose of assessing the resistance of DES to an exhaustive attack. The design
# based on mature technology to avoid making guesses about future capabilities; With this approach,
DES keys can be found one to two orders of magnitude faster than other recertly proposed designs.
The basic machine design can be adapted to attack the standard DES modes of operation for a small
penmlty in running time. The issues of development cost and machine reliability pre examined as well.
In Hght of this work, it would be prudent in many applications to use DES in a triple-encryption mode.
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2.2 Triple Data Encryption Algorithm (TDEA)

Let Ex(I) and Dy () represent the DES encryption and decryption of I using DES key K respectively.
Each TDEA encryption/decryption operation (as specified in ANSI X9.52) is a compound operation
of DES encryption and decryption operations. The following operations are used:

1. TDEA encryption operation: the transformation of a 64-bit block I into a 64-bit block O that
1s defined as follows:

O = Ex3(Dg2(Ex1(I))).

2. TDEA decryption operation: the transformation of a 64-bit block I into a 64-bit block O that
18 defined as follows:

O = Dg1(Ex2(Dk3(1))).
The standard specifies the following keying options for bundle (K,, K,, K 3)
1. Keying Option 1: K;, K2 and K3 are independent keys:;
2. Keying Option 2: K and K, are independent keys and K3 = K;:
3. Keying Option 3: K| = K, = K3.

Note that Keying Option 3 (K; = K3 = Kj) is nothing but single DES.

2.2.1 Attacking Triple Encryption

The standard technique to attack triple encryption is the meet-in-the-middle (MITM) attack. In [10]
Stephen Lucks presents more efficient attacks. He presents 3 differnet attacks whose performance is

given below when compared to MITM. In the table below [ is the no.of pairs of plaintext /ciphertext
required for the attack.

attack 1 ] memory | steps single encrypions
MITM 3 258 R oI~
operation 1
optimized 245 256 2109‘2 2109.2
(varia.nt) (245) 256 2103.2 21{}8.2
encryption 1 [+ 2F 22k 3 % 23k—3 | ofFs /1
optimized | 216 | 272 | 9112 2106
224 230 2112 3 % 2104
232 288 2112 3 % 2104
advanced 1 ] I % zk 22k+1 I % 22k+1 + 2k+a+17[
216 272 2113 2105
224 280 2113 3 % 297
232 288 2113 3 % 290

Nete that in practice a single encryption is an exceptionally complex step when compared to common
operstions ‘llle comparisons and table look-ups.

- Based ¢a today’s technology, neither MITM nor any of Lucks’s attacks constitutes a practical way
to'break tsiplde DES. -



3 Development of the Advanced Encryption Standard

In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a
symmetric-key encryption algorithm capable of protecting sensitive (unclassified) government infor-
mation well into the twenty-first century. NIST expects that the algorithm will be used by the U.S.
Government and, on a voluntary basis, by the private sector. In 1998, NIST announced the acceptance
of fifteen candidate algorithms and requested the assistance of the cryptographic research community
in analyzing the candidates. This analysis included an initial examination of the security and efficiency
characteristics for each algorithm. NIST reviewed the results of this preliminary research and selected

MARS, RC6™, Rijndael, Serpent and Twofish as finalists. Having reviewed further public analysis of
the finalists, NIST selected Rijndael as the proposed AES algorithm.

3.1 Overview of the Finalists

The five finalists are iterated block ciphers: they specify a transformation that is iterated a number
of times on the data block to be encrypted or decrypted. Each: iteration is called a round, and the
transformation is called the round function. Each finalist also specifies a method for generating a series
of keys from the original user key; the method is called the key schedule, and the generated keys are
called subkeys. The round functions take distinct subkeys as input along with the data block.

For each finalist, the very first and last cryptographic operations are some form of mixing of
subkeys with the data block. Such mixing of secret subkeys prevents an adversary who does not know
the keys from even beginning to encrypt the’plaintext or decrypt the ciphertext. Whenever this subkey
mixing does not naturally occur as the initial step of the first round or the final step of the last round,

the finalists specify the subkey mixing as an extra step called pre- or post-whitening. Below is a
summary of each of the finalist candidates in alphabetical order:

MARS [3] has several layers: key addition as pre-whitening, 8 rounds of unkeyed forward mixing,
eight rounds of keyed forward transformation, 8 rounds of keyed backwards transformation, eight rounds
of unkeyed backwards mixing, and key subtraction as post-whitening. The 16 keyed transformations
are called the cryptographic core. The unkeyed rounds use two 8x32 bit S-baxes, addition, and the
XOR, operation. In addition to those elements, the keyed rounds use 32-bit key multiplication, data-
dependent rotations, and key addition. Both the mixing and the core rounds are modified Feistel
rounds in which one fourth of the data block is used to alter the other three fourths of the data block.
MARS was submitted by the International Business Machines Corporation (IBM).

RC86 [14] is a parameterized family of encryption ciphers that essentially use the Feistel structure:
20 rounds were specified for the AES submission. The round function of RC6 uses variable rotations
that are regulated by a quadratic function of the data. Each round also includes 32-bit modular
multiplication, addition, XOR, and key addition. Key addition is also used for pre- and post-whitening.
RC6 was submitted by RSA Laboratories.

Rijndael [5] is a substitution-linear transformation network' with 10, 12 or 14 rounds, depending
on the key sise. A data block to be processed using Rijndael is partitioned into. an array of bytes, and
each of the cipher operations is byte-oriented. Rijndaels round function consists of four layers. In the
firet layer, an 8x8 S-box is applied to each byte. The second and third layers are linear mixing layers,
in which the rows of the array are shifted, and the columns are mixed. In the fourth layer, subkey bytes
are XORed into each byte of the array. In the last round, the column mixing is omitted. Rijndael was
submitted by Joan Daemen (Proton World International) and Vincent Rijmen (Ka.thoheke Universiteit
Leuven).

Serpent [1] is a substitution-linear transformation network consisting of 32 rounds. Serpent
algo specifies: non-cryptographic initial and final permutations that facilitate an alternative mode of

- ingplementation called the bitslice mode. The round function consists of three layers: the key XOR
'Om ﬂ parallel applications of one of the eight specified 4x4 S-boxes, and a linear transformation.

‘Glm M process the entire data block in parallel during each round using substitution and linear transformations



In the last round, a second layer of key XOR replaces the linear transformation. Serpent was submitted
by Ross Anderson (University of Cambridge), Eli Biham (Technion), and Lars Knudsen {University of
California San Diego).

Twofish [15] is a Feistel network with 16 rounds. The Feistel structure is slightly modified using
1-bit rotations. The round function acts on 32-bit words with four key-dependent 8x8 S-boxes, followed
by a fixed 4x4 maximum distance separable matrix over GF(2%), a pseudo-Hadamard transform, and
key addition. Twofish was submitted by Bruce Schneier, John Kelsey, and Niels Ferguson (Counterpane

Internet Security, Inc.), Doug Whiting (Hi/fn, Inc.), David Wagner (University of California Berkeley),
and Chris Hall (Princeton University).

3.2 Ewvaluation Criteria

The evaluation criteria were divided into three major categories: 1) Security, 2) Cost, and 3) Algorithm
and Implementation Characteristics. Security was the most important factor in the evaluation and en-
compassed features such as resistance of the algorithm to cryptanalysis, soundness of its mathematical
basis, randomness of the algorithm output, and relative security as compared to other candidates.

Cost was a second important area of evaluation that encompassed licensing requirements, compu-
tational efficiency (speed) on various platforms, and memory requirements.

The third area of evaluation was algorithm and implementation characteristics such as flexibility,

hardware and software suitability, and algorithm simplicity. Flexibility includes the ability of an
algorithm:

e To handle key and block sizes beyond the minimum that must be supported,
e To be implemented securely and efficiently in many different types of environments, and

o To be implemented as a stream cipher, hashing algorithm, and to provide additional cryptographic
services.

It must be feasible to implement an algorithm in both hardware and software, and efficient firmware
implementations were considered advantageous. The relative simplicity of an algorithms design was
also an evaluation factor.

Comparisons of the finalists in some of the criterias which lead NIST to select Rijndael as proposed
AES algorithm are as follows:

3.2.1 General Security

Security was the foremost concern in evaluating the finalists. NIST relied on the public security analysis
conducted by the cryptographic community. No attacks have been reported against any of the
finalists, and no other properties have been reported that would disqualify any of them.

The only attacks that have been reported to date are against simplified variants of the algorithms:
the number of rounds is reduced or simplified in other ways. Attacks on reduced rounds do not
necessarily imply anything about the security of the original algorithms. Almost all of these attacks
require more than 23° encryptions of chosen plaintexts; in other words, more than a billion encryptions,
and in some cases far more are required. Even if a single key were used this many times, it might be
impractical for an adversary to collect so much information.

3.2.2 Other Security Observations

Many observations have been offered about various properties that might impact the security of the
finalists. Because the implications of these observations are generally subjective, they did not play a
significant role in NIST’s selection.



3.2.3 Summary of Security Characteristics of the Finalists

As no general attacks against any of the finalists is known the determination of the level of security
provided by the finalists is largely guesswork. as in the case of any unbroken cryptosystem. MARS,

Serpent and Twofish appears to have a high security margin Rijndael and RC6 appears to have
an adequate security margin.
3.2.4 Summary of Speed on General Software Platforms

The table below gives an overall performance of the finalists on the various platforms when using

128-keys.

Enc/Dec | Key Setup
MARS IT II
RC6 I 1T
Rijndael I |
Serpent I11 I1
 Twofish 11 ITI

3.2.53 A Case Study

All finalists were implemented on a high-end smart card which was equipped with a Z80 micropro-
cessor (8 bits), a coprocessor, 48 Kbytes of ROM, and 1 Kbyte of RAM. The Z80 can execute logical
instructions, 1-bit shifts or rotations, addition, and subtraction. The coprocessor 18 useful in handling
modular multiplications, completing a multiplication within the execution time of a Z80 instruction.
The coprocessor can also be called upon for other arithmetic or logical operations, if advantageous.

The results are summarized in the following table. This table clearly indicates that Rijndael is
superior in every respect, within the scope of the present study.

RAM ROM ENC KEY TIME
MARS 572 5468 45 21 67
RC6 156 1060 34 138 173
RIJN 66 980 25 10 30
SERP 164 3937 71 147 219
TWOF 90 2808 31 28 60

Legend:

RAM = Total RAM in bytes.

ROM = Total ROM in bytes.

ENC = Time for encryption of one 128-bit block, in units of 1000 cycles.

KEY = Time for key scheduling, in units of 1000 cycles.
TIME Encryption + key scheduling, in units of 1000 cycles.

3.2.6 Comaparison of all Hardware Results

Among all finalists Rijndael allows high throughput designs for a variety of architectures, namely
basic, pipelined and unrolled implementations. When fully unrolled, 128-bit Rijndael has the lowest
single block encryption latency of any of the finalists and, therefore, the highest throughput for feedback
mode encryption. In standard architecture implementations, the throughput of 128-bit implementations
18 also at or near the top. Most of the studies did not consider other key sizes. However, since
Rijndael adds additional rounds for larger key sizes, throughput in the standard architecture or unrolled
implementations falls with larger key sizes, but still remains good. For fully pipelined implementations,
area requirements increase with larger key sizes, but throughput is unaffected. Rijndael has good

performance in fully pipelined implementations, giving it non-feedback throughput performance that
is second only to Serpent. Efficiency is generally very good.



#vanced Encryption Standard (Rijndael)

The three oriteria taken into account in the design of Rijndael are the following:

* Resigdance against all known attacks:
o Speed and code compactness on a wide range of platforms;

o Design simplicity.

4.1 Specification

Rijndael is an iterated symmetric block cipher with a variable block length and a variable key length.
The block length and the key length can be independently specified to 128, 192 or 256 bits. But for
the standard the block length is 128 bits.

For both its Cipher and Inverse Cipher, the AES algorithm uses a round function that is composed
of four different byte-oriented transformations:

1) byte substitution using a substitution table (S-box)

2) shifting rows of the State array by different offsets

3) mixing the data within each column of the State array, and
4) adding a Round Key to the State.

4.1.1 The State, the Cipher Key and the number of rounds

The different transformations operate on the intermediate result, called the State. The State can be

pictured as a rectangular array of bytes. This array has four rows, the number of columns is denoted
by Nb and is equal to the block length divided by 32.

‘The Cipher Key is similarly pictured as a rectangular array with four rows. The number of columns
of the Cipher Key is denoted by Nk and is equal to the key length divided by 32.

If the input block consists of the following bytes:
apadi1ad2...4a14
then the block is mapped into the State as below.

At the end the output block is extracted from the State in the same order.
The number of rounds is denoted by Nr and depends on the values Nb and Nk as shown below:

4.2 Cipher

Nr NE=4 | Nk=6 | Nk=8§8
Nb=4 10 12 14
Nb=+6 12 12 14
Nb=8 14 14 14

The cipher AES algorithm consists of

e an initial Round Key addition;

e Nr-1 Rounds;

e 3 final round.

The Cipher is described in the following pseudo code:




Cipher (byte in[4 * Nb], byte out[4 * Nb]l, word w[Nb * (Nr + 1)]1)
begin
byte state[4,Nb]

state = in
AddRoundKey(state, w)

for round = 1 to Nr - 1 step 1
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w + round * Nb)
end for

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w + Nr * Nb)

out = state
end

The individual transformations -SubBytes (), ShiftRows () , MixColumns (), and AddRoundKey () pro-
cess the State and are described in the following subsections. The array w|] contains the key schedule,
which is described in Sec. 4.3. As shown above, all Nr rounds are identical with the exception of the
final round, which does not include the MixColumne () transformation.

4.2.1 SubBytes() Transformation

The SubBytes() Transformation is a non-linear byte substitution that operates independently on each
byte of the State using a substitution table (S-box). This S-box is invertible and is constructed by
composing two transformations:

1. Take the multiplicative inverse in the finite field GF(28); the element {00} which has no inverse
1s mapped to itself.

2. Apply an affine (over GF(2)) transformation defined by:

b; = b; @ Oi+4ymods D b(i15)mods ® B(i+6)mods D Otit 1 ymods D Ci (3)

for 0 < i < 8, where b; is the i** bit of the byte, and ¢; is the i** bit of a byte ¢ with the value
{63} or {01100011}.

4.2.2 ShiftRows() Transformation

In the ShiftRows () transformation, the bytes in the last three rows of the State are cyclically shifted
over different numbers of bytes (offsets). The first row, Row 0, is not shifted.

Specifically, the ShiftRows () transformation proceeds as follows:

!

Sr.c = Sr,(c+shift(r,Nb))modNb JOr 0 <r <4 and 0 < ¢ < Nb,
where the shift value shift(r,Nb) depends on the row number, r, as follows(recall that Nb = 4):

shift(1,4) = 1; shift(2,4) = 2; shift(3,4) = 3. (4)



4.2.3 MixColumns() Transformation

The MixColumns() transformation operates on the State column-by-column, treating each column as a

four-term polynomial'. The columns are considered as polynomials over GF(2%) and multiplied modulo
z* + 1 with a fixed polynomial a(x), given by

a(z) = {03}z° + {01}2? + {01}z + {02}

4.2.4 AddRoundKey() Transformation

In the AddRoundKey () transformation, a Round Key is added to the State by a simple bitwise XOR
operation. Each Round Key consists of Nb words from the key schedule (described in Sec. 4.3). Those
Nb words are each added into the columns of the State, such that ~

! r !

r
[Sﬁ,c? Sl,c! 32,(:! 33,.-::] — [Sﬂ,ﬂw 81,¢582,¢; 33,1‘3] S~ [wraund:rNb-]-c] fOT 0 5 C < Nb._.

where [w;] are the key schedule words described in Sec. 4.3, and round is a value in the range
0 < round < Nr. In the Cipher, the initial Round Key addition occurs when round = 0, prior
to the first application of the round function. The application of the AddRoundKey () transformation
to the Nr rounds of the Cipher occurs when 1 < round < Nvr.

4.3 Key Expansion

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine to generate a
key schedule. The Key Expansion generates a total of Nb (Nr + 1) words: the algorithm requires an
initial set of Nb words, and each of the Nr rounds requires Nb words of key data. The resulting key
schedule consists of a linear array of 4-byte words, denoted [w;], with i in therange 0 < i < N, b(Nr+1).

The expansion of the input key into the key schedule proceeds is as follows: the first Nk words
of the expanded key are filled with the Cipher Key. Every following word, wli], is equal to the XOR
of the previous word, w[i-1], and the word Nk positions earlier, w[i-Nk]. For words in positions that
are a multiple of Nk, a transformation is applied to w[i-1] prior to the XOR, followed by an XOR
with a round constant, Rcon[i]. This transformation consists of a cyclic shift of the bytes in a word
(RotWord()), followed by the application of a table lookup to all four bytes of the word (SubWord ()).

The Key Expansion routine for 256-bit Cipher Keys (Nk = 8) is slightly different than for 128-
and 192-bit Cipher Keys. If Nk = 8 and i-4 is a multiple of Nk, then SubWord() is applied to wli-1]
prior to the XOR.

SubWord() is a function that takes a four-byte input word and applies the S-box to each of the
four bytes to produce an output word. The function RotWord () takes a word [ayg, ay, a9, a3] as input,
performs a cyclic permutation, and returns the word a1, a2, a3, ag). The round constant word array,
Reonlil, contains the values given by [z¢~!, {00}, {00},{00}}, with z*~! being pewers of x (x is denoted
as {02}) in the field GF(28), and note that here i starts at 1, not 0.

4.4 Inverse Cipher

The Cipher transformations in Sec. 4.2 can be inverted and then implemented in reverse order to
produce a straightforward Inverse Cipher for the AES algorithm. The individual transformations
used in the Inverse Cipher - InvShiftRows ( ), InvSubBytes (), InvMixColumns (), and AddRoundKey ()
process the State and are described in the following subsections.

‘Four-term polynomials can be defined - with coefficients that are finite field elements - as:
a(z) = a3 r° + az 2% + a; T+ ao

which will be denoted as a word in the form [ac, a1, az, aal.
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~ 44.1 Inv8hiftRows() Transformation

- InvShiftRows () is the inverse of the ShiftRows() transformation. The bytes in the last three rows
~of the State are cyclically shifted over different numbers of bytes (offsets). The first row, Row 0, is not
- shifted. The bottom three rows are cyclically shifted by Nb-shift(r,Nb) bytes, where the shift value
shift(r,Nb) depends on the row number, and is given in equation (4)(see Sec. 4.2.2).

4.4.2 InvSubBytes() Transformation

InvSubBytes() is the inverse of the byte substitution transformation, in which the inverse S-box is
applied to each byte of the State. This is obtained by applying the inverse of the affine transforma-
tion (3)(see Sec. 4.2.1) followed by taking the multiplicative inverse in GF(2°%).

4.4.8 InvMixColumns() Transformation

InvMixColumns () is the inverse of the MixColumns () transformation. InvMixColumns () operates on
the State column-by-column, treating each column as a four-term polynomial as described in Sec. 4.2.3.
The columns are considered as polynomials over GF(2%) and multiplied modulo z* + 1 with a fixed
polynomial ¢~(z), given by

o (z) = {0b}z3 + {0d}z?* + {09}z + {Oe}

4.4.4 Inverse of the AddRoundKey() Transformation

AddRoundKey (), which was described in Sec. 4.2.4, is its own inverse, since it only involves an application
of the XOR operation.

4.4.5 Equivalent Inverse Cipher

In the straightforward Inverse Cipher the sequence of the transformations differs from that of the
Cipher, while the form of the key schedules for encryption and decryption remains the same. However,
several properties of the AES algorithm allow for an Equivalent Inverse Cipher that has the same
sequence of transformations as the Cipher (with the transformations replaced by their inverses). This
i8 accomplished with a change in the key schedule.

EqInvCipher(byte in[4 * Nb]l, byte out[4 * Nb], word dw[Nb * (Nr + 1)1)
begin
byte state[4,Nb]

state = in
AddRoundKey(state, dw + Nr * Nb)

for round = Nr - 1 to 1 step -1
InvSubBytes(state)
InvShiftRows (state)
InvMixColumns(state)
AddRoundKey(state, dw + round * Nb)
end for

InvSubBytes(state)
InvShiftRows (state)
AddRoundKey(state, dw)

out = state
end

11



The word array dw/[] in the above Pseudo code for the Equivalent Inverse Cipher contains the modified

decryption key schedule. For the Equivalent Inverse Cipher, the following pseudo code is added at the
end of the Key Expansion routine described in Sec. 4.3.

for i = 0 to (Nr + 1) * (Nb - 1) step 1
dwli] = w(i]
end for

for rnd = 1 to (Nr - 1) step 1
InvMixColumms (dw + rnd =* Nb)
end for |

4.4.6 Attcks on Rijndael

The standard techniques of differential and linear cryptanalysis can be adapted to be used against
Rijndael. Because of the way matrix multiplication works, and because in GF(28), all the coefficients
of the Mix Column matrix (i.e all numbers from 1 to 255) have reciprocals, a specific attack, originally
developed for use against its predecessor Square [4], called the ”Square attack” , can be used as well.
If one uses 256 blocks of chosen plaintext, where every byte but one is held constant, and that
one is given all 256 possible values, then after one round of Rijndael, four bytes will go through all
256 possible values, and the rest of the bytes will remain constant. After a, second round, sixteen bytes
will each go through all 256 possible values, without a single duplicate, in the encipherment of the
256 blocks of chosen plaintext. (For a 128-bit block, this is every byte; for larger blocks, the rest of
the bytes will remain constant.) This interesting property, although not trivial to exploit, can be used

to impose certain conditions on the key when one additional round, before or after the two rounds
involved, is present.

and is explained in the paper that initially described Square [4].

4.5 An Implementation of Rijndael

Here we shall briefly discuss the C, C++ implementation of AES algorithm by Dr.Brian Gladman!.
For code see [7].

This implementation is designed to provide both fixed and dynamic block and key lengths and can
also run with either big or little endian internal byte order. It inputs block and key lengths in bytes
with the legal values being 16(128 bits), 24(192 bits) and 32(256 bits).

The implementation can be used using 3 functions parameterized as follows:

1. aes_ret set_key(const byte key[], const word key_length, const enum aes.key direction, aes *cx)

2. aesret encrypt(const byte mput_blk(], byte output_blk(], const aes *cx)

3. aes.ret decrypt(const byte input_blk{], byte output_blk(], const aes *cx)

Here key/] is an array of bytes of size KEY LENG TH, input_blk/] and owdput_blk[] are arrays of
bytes of length BLOCK_LENGTH. direction can be enc, dec or both where enc and dec stand for

encryption and decryption respectively. aes is structure which will hold information like direction,
expanded key etc.

For encryption/decryption/both first the key expansion is done by calling set_key() with direction
enc/dec/both and then encryption of a plaintext block can be done by calling encrypt() with tnput_blk
containing the plaintext and cz the structure set in sef.key() and the output_blk will contain the

ciphertext on successful encryption; the decryption can be done with inpui_blk having ciphertext and
outpul_blk containing plaintext on successfuyl decryption.




5 me Modes of Operation

NIST axpects to issue a guideline or recommendation in the Spring of 2001 for some encryption modes,
updatiig the four DES modes and possibly including some form of Counter mode. Several proposals
for modes were presented and discussed at a public workshop on October 20, 2000, in Baltimore,
Marylsmd. The public has proposed more than ten modes of operation for consideration. To promote
further anslysis of all the modes submitted for consideration, NIST plans to hold a second public
workshop on August 24, 2001, in Goleta, California. NIST proposes three general categories of criteria:
security, performance, and mode/implementation characteristics. As with the evaluation of the AES
candidate algorithms, security is the most important criterion.

Our implementation of Encryption Modes with Almost Free Message Integrity proposed by Cha-
ranjit 8. Jutls of IBM T.J. Watson Research Center, in C using Dr.Brian Gladman’s implementation of
AES is given in Appendix. The proposal has two new modes of operation for symmetric key block cipher
algorithms. The features of the these modes which lead to our selection of these for implementation
are discussed in the following section. For complete specification of the modes see [11].

5.1 JACBC and IAPM

The main feature distinguishing the two proposed modes from existing modes is that along with
providing confidentiality of the message, they also provide message integrity. In other words, the
new modes are not just modes of operation for encryption, but modes of operation for authenticated
encryption. The new modes achieve the additional property with listle extra overhead.

One of the new modes Integrity Aware Parallelizable Mode(I1APM) is highly parallelizable.
In fact, the parallelizable mode has critical paths of only two block cipher invocations. By one estimate,
a hardware implementation of this mode on a single board (housing 1000 block cipher units) achieves
terabits/sec {10*% bits/sec) of authenticated encryption. Moreover, there is no penalty for doing a
serial implementation of this mode.

The new modes also come with proofs of security, assuming that the underlying block ciphers
are secure. For confidentiality, the modes achieve the same provable security bounds as CBC. For
authentication, the modes achieve the same provable security bounds as CBC-MAC. For proofs of
security see (6]

The non-parallelizable mode Integrity Aware Cipher Block Chaining Mode (IACBC) is
similar to the CBC mode. It differs from the CBC mode in that the output is whitened {XORed)
with a pairwise independent random sequence. The pairwise independent sequence can be generated
with little overhead. It is this whitening with the pairwise independent sequence that assures message
integrity.

The parallelizable mode removes the chaining from the above mode, and instead does an input
whitening {in addition to the output whitening) with a pairwise independent sequence. Thus, it becomes
similar to the ECB mode. However, with the input whitening with the pairwise independent sequence
the new mode has provable security similar to CBC (Note: ECB does not have security guarantees
like CBC).

Both the parallelizable mode and the non-parallelizable mode come in two flavors. These flavors
refer to how the pairwise independent sequence is generated. In one mode, the pairwise independent
sequence is generated by a subset construction. In another mode, the pairwise independent sequence

is generated by (ai+b) modulo a fixed prime number. There will be one standard prime number for
each bit-size block cipher. Thus, for 64 bit block ciphers the prime could be 2% — 257. For 128 bit
block ciphers, the prime could be 2'% — 159,

For intellectual property rights of these modes see [13]
We have chosen the subset construction flavor in our implementation.
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Appendix
C code implementing IAPM

/#******###t#######**###***###**##*#*****###*#****#*###*##*#***#**/
/* Example of the use of the AES (Rijndael) algorithm for file */
/* encryption. Note that this is an example application, it is */
/* not intended for real operational use. The Command line ig: */

/* */
/* aesiapm input_filename out_file_name [d/e] hex_keyl hex_key2 #*/
/* */

/* where e gives encryption and d decryption of the input file %/
/* into the output file using the given hexadecimal key strings =/
/* Key strings are hexadecimal sequences of 32, 48 or 64 digits x*/
/##****#**##**#*#**##**##*#llt*#****#*****II!*******##*####***#*******/
/* inlclude standard header files | */
#include "aes.h" /# include B.R.Gladman’s implementation of AES %/

#define New(p,n) (p*)calloc(n,sizeof (p)) /+* memory allocation */
#define Check(p) if(!'p) \ /* check for successful memory allocation */
{ printf(“There is not enough memory!\n"); exit(-20): }
#define Return(s,f,n) { printf(s,f); return n; }
#define OnError(s,f,n) { printf(s,f); err = n; goto exit; }

vold getBLOCK_SIZEbytesRandom(char r[]) /* sizeof(r) is BLOCK_LENGTH #/
{
int i, j, random; /* £ills r with random number */
for(i = (BLOCK_SIZE -1)/2; i »>= 0; i--) {
random = rand();
for(j = 1; j >= 0; j—--)
r[2*i+j] = bval(random,1-j);
g

}
/* adds k to a BLOCK_SIZE number */

void add_k_to_BLOCK_SIZEbyteRandom(char b[], int k)

{
int i = (BLOCK_SIZE-1);
if ((unsigned char)(bl[i]) > (0xff-k)) {
bli--] += Xk, k = 0; |
for(; i >= 0 && (unsigned char) (b[i]) > Oxfe; i--)
blil++;
)y
else {
bli] += k;
return,;
}
if(i >= Q)
blil++;
}

/* generate pairwise independent sequence by subset construction */
char **pairwise_independent_sequence(char r[], int m, aes *aesK0)

{
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int i,3,Kk;

char Wlsizeof (int)*8) [BLOCK_SIZE], tmp [BLOCK_SIZE}, *%*5 = New{(char#*, m+1); Check(S);

for(i = 0; i < m+l; i++) {
S[i] = New{(char, BLOCK_SIZE); Check(S[il]);
}

encrypt (r,W[0] ,aesK0);
strncpy(S[0], W[O], BLOCK_SIZE); strncpy(tmp, W[0], BLOCK_SIZE);
k = (int) (ceil) (log({(double)m+2)/log(2.0));

for(i = 1; i <= k; i++) {
add_k_to_BLOCK_SIZEbyteRandom(tmp, 1)
encrypt (tmp, W[i++], aesk0);
¥
for(i = 1; i <= m; i++) {
j = i+1l; k = O
/* find the index of the least significant ON bit in (i+1) =/
while( '(j&1) ) {
k++; j >>= 1; /* increment k and right shift */
¥
for(j = 0; j < BLOCK_SIZE; j++)
S[i1[j] = sCi-1103]1 ~ wlki[j];
}

return S;

;

filename */

/* encrypt a file pointed by fin and output to fout. fn
int encfile(FILE *fin, FILE *fout, aes aesK[], char* fn)

{
char inbuf [BLOCK_SIZE], outbuf [BLOCK_SIZE], checksum[BLOCK_SIZE], #**5;
fpos_t flen;
int i, j, 1, m;
srand( (unsigned)time( NULL ) ); /* initialise seed for rand() */
getBLOCK_SIZEbytesRandom(outbuf); /* set the IV for iapm mode */
fseek(fin, 0, SEEK_END); /* get the length of the file */
fgetpos(fin, &flen); /* and then reset to start */

fseek(fin, O, SEEK_SET);

if (fwrite (outbuf, 1, BLOCK_SIZE, fout) != BLOCK_SIZE)/* write the IV to the output
Return("Error writing to output file: s\n", fn, -8)

1 = BLOCK_SIZE == 167 15: BLOCK_SIZE == 327 31: 23;
inbuf [0] = bval(rand(),0); /* make a byte random and store the */

/* length of the last block in the lower log (BLOCK_SIZE) bits */
inbuf [0] = (char)(l==23?(f1&n%ll(inbuf[ﬂ]&”Oxlf)):((char)flenkl)l(inbuf[O]&"l));
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m = (int) (ceil) ((double) (flen+1)/BLOCK_SIZE) + 1; /* m-1 = no.of blocks #*/
/* generate m+1 pairwise independent random numbers */
5 = pairwise_independent_sequence(outbuf, m, ZaesK[0]):

memset (checksum, 0, BLOCK_SIZE); /* initialise checksum to Zero */
for(i = 1; i < m; i++) /* loop to encrypt the input file */
{ /* input 1st BLOCK_SIZE bytes to buf[1..BLOCK_SIZE] */

/* on 1st round byte[0] is the length code */

1f((j = fread(inbuf + BLOCK_SIZE - 1, 1, 1, fin)) < 1)
{ (1 !'= BLOCK_SIZE)~? Jj*++:j; /* end of the input file reached? */

wvhile(j < BLOCK_SIZE) /* adjust for 1st and later blocks*/
inbuf [j++] = 0; /* clear empty buffer positions ifx/
} /* any in the last block */

for(j = 0; j < BLOCK_SIZE; j++) {
checksum[j] ~= inbuf(j];
inbuf[j] ~= S[i][j];
}
encrypt (inbuf, outbuf, &aesK[1]): /* do the encryption */
for(j = 0; j < BLOCK_SIZE; j++)
outbuf [j] "= S[il[j];
if (fwrite(outbuf, 1, BLOCK_SIZE, fout) != BLOCK_SIZE)
Return("Error writing to output file: %s\n", fn, -9)
1l = BLOCK_SIZE;
Iy
for(j = 0; j < BLOCK_SIZE; j++)
checksum[j] ~= S[m][j];

encrypt (checksum, outbuf, &aesK[1]): /* encrypt checksum */

for(j = 0; j < BLOCK_SIZE; j++)
outbuf{j]1 ~= S[0][j];
if (fwrite(outbuf, 1, BLOCK_SIZE, fout) != BLOCK_SIZE)
Return("Error writing to output file: “s\n", fn, -10)
return 0O;

int decfile(FILE *fin, FILE *fout, aes aesK[], char* 1fn, char* ofn) {
char inbuf [BLOCK_SIZE], outbuf [BLOCK_SIZE], checksum[BLOCK_SIZE], #*#S;

fpos_t flen;

int i, }, 1, m, lastBlockLen;

fseek(fin, 0, SEEK_END); /* get the length of the file */
fgetpos(fin, &flen): /* and then reset to start */

fseek(fin, 0, SEEK_SET);

if (fread(inbuf, 1, BLOCK_SIZE, fin) != BLOCK_SIZE) /* read IV %/
Return("Error reading from input file: %s\n", ifn, -11)

m = (int) ((double)flen/BLOCK_SIZE)-1;/* m = no.of blocks in the decrypted file + IV =*/

/* generate m+1 pairwise independent random numbers * /
S = pairwise_independent_sequence(inbuf, m, &aeskK[0]):
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/* to recover the length of the last block */
1 = BLOCK_SIZE == 167 15: BLOCK_SIZE == 327 31: 23;

memset (checksum, O, BLOCK_SIZE); /* initialise checksum to zero * /

for(i = 1; i < m; i++) { /* loop to decrypt the input file #*/
if (fread (inbuf, 1, BLOCK_SIZE, fin) < BLOCK_SIZE) |
Return("\nThe input file Y%s is corrupt", ifn, -12)
for(j = 0; j < BLOCK_SIZE; j++)
inbuf(j} = S[i]([j];
decrypt (inbuf, outbuf, &aesk[1]); /* do the decryption */
for(j = 0; j < BLOCK_SIZE; j++) {
outbuf(j} ~= S[i](jl; Checksum[j] ~= outbuf[j];
) _
if(i == 1) /* recover length of the last block */
lastBlockLen = 1==237? outbuf[0] & Oxif: outbuf [0] & 1;
if(i == m-1) {
lastBlockLen += 1 - (1 = (1 == (BLOCK_SIZE - 1) 7 1 - 0));
1f((j = fwrite(outbuf + 1, 1, lastBlockLen, fout)) != lastBlockLen)
Return("Error writing to output file: As\n", ofn, -13)
} else
1£((j = furite(outbuf + BLOCK_SIZE - 1, 1, 1, fout)) != 1)
Return("Error writing to output file: 43\n", ofn, ~14)
1l = BLOCK_SIZE;
¥
1f (fread (inbuf, 1, BLOCK_SIZE, fin) < BLOCK_SIZE)
Return("\nThe input file %s is corrupt\n", ifn, -15)
if(fgetc(fin) != EQF)
Return("\nThe input file %s is corrupt\n", ifn, -16)
for(j = 0; j < BLOCK_SIZE; j++)
inbuf [j] ~= S[0][j];
decrypt(inbuf, outbuf, &aesk([1]): /* decrypt last block =*/
for(j = 0; j < BLOCK_SIZE; j++) {
outbuf [j] “= S{m] [§];
)
for(j = 0; j < BLOCK_SIZE; j++) /* Integrity check * /
1f (checksum[j] != outbuf[j]) |
Return("Integrity check: failed!%s\n","" 6 -17);
printf("Integrity check: passed.\n");
return 0;

int main(int argc, char *argv([])

{

FILE *fin = 0, *fout = Q;

char *Cp, ch, key[2][32]:

int i, j, by, key_len, err = O;

aes aesK[2];

/*clock_t start, finish: double duration; */

if(arge !'= 6 || toupper(*argv[3]) != 'D’ && toupper (*argv[3]) != ’E?)

OnError("usage: aesiapm input_filename out_file name [d/e
keyl_in_hex key2_in_hex\n","" 6 -1) |
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for(i = 0; i < 2; i++) {
cp = argvii+4); /* this is a pointer to the hexadecimal key digits */

j = 0; /* this is a count for the input digits processed =*/
while(j < 65 && *cp) /* the maximum key length is 32 bytes and */
{ /* hence at most 64 hexadecimal digits *x/

ch = toupper(*cp++); /* process a hexadecimal digit */

if(ch >= 0’ &k ch <= ’9’)
by = (by << 4) + ch - °0?;
else if(ch >= ’A’ && ch <= ’F’)
by = (by << 4) + ch - ’A’ + 10;

else /* error if not hexadecimal */
OnError("key must be in hexadecimal notation\n","",-2)

/% store a key byte for each pair of hexadecimal digits */

if(§++ & 1)

key[i]l[(j-1) / 2] = by & Oxff;
}
i == Q7 key_len = j / 2:key_len;
if( (1 == 0) &% (*cp) )
OnError("The KO key size is too long\n","",-3)
elgse if( (i == 1) && ((key_len != j/2) || (*cp)) )
OnError(“The Ki key size must be same as KO key size\n","",-4)
else if(j < 32 Il (j & 185))
OnError("The length of key K%d must be 32,48 or 64 hexadecimal digits\n",i,-5)
}
if (' (fin = fopen(argv[1], "rb"))) /* try to open the input file */
OnError("The input file: %8 could not be opened\n", argv{il, -6)
if(1 (fout = fopen{argvi2l, "wb"))}) /* try to open the output file */
OnError("The output file: %s could not be opened\n", argv[i], -7)
/*start = clock();*/ |

if (toupper (»argv[3])) == ’E’)

1 /% encryption in Integrity Aware Parallelizable mode */
gat_key(key[0], key_len, enc, &kaesK[0]);
set_key(key[i], key_len, enc, aesKii1]);

err = encfile(fin, fout, aesK, argv(i]);

}

elge { /% decryption in Integrity Aware Parallelizable mode */
set_key(key[0], key_len, enc, &aesK[0l);
get_key(key[1], key_len, dec, &aesK[il);
arr = decfile(fin, fout, aesK, argv[i]l, argv(2]);

}

exit:

if (fout)
fclose(fout);

if (£in)

fclose(fin); |
/» finigh = clock(); duration = (double)(finish - start)/CLOCKB_PER_SEC;
printf( "%2.6f seconds\n", duration ); */
return err;
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