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Abstract

A standard model of nonlinear combiner generator for stream cipher system combines the
outputs of several independent Linear Feedback Shift Register { LFSR ) sequences using a
Nonlinear Boolean Function to produce the key stream. Given such a model, cryptanalytic
attacks have been proposed by finding the sparse multiples of the connection polynomials
corresponding to the LI'SRs, Analysis of sparse multiples of a primitive polynomial or product
of primitive polynomials helps in 1dentifying the the robustness of the steam ciphers based
on nonlinear combiner model. In this direction, recently few works are published on f-nomial
multiples of primitive polynomials and degree distribution of these multiples. We present new
cnumeration results for multiples of product of primitive polynomials and provide some results
on degree distribution of these multiples. Further we provide a randomized algorithm for finding
sparse multiples of primitive polynomials and their products,
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Chapter 1

Introduction

Linear feedback shift registers (LFSRs) are the basic components of most keystream gen-
erators since they are appropriate to hardware implementations, produce sequences with good
statistical properties and can be easily analyzed.

Linear Feedback Shift Register (LFSR) is a system which generates a pseudo-random bit-
sequence using a binary recurrence-relation of the form '

Op = C1ldy_y T Colpo+ -+ C41Qp_gy1 + Coap_g (1.1)

where ey =land for 1 <i<d, ¢ € {0,1}. The length of LFSR correspond to the order d
of the lincar-recnrrence-relation used, The snceessive bits of the LESR are emitted using the
chosen recurrence relation after mitialising the seed (ag, ay, o, -+, ag-y) of LFSR.

'The characteristic polynomial of 1.1 over GF(2) is

Clr) =141z + coz® + -+ - + cgz” (1.2)

This polynomial is called the Connection Polynomial of the LIFSR. The taps of an LFSR
are al the positions corresponding to ¢; = 1, for 0 <t <dd.

In nonlinear combiner mode! of stream cipher systems, n bits from n different LFSRs( S; ) are
generated at each clock. These n bits are the mmput to the Boolean function F(X,, X3, X3,..., X n).
The output, of the Boolean function 19 is the key-stream K. The cipher stream C is generated
by XORing the key stream K and the message streamm M, 1.e., C = K @ M. The decryption
machinery is identical to the encryption machinery (see Figure below).
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One very standard attack on this nonlinear combiner model is the correlation attack. This
attack utilises the correlation between the sequence generated by the combining LFSR(s) and
the running key (K') or the cipher bits and the statistical nature of the message source. Cor-
relation attack was first proposed by Siegenthaler [16]. This attack can be resisted by using
the correlation immune Boolean function. The fast carrelation atiack proposed subsequently
in (14, 1, 2, 9] reduces the complexity of the attack (by avoiding exhaustive search) and also
taken care of the correlation immunity of the Boolean function. The basic outline of these fast
correlation attacks is as follows. Let us consider F(X|,... , Xn) is an n-variable, m-resilient
Boolean function combining the nutput sequences of n LFSRs S, having feedback polynomials
¢i(z). The Walsh transform of the Boolean function F gives, Wr(w) # 0 for some @ with
wit(@) = m + 1. Thus the Boolean function F and the linear function ., wiX; are correlated.
Let wyy = ... = wy,,, = 1. Now consider the composite LFSR. S which produces the same
sequence as the XOR of the sequences of the LFSRs S;,,..., S;_.,. The connection polynomial

of the composite LFSR will be H;:‘;l ci,(z). Since F and @;_, w; X; are correlated, the attacks
target to estimate the stream generated from the composite LFSR S having the connection
polynomial 1(z). Towards resisting this sort of correlation attacks, the connection polynomial
and the Boolean function needs to satisfy certain cryptographic properties. For details about
- the cryptographic properties of the Boolean functions mentioned above, see [1]. Here we con-

centrate on the properties of the connection polynomial.

The connection polynomial is generally taken as primitive over GF(2) in order to maximise
the periodicity of the sequence generated by the LFSR. The weight of (i.e., #¢; # 0) the con-
nection polynomial also needs to be high [14, 7]. The sequence generated by an LFSR i.e., by
its linear recurrence relation (LRR), also satisfies the LRR corresponding to the to the multiple
of the connection polynomial of the LFSR under consideration. The fast correlation attacks
proposed in (14, 1] utilises this basic property. Thus it is very important to find out sparse
multiples of the connection polynomial of the LFSR in order to carry out these fast correla-
tion attacks. In terms of the practical nonlinear combiner model, we have discussed earlier, it
8 important to find out the sparse multiples of the connection polynomial (i.e., ¥(x)) of the
composite LFSR 5. This connection polynomial is actually product of a number of primitive
polynomials. So instead of finding the multiples of a single primitive polynomial, it is more
important to find out the multiples of the product of a number of primitive polynomials. Also
from designer’s point of consideration, the conenection polynomials of the combining LFSRs of
a nonlinear combiner model, should not have sparse multiples [14, 1] (see also [9] and the refer-
ences ). With this motivation, finding sparse multiples of primitive polynomials has received a
lot of attention recently {7, 5, 6]. In this dissertation thesis we concentrate on studying different
properties of the multiples of primitive polynomials and their products.

In [6] it has been shown that any primitive polynomial of degree d, has exactly Ngp =
(2:_:*22)-Nd,t—l—:___‘,‘lf(gd“'t"l"l)wd,tui ‘ | | o
— many t-nomial multiples (having constant term 1) with initial

conditions Ny, = Ny, = 0. Generally the degree of the primitive polynomials are taken to be co-
prime for generation of key stream having better cryptographic properties [10, Page 224]. Con-
stder k distinet primitive polynominls fy (), fo(z), ..., fi(x) having degree dy, dy, . . ., dj vespec-
tively, where d, d,, ..., d; are pairwise coprime. Then the number of t-nomial multiples with
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degree < (29 —1)(2% ~1)... (2% ~1) of fi(z) fo(z) ... fa(z) is at least {(t — 1)1k 15, Na, s,
where Vg, ; 1s as defined above (see also [6]). In fa,ct we present a more general result, which
works for product of polynomials (may not be pnmltwe) and then as a special case, we deduce
the result for products of primitive polynomials. We discuss these issues in Chapter 3.

In Chapter 4, we prove some important results related to degree of the multiples. Earlier
these results were observed for small examples.

. Consider any primitive polynomial f(z} of degree d. Consider that the degree of the

trinomial multiples (having degree < 2¢ —2) of f(z) are d;, ds, ..., dy 13- Then §oNas d? =
£(2% — 1)(3.297% — 1) Ny3.

2. Consider k distinct primitive polynomials f)(z), fo(z), ..., f (x) with degrees dy, ds, ..., d;
respectively, where d;,d,,...,ds are pairwise coprime. It is observed (13] that the dlS—-
tribution of the degrees of t-nomlal multiples (having constant term 1) of product of
primitive polynomials is very close with the distribution of maximum of the tuples having
size (t — 1). In {13] the following observations were made based on experiments.

. -

(a ) The a.verage of degree of the ¢-nomial multiples of []F_, f.(z) is fixed and is equal
=15, where § is the exponent of []* w1 Jr(z)-

b) The average of the square of degree of the trinomial multiples of I'L,_I fr(z) is ﬁxed

but not exactly equal to the estimated value "5(3@:') - 1).

With the work of [13] and the results proved in Chapter 4, it is established more strongly
that the degree distribution of t-nomial multiples of primitive po!ynamwis, degree disiribution

of t-nomial multiples of products of primitive polynomials and the distribution of mazimum of
(t — 1) tuples are almost indistinguishable.

In Chapter §, we discuss a randomized algorithm to get t-nomial mmultiples of primitive
polynomials and their products.



- Chapter 2

Preliminaries

2.1 Definitions

In this section, the definitions of basic terms and with some basic results which are used
in this document are provided. Most of these definitions are taken from [10]. We denote._the
field of prime order p by GF(p) and the extention feld of dimension d over GF(p) by GF(p?)
or simply by GF(q), where q = p%. In the rest of the document the base field if GF(2).

Galois Field of order 7 :

Let p be a prime and let d be any positive integer. Then there exists a field (It is unique
up to Isomorphism) of order p?. This field is called Galois F ield of order p* and it is denoted
by GF(p4).

The set GF(2%)* of non zero elements of GF(2%) is a cyclic group under multiplication with

a generator @ and o”*~! = 1. Generator o is called Group Primitive Element of GF(29),
GF(2d) == {0, i, o, CEQ, (1’3, e ,ﬂ'zdhﬂ}.

Polynomial over GF(q) :
A polynomial of degree d over GF(q) is of the form co4-¢yz + coz? + .. .+ cqzd, where ca # 0
and ¢; € GF(q), for 0 < i < d.

A degree o polynomial over GF(2) is of the form ¢g + ¢yz + cox? + ... + cqx’, where ¢y = 1 and
c; € {0,1}, for 0 < i < d.

Irreducible Polynomial over GF(q) :

A polynomial of degree d is called an Irreducible Polynomial over GF(q)if it is not a product
of two polynomials of degree < d over the field GF(q).

Primitive Polynomial over GF(q) :

Let f(z) be an irreducible polynomial of degree d over GF(q). Then f(z) is said to be a
Primitive Polynomial of degree d if the roots of S(z) are the generators of the field G F(q*).

The roots of primitive polynomials having degree d are the primitlive elements in GF{(g%)*.

The number of primitive polynomials of degree d over GF(2) is ¢(2¢;-1] , where ¢ is an Euler

phi-function.




Exponent of Polynomial :

Let f € GF(qg)|z] be a nonzero polynomial. If f(0) # 0, then the least positive integer e
for which f(z) divides z¢ — 1 is called the exponent of f(z). If f(0) = 0, then flz) = zhg(z),
where i € N and g € F [z] with 9(0) = 0, then exponent of f is defined to be exponent of q.

Exponent of a degree d polynomial over GF(2) is atmost 2% — 1. Exponent of a degree d
primitive polynomial over GF(2) is 2¢ — 1.

t-nomial over GF(2) :
A polynomial with ¢ non zero terms, one of them being the constant term is called t-nomial,
or in other words a polynomial of weight ¢ with nonzero conatant term.

The polynomials of the form 1 4 z* 4 22 + ... + z%-' where 1 Sy <ig< ... < 1_, are
t-nomials over GF(2).

t-nomial multiple of a polynomial over GF(2):

Let f € GF(2)[z] be a nonzero polynomial. A {-nomial multiple of f is a f-nomial over
GF(2) and is divisible by f.

We denote the number of t-nomial multiples with degree < e of f by Ntf , where e is the
- exponent of f.

e



- Chapter 3

t-nomial multiples of Product of
Primitive Polynomials

We have already discussed (see Chapter 1) the importance of finding t-nomial multiples of prod-
uct of primitive polynomials instead of t-nomial multiples of just a single primitive polynomial.
The attack presented in 1], uses t-nomial multiples ¢ = 3,4,5. In this chapter we discuss a
method of enumerating t-nomial multiples of product of primitive polynomials. In design of
- this model of stream cipher, generally the degree of the primitive polynomials are taken to be

coprime to each other {10, Page 224] to achieve better cryptographic properties. We have taken
care of this case also. |

Note that in [1, Page 581), it has been assumed that the approximate count of multiples of
primitive polynomials and multiples of products of primitive polynomials are close. However,
this is not always true. In fact, it is possible to find products of primitive polynomials having
same degree which do not have any ¢-nomial multiple for some f. The construction of BCH
code [11] uses this idea. If the degree of the primitive polynomials are pairwise coprime, then we
will show that it is always guaranteed to get t-nomial multiples of their product. Considering
this, we will show that the approximate count of the multiples of a degree d primitive polynomial
and a degree d polynomial which is product of some primitive polynomials each having degree

ey 100, Y e = o nre elose. So the assumption of [1, Page 581] is o good approximalion, Let
us now discuss the fallowing theorem.

Theorem 3.1 Consider k many polynomials fi(z), fa(z), - .., f(z) over GF(2) having degrees
dy,dy,...,dy and exponents €1, €2, ..., € respeclively, with the following conditions :

1. ey # ey #...5 e are pairwise coprime,

2. 11(0) = f2(0) = ... = fi(0) = 1,

3. ged(fe(z), fo(z)) =1 for1<r+#s<k,

4. number of t-nomial mulliples (iu:'th degree < e, ) of f.(z) is n,.

Then the number of t-nomial multiples with degree < eqe, . . . ex of the product f(z) fo(z) ... fi(x)
18 al least ((t — 1)!)’°“nmg N T ~



Proof : Consider that any polynomial . (z) has a t-nomial multiple z'1.r +-gi0r 4., 4 git-1,0 1.1
of degree < ¢,. Now we try to get a t-nomial multiple of fi(z)f.(x).. . fi(z) having degree
< €1€9... €.

Consider the set of equations I) =4, mode,, r=1,.... k. Since €1,..:,€ are pairwise
coprime, we will have a unique solution of I mod eye,...e; by Chinese remainder theorem (8,
Page 53], Similarly, consider Ij =1, mode. forr=1,... k and J=1,...,t — 1. By Chinese
remainder theorem, we get a unique solution of I; mod ejes... €.

First we like to show that f.(z) (for r = l,...,k) divides ="t + gf2 + | 4 glt-1 4 1.
The exponent of f.(z) is e,. So we need to show that fr(z) divides gt moder | glamoder
oo+ fe-tmoder 4 1 We have tjr = Iymode, for r = 1,... k, j=1...,t = 1. Thus,
gltmoder 4 plamoder o 4 pli1modes + 1 is nothing but z*tr 4- g¥2r + | 4 gi-1r &£ 1. Hence
fr(z) (forr=1,...,k) divides /" + 2P 4 ... 4+ gle-1 41 .

Here we need to show that z/' + z%2 4+ .. 4 g1 4 1 is indeed a t-nomial, i.e., I, 3
imodey...e for j #£ 1. If I; = I, then it is easy to see that i;, = ¢, mod e, and hence,
T ot b 4ol 4 1 itsoll s not a f-nomial for any r, which is a contradiction,

Morcover, we have ged(f,(z), f,(z)) = 1 for r # s. Thus, fi(z)fa(z)... fi(z) divides "t +
4.+ z-1 41, Alsoit is clear that degree of "' +2/2 4. . 4+ z%-1 11 i5 less than ee,. . . e;.

Corresponding to the ¢-nomial multiple of f,(z), i.e., 2 4 iz 4 || 4 gi-11 4 1, we fix
the elements in the order 1,1522,1,+ - ., %¢—11. Let us name them P1L1yD21r -« y Pt

For r = 2,...k, the case is as follows. Corresponding to the -nomial multiple z''r + z¥2r 4
oo it 1 of fr(z), we use any possible permutation of the elements 3, ., 12,ry v+ oy btml,r QS
Plys P2y s« vy Pie1e. Thus we will use any of the (¢t — 1)! permutations for each t-nomial multiple
of fr(z) forr=2,... L. | |

Now we use Chinese remainder theorem to get I; having value < ejey...e. from Dir'S

for r = 1,...,k. Each Pir 18 less than e,, ere PiesPrrey ooy Py (related to f.(x)) can be

permuted in (¢ — 1)! ways and we consider the permutation related to all the ¢-nomials except
the first one.

Corresponding to & many ¢-nomial multiples (one each for f(z),..., fi (z)), we get
((¢ — 1)1)*~! many t-nomial multiples (degree < €€z ... ex) of the product f,(z)fo(z)... fi(z).
Using Chinese remainder theorem, it is routine to check that all these ((t — 1)1)*~! multiples
are distinct.

Since, each f.(z) has n, distinct t-nomial multiples of degree < e,, the total number of i-
nomial multiples of the product fi(z)fa(x)... fi (z) having degree < eye,... ey 1S
((t—- 1)!)""1111712...71;;. |

'l'o accept the above count is a lower bound, one needs to show that the t-nomials generated
by this method are all distinct. Consider two collections of t-nomial multiples z®!r + £92.r &
coo b 2% 1 and g% g% 4 gt 41 0f f,(z) for r = 1,. ... k. There exists at least
one s in the range 1,..., k such that £ 4+ 2% 4, . 4 2910 1.1 and A s L SR |
are distinct. Let us consider that one of the common multiples form these two sets of t-nomials
are same, say £ + 24w 4+, 4 A=ty 4 1 (from the set zor + g% + . . 4 gOt-1r o 1) and
g gD o g Pe-tw 11 (from the set zbhr + ghie 4 . L g phiote 4 1).

Without loss of generality we consider Arp > Agy > ... > A1y and By, > By, >
.+« > DBy_1,p. Since these two t-nomials are same, we have Ajv = Bj, mod ejey...e,. This
immediately says that A;, = B;, mod e,, which implies e = bsr mod e, foreach jinl,,, ., t—
L and each 7 in 1,..., k. This contradicts to the statement that z®s 4 po2.e o xfe-te 4]
and g% + zb2e 4 4 gh-1e 4 1 are distinct.




From the above point it is clear that the number of t-nomija] multiples with degree <
€1€2...e of fi(z) fa(x)... fi(z) is at least (=Y 'nin, ... ng. _

Corollary 3.1 Consider k many primitive polynomials f, (z), fa(z), ... , Jx(z) having degree
diytly, ... d, respectively, where dy,da, ..., dy are pairwise coprime. Then the number of t-
nornial multiples with degree < (29 — 1)(2¢ — 1)...(2% = 1) of f, (z) f2(z) .. . Je(z) is at least
((t — 1))~k HL, N, t, where Ny , is as defined in introduction.

Proof: Since we are considering the primitive polynomials, the exponent ep = 29 1, Also,
given dydy, ... dy are mutually coprime, ¢, e, . . -y € dre also mutually coprime. Moreover,

There is no common divisor of any two primitive polynomials. The proof then follows from
Theorem 3.1 putting n, = Ny_,. »

Corollary 3.2 In Theorem 3.1, for t = 3, the number of trinomial multiples with degree <
€162 e of fi(z)fa(x)... filz) is ezactly equal to 2 =lniny .. .ny.

Proof : Consider a trinomial multiple z/t + /2 41 having degree < e,e, . .. ex of the product
h(z)fe(z) ... fi(z). Since, the product fi(z)fo(x)... f(z) divides 271 + 2T + 1, it is clear that
fr(z) divides z7t - 22 4 1. Hence, f,(z) divides £ moder | zhmode, _ having degree < e,.
Now take, i1, = I mod e, and 2,0 = I2 mod e,, for r = 1,..., k. It is clear that I, # I3 mod e,
(le., 41, # 4,,), otherwise fr(z) divides 1, which is not possible.

Also note that either l1r OF i3, can not be zero, otherwise Jr(z) divides either zi2r or T
which is not possible. Thus, f.(z) divides zitr + gizr 4.1 Then using the construction method
in the proof of Theorem 3.1, one can get back t + 72 41 as the multiple of fi(x) f,(z) .. . Je{(T)
which is already considered in the count 2~ 'nn., . ni as described in the proof of Theorem 3.1.
Hence this count is exact. -

Corollary 3.3 Consider k many primitive polynomials f, (z), f(z), ..., Ji(z) having degree
di,dy, ... dy respectively, where dy,dy, ... di are patrwise coprime. Then the number of tri-
nomial madliples with degree o VAL BT (. D)oo (2% 1) of Sola) fa(e) . fe(r) is exactly
equal Lo 261 Ih[ff:, Ny, 3, where Ng, 3 13 as defined in introduction.

Proof : The proof follows from Corollary 3.1 and Corollary 3.2. |

Corollary 3.2 shows that number of trinomial multiples of Ni(z) fo(x) . .. fx(z) is exactly
2*=lnin, .. . . However, it is Important to mention that for ¢ >4, (=1 nn,.. .M 1S
indeed a lower bound and not an exact count. The reason is as follows.

Consider f,(z) has a multiple g% 4 go2r 4 4 geere 1 Note that for ¢t > 5, we get
(t ~ 2)-nomial multiples of f.(x) having degree < ¢,. Consider the (f — 2)-nomial multiple as
T 4 g o gBt-sr Now, from the (¢ ~ 2)-nomial multiple we construct a multiple
R T ST LSS P 1, where, a;_,, = At—1r = W, Where, w < e,.. Then if we apply
Chinese remainder theorem as in Theorem 3.1, that will very well produce a {~-nomial multiple of
filx) fo(z) .. fi () which is not counted in Theorem 3,1, Thus the count is not exact p.nd only
a lower bound. For the case of t — 4, we can consider the multiples of the form z'r +z¥* -1 41
of fr(x). These type of multiples of f,(z)’s will contribute additional multiples of the product
fi(#)f2(x) ... fr(z) which are not counted in Theorem 3.1.




Corollary 3.4 In Theorem 3.1, fort > 4, the number of t-nomial multiples with degree <
€ie2...ex of the product fi(z)fo(z). .. fi(z) is strictly greater than ((t — DY 'nyng . on.

Proof : Proof fallows from the above discussion.

Let us consider the product of two primitive polynomials of degree 3, 4, degree 3, 5 and
degree 4, 5 separately. Table 3.1 compares the lower bound given in Theorem 3.1 and the exact
count by running computer program. Note that it is clear that for { = 3, the count is exact as
mentioned in Corollary 3.3. On the other hand, for t > 4, the count is a lower bound (strictly

greater than the exact count) as mentioned in Corollary 3.4. In Table 3.1, for a few cases the
lower bound is zero, since Nj 5 = N3g = 0.

Table 3.1: Count for t-nomial multiples of product of primitive polynomials.

; T3 1 T IS S
" Lower bound 42 473 0 ¥} 1486180
Exact count 1 14435 5045 | 55 118836837 |

roduct o degree 3, 4

[ T.ow t‘h_‘ d I 00 53433: ]—ﬁ_‘" ; lb d"l’ 'Ts"ﬁ"'_ﬂ. ‘5'6 T 11580805 |
AOwer boun AOwer boun | b
" Exact count | 90 | 6584 | 344338 Exact count | 310 | 32508 | 3733685
4

Praoduct of degree 3, 5 Product of degree 4,

We already know that the lower bound resylt, presented in Corollary 3.1 is invariant on
the choice of the primitive polynomials. We observe that this is also true for the exact count
found by computer search. As example, if one chooses any primitive polynomial of degree 3 and
any one of degree 4, the exact count does not depend on the choice of the primitive polynomials.

Thus we make the following experimental observation. Consider kK many primitive poly-
nomials fi(x), fa(z),..., fi(z) having degree d,,d,, ..., d, respectively, where d,d,, ..., d, are
pairwise coprime. Then the exact number of t-nomial multiples with degree < (2% — 1)(2% —
1)...(2% = 1) of f(z) fo(z) . .. fi(z) is same irrespective of the choice of primitive polynomial
[r(z) of degree d,.

And also experimental results shown that the probability of f.(z)'s having a common t-
nomial multiple with degree < 24 — 1, for 1 < r <k, is very low. So, in many cases, the degree

of the lowest degree t-nomial multiple of the product fi(z)fa(z)... fi(z) is greater than 2¢
where d, is minimum of {d,,d,,..., dy}.



Chapter 4

Some Results on Degree Distribution
of i-nomial multiples

In this chapter we will discuss important resnlts on the degrees of t-nomial multiples of primitive
polynormials and their products. First we concentrate on the degrees of multiples of primitive
polynomials. After that we will discuss multiples of products of primitive polynomials.

4.1 Square of degrees for trinomial multiples of primitive
polynomials

In [6], the distribution of the degrees for the #-nomial muitiples (having constant term 1) of
primitive polynomials has been discussed. Given any primitive polynomial f () of degree d,
it is clear that f(z) has Ny, number of {-nomial multiples having degree < 2¢ — 2. From
cryptanalytic point of view, it is an important question that how many t-nomial multiples are
there having degree less than or equal to some c. Since, this result is not settled, in [6], an
estimation has been used. In (6], any t-nomial multiple 1 + %' + 2% 4 .. 4 git-2 4 z¥~1 hag
been interpreted as the (£ — 1)-tuple < iy,43,... 50,5y >. It was also empirically justified
using experimental results (6] that by fixing f(z), if one enumerates all the Ny, different (£ — 1)
tuples, then the distribution of the tuples seems random. Moreover, the distribution of the
degrees of the t-nomial multiples seems very close with the distribution of maximum value of
each of the ordered tuples < ¢y,3,...,% 2,51 > With 1 <4, € iy < ... < fy_g < 45_, < 242,

To analyse the degree distribution of these f-nomial multiples, the random variate X% is
considered in [6], which is max (3,49, ..., 8.2, %1), where 1 4 2% + 22 4 4 git-2 4 g¥-1 jg 5
t-nomial multiple of f(z). There are Ny, such multiples. The mean value [6] of the distribution

of X%t is t=1(2¢ — 1) Ny, divided by Ny, i.e., X
all the (1 — 1)-tuples < 7;,%2,...,% 2,21 > in the range 1 to 29 — 2. There are (i"‘f) such
tuples.  Fach tuple is in ordered form such that 1 € 4, € iy < ... < %oy < 4, < 29 — 2,

Consider the random variate Y4 which is max(4y,iy,...,6.2,4-1). 1t has been shown in G)

that the mean of this distribution is ¥** = =124 - 1).

Thus, given any primitive polynomial f(z) of degree d, the average degree of its t-nomial
multiples with degree < 2¢ — 2 is equal to the average of maximum of all the distinct (¢ — 1)
tuples form 1 to 2¢ — 2. With this result and experimental observations, the work of {6]

= 21(29 — 1). On the other hand, consider
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assumes that the distributions X Ot Yt are very close. Further experimental results have been
presented in [13] to strengthen the claim of 6] that the distributions X4t Vet are very close.
In this direction, it has been shown in [13] that in terms of average of squares, the distributions
X% Y9 gre very close. The average of squares of the values in Y%¢ have been calculated in [13]
as E”—:,_-'--L(2“ - 1)(% — 1) and it has been shown experimentally that the average the squares of
values in X% are very close to that of Yt [p (13], it has been observed that for f = 3, the
average of the squares of the elements of distribution Y42 and the average of the squares of

the degrees of trinomial multiples (i.e., for X4 are same for all the experiments, which is
%(2" - 1)(3..2“"'5e —1). We theoretically prove the result here.

The_orgm 4.1 Consider any primitive polynomial f(z) of deqree d. Consider that the degree of

the tﬁnimﬁia! multiples (having deqgree <2~ 92)of f (x) are d,,d,,. .. , erd.a‘ Then Zﬂi‘“ Jf = ,
é'(?d - 1)(3.2“"2 — I)Nd':}.

Proof : Consider a trinomial multiple of f(z) of the form zt + 77 4+ 1, where 7 > 7. Let
- e= 291, Leti # 2(2‘;“'1,3’ £ 5—-15"-—':- Then zl6=0%7 4 ze~i L 1 and 2o 4+ 2i-7 4 ] are two
- Mare distinct trinomial multiples of f(z) (multiplying z* + 27 + 1 by ¢~ and z¢—J respectively).
:Nm, consider the difference (% — j4) + ((e -7+ 7)%~ (e —1)%)) + ((e - ) —(i- 7)?%), which
. is'equal to e?.
. Further take the case ; = 2(2;‘1), j = ?—dg‘—‘-, when d is even. In that case all the three
- ‘frinomials generated in the above manner are same. Thu. we will only consider one difference,

| 2 2
£y od _. . : 2
| (—LSJ) - ( 3-—-54) , which is equal to %

3
Let the trinomial multiples (having degree < e) of f(z) be = + z9» + 1, where iy > s,

for s = 1,...,Nz5. That is d, = i,. We will consider ST043 (32 72). If d is odd we will
N

get. . different groups each contributing ¢ in this sum. If  is even, we will pet N"aj“‘
[ * ' ! " " " * [ * 2
different groups each contributing e? in this sum except one triomial which contributes 5
. d_1y . -
when ¢, = "Ii? U . = :

. . Ngs o Nas,. P . Ngs .
Thus, 52 ~ j2) = —32e’. Now add 3°,4%(:2 + j7) in both sides. Then 2) i =
Naa 2 Nasrsa | o2

3 € +ZJ=I (?’u +]n)'
| Note that, considering the values of ey s fOr all & we basically et all the mtegers in the
" N at o ’ # F
- range 1 10 e — 1. Thus ST +78) =12422 4 (e~ 1)2. We alread know [5] that
| g ! g=1 \%s Js Y

ot
e e n
*

- Ngs =271~ 1. Simplifying, we get SO 2 5(27~1)(3.24-2 — )N, . ¥
Theorem 4.1 proves the observation of [13]. This is now theoretically proved that for t = 3,
- the average of squares of the values in Y43 de, 3(2¢ - 1)(32 ~ 1) is exactly equal to the

- average of square of the values in X493,

4.2 Degrees and square of degrees for f-nomial multiples
of products of primitive polynomials

Consider £ many primitive polynomials fi(z), fa(z), ..., fi(2) having degrees d;,d,, ..., d; re-

spectively. Further, the degrees are pairwise coprime. We here follow the notations of (13].

To analyse the degree distribution of these f-nomial multiples of the products of primitive
polynomials, let us consider the random variate XGrdidt “which is max(],, . . . , I1—1), where

11



w4+ x’ + .+ gt 4 1 is a t-nomial multiple of f(z) = fi(2)/a(z)... filz). Let § =
2"" 1){24 — l) . (2% ~ 1), the exponent of f(z). On the other hand, consider all the (£ —1)-
tup]e‘; < Iy,...,Je_ >, in the range 1 to 4 — 1. There are (‘:::) such tuples. Consider the

random variate Y (%@t which is max(ly,..., f,_1), where < Iy, ..., L,_y > is any ordered
I-tuple from the values 1 to § — 1. With some experimental results, in [13)], it was mentioned

that the distributions X (dirdidt Y {diwdiht are very close. Based on experimental results, the
following two observations were made in [13].

1. The average of degree of the {-nomial multiples of ]_]’:_‘:1 fr(z) is fixed and is equal to *—*?'-1-5,
where § is the exponent of Hle fr(z).

2. The average of the square of degree of the trinomial multiples of []F_, f.(x) is fixed but
not exactly equal to the estimated value 246(221 — 1),

We here prove these theoretically. First we present a technical result.

Lemma 4.1 Let f(z) be a polynomial over GF(2) having degree d and ezponent e and 1 + x
does not divide f(x). Let the number of t-nomial multiples (with degree < e and constant term

! f
1) of f(z) be N/. Then—%— :i;—ti, where 2 <{ <e~ 2.

Proof : Note that f(z) divides 1 + z°. Since 1 4 z does not divide f(z), f(z) divides X,
ie., f(z) divides 1 +z + 2% + ...+ "', This is the e-nomial multiple of f[:.r:) Whenever
£ + 2 4 ...+ z* (constant term 0) is a multiple of f(z) (here 1 < i, < iy < ... < iy < €),
adding with 1 +z + 2 +... + 2%, we will get an (e — {)-nomial multiple 1 + 352,

(having constant term 1) nf f(r).

Wi will count, the number of such multiples of f(x), which is equal to the number of (e —t)-
nomials. Consider a t-nomial multiple 27! + 272 4 ... + 7' 4+ 1 of f(z). Multiplying it by 2
for 0 < 4 < e, we will get ¢ many t-nomial mu]tip]es having constant term 1 and (e — t) many
miultiples of the form &' + 2% 4. 42", (having constant term 0) where 1 €% < 3y...% <e.
Considering any one of these £ many t-nomials (having constant term 1) will produce the same

set of (e — &) many (e — t)-nomial multiples. So, ¢t many f-nomials giving (e — t) many (e — t)-
: ) NS N
nomials and vice versa. Hence, we get -+ = —==t. "

e—t

Let us now present the following theorem.

]
i=1,i711,19,., ,u$

Theorem 4.2 Consider a degree d polynomial f(x) over GF(2) with exponent e such thal
(1 + z)* does not divide f(x). Let the number of t-nomial multiples (with degree < e and

constant term 1) of f be N'f Then the sum of the degrees of all iis t-nomial multiples with
degree < e is ———eN

Proof : Consider the case 1 + z does not divide f{z). Consider each ¢-nomial multiple of
degree d,, where 1 € ¢ < N/. Now multiply each t-nomial by z*, for 1 < i < (e — d, — 1),
we will get multiples of the form z* + z'? + ... + z*, where 1 5 1 < 19 < ... < 3 L6
Thus cach t-nomial will provide (e — d, — 1) many multiples of the above form and observe

! A
| ] 1 T ] N
that these are distinet. Similar to prool of Lemma 4.1, Y7 {e ~ d, — 1) gives the count t}lf
L] L ] # ...-.t
(¢ — t}-nomial ymltiples. Moreover, from the prool of Lemma 4.1, we will get. NI, = &t =N,

s . /s
e, SSYi(e—d, —1) = <t N/. Hence S d, = (e =1 - =Y N/ = len/.

t

19

]



Now consider the case where f (z) is divisible by (1 + ), but not divisible by (1 + ). Since
f(z) is divisible by (1 + z), f(1) = 0 and hence f(z) itself and all its multiples must contain
even number of terms, That means, f(x) does not have any t-normal multiple for odd ¢. Let
f(z} = (1 + ) - g(x). Thus, the t-nomial multiples of g(z) with even ¢ are the only t-nomial
multiples of f(z), since (1 + z) divides f-nomia) multiples (t even) of g(z). Hence, if (1 + )
divides f(x), then N/ = 0 for ¢ odd. Moreover, N} = N/, for t even. Now note that, the

exponent of ggx) and f(z) are same. Thus, the sum of degrees of all the t-nomial multiples of
f(z) is =2eN/, where, e is the exponent of f(z). »

Corollary 4.1 Consider k many primitive polynomials f,(z), f2(z), ..., fu(z) having degrees
dy,dy, ..., dy respectively (the degrees are parrwise coprime). The average of degree of the t-
nomial multiples (having degree < d) of ]—[f__ﬂ fr(z) is fired and it is equal to =15, where 6 is
the ezponent of [1_, f.(z). |

Proof : Let f(z)y =TI, f.(z). Since each fr(z) is a primitive polynomial of degree d,, all the

N/ .
conditions of Theorem 4.2 are satisfied. Thus, E'f:}& = =214, u

Hence, we prove that the average of the values in distributiong Y (@ dk)it and Y (d1ida )t

are same which was presented as an observation in [13]. Next we consider the square of the
degrees of trinomial multiples of Hle [r(z).

Theorem 4.3 Consider k many primitive polynomials f, (z), f2(),. .., filz) over GF(2) hav-
iy degrees dy, dy, ..., dy, and erponents e, = 2% —1, for 1 S r < k, which are pairwise coprime.
Then sum of squares of degrees of trinomial multiples of f (z) = filz) fo(z) ... fr () with degree
<€='61€2...6k 18 '

r c 1 )
9 k k=1 nrjEdr"’j
¢ (e — e(2e — 1 1 . . :
EH(?«;, —2) + )12 ) _ 52 Z (— 1) H 5 [ W &
o pal | r=l A,-C{r:;,e:g,...,tk} e;EA {=z1

where |A,| = r.

Proof : Similar to proof of Theorem 4.1, considering all the trinomials z% + 75 + 1 of f(z)
! ! !
with 1 < j, <4, <efor1 < s < N, we have o5 2= Nig2 S (5,2 + 74%).

s=1ts =

Now we will see the possible values for ts, Js in the range [i, e—1]. It is important to see that
unlike the proof of Theorem 4.1, the set 7,,4, for 1 < s < N:f does not cover all the integers in
the range [1,...,e - 1]. |

Note that, gimeder 4 pimoder 4 ¢ g g trinomial multiple of f,(z), for 1 < r < k except the
following case. If ¢ mod e, = 0 or j mod e, = 0, then z*meder . pimoder 4 1 i5 not a trinomial
multiple of f,.(z). |

On the other hand, consider z' -+ 1, where 1 <7 < ¢ and { # 0 mod ¢, for 1 < r < &,
Since f.(x) is primitive polynomial, for each zi™ode. 1, where 1 < r < &, we will get
gtmeder 41 = 2 (mod . (), where 1 < I, < e,, ie., g™oder 4 ol 4 {is & trinomial multiple
of f.(z). By using Chinese remainder theorem (8, Page 53], we get a unique mteger [ mod e,
where [ = |, mode,, for 1 < r < k, as e,’s are pairwise coprime.
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Hence, we have to discard the cases where, 1 <! < e and [ = 0 mod e,, for anyr,1 <r <k.
Then Ej‘ﬁ, (is2 +752) = 307, 12 — 2_zes T, where S = {[?:1 <[ < eand ! = 0mod e, for any
r,1 <r <k}

Consider the sets S, = {e?, (2. )’ .., ((£—1)-¢)%), for 1 < r < k. Observe that
Ur_,Sr = S. We now calculate 2 _zes T using inclusion and exclusion principle.

Consider r distinct integers ny,n,,...,n, in the range [1,%k]. Now we consider Me=15n,

. . r 2 %2 r 2 r 2 r , 2 01
which contains [0, en,2,22 - TT0. €02, (e/ TT0 00, = 1) ot en, % Henee,

r (e/11g=1 eng)—1
Z T = (H eﬂf)( Z ).
IEﬁzzl.S'“ﬂ g=1 | | —1

Finally we get

e/ M., e, €)1

R LD MIEED D SR a0 | (D SR

zES EELJﬁ-._-_lSr r=1 ArC{El,EQ,...,Ek} e; Ay {=1

I where |A,| = r. So, we have

N:{ Nf N;if N e—1
D DUREL I IS pr pF
P Ly BN TEh

Hence,

N{ (e/ Tl e, €)1

f e —1)e _ k-1 | |
E,iu? — _j%.'_}_e?_*_ ( 1)]g28 1) ;_Z Z [(_1)7‘4- ( H ng)( Z F)],

¥z | r.| ArC{fhﬂh--ufh] tfj'!:;rlr !ll

where A, | =r.
From (13], we have the exact formula for the number of trinomial multiples (having degree
< ¢) of f(x), which is |, ]‘If_...-l(?d" - 2) and this is the value of N ence the proof. N

4.3 Reciprocal Polynomials

Consider two polynomials f(z) and g(z) of degree d, such that they are reciprocal to each other.
Note that exponent of f(z) is equal to exponent of g(z). Consider the multiset W (f (z),d, 1),
which contains the degree of all the z-nomijal multiples (having degree < €) of polynomial f (z).

Now we have the following result.

Lemma 4.2 Let f(z) and g(z) be two polynomials reciprocal to each other with ezponent e.
Then W(f(x),d,t}y = W(g(zx),d,1).

Proof : Note that f(z) divides a t-nomial z*' + z'2 4 ... + z%-3 + g%-1 4 1 iff g() divides a
t-nomial % 4 g% 7% 4, 4 gh -7 4 ghr-ie ] Without loss of generality, we consider that

> > ... > Tgeg > Tgt. LNIS gives the ]}I‘Of}f. ||
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Chapter 5

Algorithm to get Sparse Multiples

In this chapter we try to find sparse multiples of a polynomial ( may not be primitive ) at as
low degree as possible. First we discuss an algorithm to get t-nomial multiples of primitive
polynomials. We also discuss implementation issues of the algorithm. Next we generalise this
algorithm to get t-nomial multiples of any polynomial over GF(2).

5.1 Sparse Multiples of Primitive Polynomials

Consider a primitive polynomial J(x} of degree d. Let v be a root of f{z). Consider that we
chooge (1 —2) distinct integers 4y, ..., .y in the runge 1 to ¢ uniformly at random where ¢ < 2¢.
It is clear, that 1+ o' + ... 4 o2 must be equal to some -1 for ( < 41 £ 29— 2. Thus,
L2 4. 4 zie=2 4 it will be a multiple of f(z). Note that, if i,_, ¢ {0,4,,..., it-2}, then
L+ 4+ ...+ 2%2 4 zi-1 will be a t-nomial multiple of f(z). Moreover, if 4,_; < ¢, then we
get a t-nomial multiple (of f(z)) having degree < . |

General Description of the Algorithm :

Algorithm 5.1 Inputs :
¢ a primitive polymomial f(x) of degree d, and its rool e,
o the value t, for the t-nomial multiple,

® an integer ¢ < 2% — 2. the mazimum degree of the t-nomial multiple.

1. Choose (t — 2) distinct integers ty..., %2 tn the range 1 to c uniformly at random.

2. Find out iy_y, where, 1 + o’ + ... + ait-? = a1,

o Ifieey & {0,4),...,422} andi,_, < ¢, then report 142" 4. . .+ x'-1 4 qi~1 and terminate®.
Ilse go Lo step 1.

INote fhé.t', if the step1 3 in Algorithm 5.1 produces 1,..; € {0,41,...,8:=2}, then we get a (t — 2)-nomial
multiple (having degree < ¢) of f(z). |
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In (1, Page 580|, similar algorithm has been discussed. In the actual implementation of the
algorithm {1, Page 580}, an array of length 2¢ is required. However, an array of length 2¢ is
not possible to manage in practical computer systems if d > 40. If ¢ is as large as 2¢, the the
multiple will be of very high degree and the the cryptanalytic attack will not succeed as the
degree of the multiple should be of the order of (approximately half) the length of available

cipher text. Thus, we need to consider ¢ much lower than 2¢. We present an algorithm, which
gives t-nomial multiples, even if d > 40, for ¢ much lower than 29,

Exact Implementation :

Algm'imm b.2 Inputs as in Algorithm 5.1

1. Take an array of integer Arr of length ¢ + 1 having indices 0 to ¢. Load the values o
* (@ length bit patterns interpreted as integers) in the location Arrli} for 0 < i < ¢. Also
~ take another array of integer Idz of same length with Idz[i].= i. Sort the array Arr in

ascending order and maintain the corresponding order in [dx. That is, after sorting, if
Arrfi) = o, then Idz{i] = ;.

- e

2. Choose (t — 2) distinct integers iy,...,1,_9 in the range 1 to ¢ uniformly at random.
3. Caleulate =14 o + ... + aft-2.

4. Use binary search to sce if /3 belongs Lo the array Arr.

5. If B belongs to the array Arr, say Arr(j] = B, then i,_; = Idx[j]. Report 14z + ...

g'-2 4 gt (it will either be o t-nomial or a (t ~ 2)-nowmial) and terminate. Else go to
slep 2,

Note that the space required for the algorithm is dominated by 2(c + 1) integers needed for
the arrays Arr, Ide (see step 1) in Algorithm 8.2, The time complexity for the sorting in step 1
of Algorithm 8.2 is O(clog, ¢). The expected number of iterations is s, where each iteration
means execution of step 2 to step 5. Among these, step 5 needs O(log, ) time for binary search.
Thus the time complexity is O(clog, ¢ + slog, ¢) = O((c + 8) log, ¢). In {17}, it has shown that
cs = 29%2 The time complexity is minimum when ¢ = s = 2%‘*‘1, i.e., the complexity is O(d2§').

It is very clear that we are restricted in terms of available RAM in the computers. Let us
explain it with an example. Currently a computer with 256 Megabytes (2% bytes) is available
at nominal cost. Consider that, we try to find sparse multiples of a degree 64 primitive poly-
nomial. Now, storing each integer for the arrays Arr, Idz in step 1 of Algorithm 5.2 will need
- 64 bits, i.e., 8 byte space. Thus the maximum value of ¢ is restricted by 2 X ¢ x 8 = 2, i.e.,
c = 2%, Taking ¢ = 221, the value of s is around 22, which is also computationally very high.

In fact, considering the memory requirements for the operating system and other parts of
the program, the value of ¢ will decrease further. If ¢ < s, then the time complexity will be
dominated by s = 2%2+¢ where a > 1. In that case, the time complexity will be (s log, c), 1.e.,
()(ri'z.: “.
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3

As example, we have considered the primitive polynomial 10 + 738 + 2% + 232 + 22 + 2% +
w2 g s T s g 2 42 2 42T 41 We attempted to get a d-nomial having
degree < 2'%. After 212504282 (< 2%) runs, we got the 5-nomial £75%8 4 73997 4 21196 4 4885 L7
We also considered the primitive polynomial 230428 4+ 247 424 4- 293 1 290+ 239 4 230 4 230 3 4
e R ot e o A B LR N AL o L Y LR L T AR S AR A A AR N L S
We attempted to get a 5-nomial with degree < 2°9. After 412070778 (< 2%°) runs, we got the
5-nomial £913518 & 83148 | 470942 | 277080 4 '}

5.2 Sparse Multiples of any Polynomial

Now consider the case, where the polynomial is not primitive. Consider a polynomial f(z)
over GF(2) with degree d and exponent e. We are interested in finding t-nomial multiples of

[{z) with degree < e. Consider the ring of residue classes R =%"—’1 whose elements are
g(r)+ < f(z) >, denoted by [g(z)], with g(x) € GF(2)[z]. From [10, Theorem 1.61, Page 23],
il is clear that any element of R is linear combination of 1,z,z%,...,2% . The zero element
of R is denoted by [0]. Consider the set G consisting of [z}, for 0 < 7 < ¢ ~ 1. Clearly
G C R Ase < 29— 1, G does not contain all linear combinations of 1,z,z% ...,2% 1. It
is important to note that GG is a cyclic group under multiplication modulo f(z). Further G
is not cloged with respect to addition modulo f(x). That is, it may very well happen that
(], [z} € G, but [z} + [z)? = [«* + 27] ¢ G, for some 1,5 € {0,1,...,e — 1}, Consider an
expression [z}t +[z]* + ...+ [z]* + 1, fore >ty > 12 > ... > 4y > 1. If this is equal to [0],
Le., [z¥ + 22 4 ...+ 2% + 1] = [0], then f(z) divides 2" +x2 + ...+ "' + 1. So we have a
t-nomial multiple 2% + z% + ... + 2% 4 1 of f(z).

So, we can apply the above mentioned algorithms, for getting i-nornial multiples of any
arbitrary polynomial having exponent e, considering the representations of [z]*, for 0 < i < e,

as linear combination of 1,z,z2%,...,2% ! in %}(%fl Next refer to the algorithms presented in

the last section. Consider a polynomial f(z) having degree d and exponent e. We choose ¢ < e,
Fdentify o« as [z] and 8 as [h(z)] in Algorithm 5.2. Here Arr contains the d bit representations
of [x]*. Observe that [h{z)] may not be in G, as G does not satisfy closure property with respect
to addition modulo f(x). In such case, {-nomial multiple will not be available and one has to
go for next iteration.
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Chapter 6

Here we have shown that the degrees of sparse multiples of product of primitive polynomials

( of reasonable degree ), in general are sufficiently large. The results in Chapter 4 shown

that the degree distribution is random. Getting lower degree ¢-nomial multiples (t small ) is

computationally very high. This conclusively establishes that sparse multiples variant of various

. correlation attacks on LFSR based stream cipher systems are in general infeasible requiring very
long ciphertexts.
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