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Chapter 1

Introduction and Literature Study

1.1 Introduction

In many real world situations there may be several objectives that must be optimized
simultaneously in order to solve a certain problem. The main difficulty in considering
multi-objective optimization is that there is no accepted definition of optimum in this
case, and therefore it is difficult to compare one solution with another. For example,
the objectives of designing an engineering device can be its efficiency and cost involved,

which are contradictory in general.

One approach for solving multi-objective problems may be to optimize each cri-
terion separately and combine the solutions thus obtained. However, this method is
seldom likely to provide a solution where each criterion is optimally balanced. In fact, it
may §0 happen that optimizing one objective may lead to unaceeptably low performance
of another objective. Thus for solving multi-objective problems all the ob jectives need to
be treated together. In general, these problems admit multiple solutions, each of which
is considered acceptable and equivalent when the relative importance of the objectives
is unknown. The best solution is subjective and depends on the need of the designer or
decision maker.,

Genetic algorithm (GA)[G] is a stochastic process performing search over a com-
plex and multidimensional space, in a randomized method in that it utilizes domain
specific knowledge, in the form of objective function, to perform a directed random
search. GAs involve a population based search in the solution space. Conventionally,
GAs have been used for optimizing a single objective function. However, their popula-



tion based nature make them conducive for extension to the multi-objective case as well.

Traditional search and optimization methods such as gradient descent search, and
other non-conventional ones such as simulated annealing[10] are difficult to extend to
multi-objective case, since their basic design precludes such situations. For these meth-
ods, the multi-objective problems have to be reformulated as single objective ones using
appropriate combination techniques like weighting etc. On the contrary population
based methods like evolutionary algorithms are well suited for handling several criteria
at the same time. In this work, we deal with the issues involved in multi-objective opti-
mization using genetic algorithms, and proposed ways of enhancing their performance.

1.2 Previous Works

Several new algorithms on multi-objective GAs have been designed in recent years.
With the assumption that the reader is familiar with the simple GA[6], we review some
successful previous approaches: all of those evolutionary algorithms are based on dom-
inance relation and pareto optimality. We shall describe the above terminologies in

following section. Also we use the terms individual and solution interchangeably to de-
note a decision vector in genotypic space.

In multi-objective genetic algorithm (MOGA) by Fonseca and Fleming[5], each in-
dividual in the population is assigned a fitness, termed assigned fitness, by using a linear
mapping function of its pareto rank, which is the number of individuals in the current
~ population that dominate the individual. In order to maintain diversity among the
nondominated solutions, Fonseca and Fleming have introduced niching among solutions

of each rank. The normalized distance between any two solutions 7 and 4 in a rank
calculated as follows:

M T2
_ s~
d{j — \E ( fm#:_ffﬁ? )

A=1{ "

where fi"** and f™" are the maximum and minimum values of the & objective. For
the solution 4, d;; is computed for each solution J(including ©) having the same rank.
Goldberg and Richardson[8] suggested a sharing function which gives an estimation of

number of solutions belonging to each optimum in & multi-modal optimization problem.
'The sharing function is:



Sh(d) =

Tah _
0, otherwise.

{ 1—-(%)e, ifd <o,

The parameter d is the distance between two any two solutions-in the population. The
above function takes a value in 0, 1], depending on the value of ¢ and o,,. It is clear
In a population, a solution does not get any effect from distant solutions, gets partial
sharing effect from few solutions surrounding solutions and gets a full effect from itself
‘These sharing function values are calculated with respect to’all population members
(including itself) and are added to get a niche count nc; for the i** solution, as follows:

B(ry)

where 1(7) is the number of solutions in rank ri. Now the shared fitness F! is calculated
from assigned fitness F; using F} = Fi/nc;. This procedure is continued until all ranks
are processed. Thereafter, the stochastic universal selection (SUS) with shared fitness
value, the single point crossover, and the bit-wise mutation operators are applied to
create a new population. Although the fitness assignment scheme is simple in MOGA,
the shared fitness evaluation does not guarantee that a solution of poorer rank will have
a worse fitness than every solution in a better rank.

Horn et al. have proposed niched pareto genetic algorithm (NPGA) [9]. In the
literature of NPGA, binary tournament selection is used. During tournament, selection,
two solutions are picked at random from parent population. Of the two solutions, if
one dominates all the individuals in a randomly selected subpopulation of size tdom, and
the other is dominated by at least one individual in the subpopulation, the former is
chosen for subsequent operation. However, if both solutions are either dominated by
at least one individual in the subpopulation or are not dominated by any individual in
the subpopulation, niche counts for both individuals are evaluated to break the tie. The
solution with smaller niche count is chosen to maintain diversity among solutions. Un-
lika MOGA, explicit fitness assignment is avoided in NPGA. The tournament selection
prefers nondominated solutions in a stochastic manner and whenever a decision about
nondomination cannot be established, the parents which reside in less crowded regions in
the offspring population are chosen. The disadvantage of NPGA is that its performance
heavily depends on the two external parameters, niche radious (o)) and the size of the
subpopulation (ty.m) used for tournament selection. These parameters should be tuned
according to the nature of problem, which is always not possible.



- Zitzler and Thiele proposed an elitist IEA, which is named as strength pareto evolu-
tionary algorithm (SPISA)[14]. This algorithm introduces elitism by explicitly maintain-
Ing an erxternal population. The ezternal population stores a fixed number of nondomi-
- nated solutions found until that stage. The traditional population as well as the external
population participates in genetic recombination. Fach individual in the ezternal pop-
ulation is assigned a stronger "strength” value if it dominates more individuals in the
traditional population. On the other hand, each individual in the traditional population
1s assigned a greater fitness value if more individuals in the external population domi-
nate it. Here, the greater fitness value an individual has, more worse it is. Unlike the
previous algorithm, niching in SPEA is achieved implicitly by dominance comparison.
Finally, external population size is restricted by clustering. Clustering ensures better
spread among the obtained non-dominated solutions. SPEA introduces an extra param-
eter, the size of the external population N. A balance between traditional population
size N and external population size N is important in the successful working of SPEA,

Elitist non-dominated sorting GA has been suggested in 2000 by Deb et al.[3],
often named as NSGA II. The algorithm employs elite and diversity preserving method.
Parent and offspring population are combined together and non-dominated sorting is
performed on the combined population. Once sorting is over, the new population is
filled by solutions of different nondominated fronts, starting from the best one. The last
allowed front which is not fully accommodated in the now population, is sorted based on
the crowding distance. Individuals from the less crowded regions are chosen. The merit
of this approach is no external parameter is required to be fixed in the niching strategy.

However, when the crowded comparison is used to restrict the population size, it slows
down the convergence property.

1.3 Shortcomings

All the algorithms discussed above follow the principle of dorninance relation and
pareto oplimality, which will be discussed shortly. Furthermore, in order te- maintain
the diversity among the solutions in a population by keeping its size constant, different
distance based niching strategies are applied either explicitly (in case of MOGA, NPGA
and NSGA II) or implicitly (in case of SPEA). The shared fitness assignment in MOGA,
niche count in NPGA and crowding distance assignment in NSGA 11 all serve the purpose
of degrading fitness of a solution which is crowded by many other solutions. This helps
emphasizing the solutions residing in less crowded region. In these diversity preserving
mechanism, since the solutions in a crowded region degrade each other’s fitness, it is very



likely that no solution from that region get carried to the next generation only because
of they are surrounded by many solutions even though they are nondominated and can
survive better than a solution from less crowded region. Consequently, searching takes
place in a new direction sacnificing the current local optima. 1t is even possible that pareto
optimal solutions may give their way to nondominated yet not pareto optimal solutions.
The above uncertainty of choosing good solutions is inherent to the distance based
niching strategy and hinders the algorithm from converging to the parefo optimal front
quickly. Also, the external parameters ty,,,(subpopulation size in NPGA) or N{external
populetion in SPEA) affect the performance of the algorithm extraneously; proper choice
of these parameters is crucial for good performance of the algorithms. Another demerit is
the prior knowledge of extreme values of the objective functions is essential for computing
niche count or crowded distance. In many real world complex optimization problem, this
information is difficult to achieve, if not impossible.

1.4 What needs to be done

As noted above, the existing methods of implementing MOGA tend to ignore all the
solutions that reside in crowded regions, and also often require knowledge of the maxi-
mum and minimum values of the objective functions. In addition, a number of studies
have established the fact that introduction of elitism in multi-objective evolutionary al-
gorithm (MOEA) enhances its convergence characteristics. The performances of SPEA,
NSGA 1II over the previous non-elifist approaches like MOGA, NPGA etc. were studied
in detail by Deb et al.{2]. Motivated by these above, we concentrate on designing a new
elitist-MOGA, which will overcome the aforementioned shortcomings. The algorithm
should give more importance to the nondominated solutions from less crowded regions,
without totally ignoring solutions from regions that are more crowded. In eflect, the
distance based niching strategy should be avoided to achieve fast convergence of the
algorithm.Moreover, the final solutionshave to be well dispersed on the pareto optimal
front. Lastly, no prior knowledge of extreme values of objective functions should be
essential.



Maximize /Minimize Im(x), m =1,2,... M

subject to gx(x) < 0, k = L,2,....K

where x = (z,, z,,.. .y Tn) is @ vector of 1 decision variables
and Li < I < U;, 1 = 1, 2,..., n.

It is often referred to as vector optimization because a vector of objectives f =

(fi, f2,.. ., fam), instead of single objective is being optimized. These multiple objec-
tives often conflict with each other. The opposing objectives place a partial, rather than
total, ordering of search space.

2.2 Dominance Relation and Pareto Optimality

Most multi-objective evolutionary algorithms use the concepts of dominance rela-
tton and pareto optirnality. We provide the formal definitions of these concepts here for
an MOQOP where the M objectives are to be maximized. The definitions are analogous



for minimization problems.

Dominance Relation : A decision vector x! € D is said to dominate another de-
cision vector x? € D if and only if x? is partially less than x! i.e.

Vie {1,2,..., M}, filx") > fi(x?)
A3dje{1,2,..., M.}”:"fj(xi) > fi(x?)

Rank : The rank of an solution x' in a population ¢} is said to be r; if the solution
1s dominated by exactly r; number of solutions in the population. The nondominated

solutions are of rank zero, and there is at least one rank zero solution present in a pop-
ulation.

Pareto Optimality : A solution x* € D is said to be pareto optimal if and only if
there is no x € D for which x dominates x*. The set P* of such nondominated solutions
X" over the entire feasible space D is the pareto optimal set.

The mult-i-objective evolutionary algorithms discussed here including the method
suggested use the concept of dominance relation and pareto optimality proposed by

Goldberg[6]. Now we are able to define the goals of MOEA in the light of above propo-
gitions. These are :

a. The résulting nondominated set of solutions should be close enough to the pareto
optimal set, and

b. A good (possibly uniform) distribution of solutions along the pareto optirnal front is
desirable.

2.3 GA Implementation

In our implementation of genetic algorithm, the solution is represented by binary-
encoded string of finite length, say L. The function & maps a binary string of length L
to a solution vector of n variables i.e. -

h: {0, 1} — Dn
where D denotes the decision vector space.

The function h is one-one function such that i(s) = x, s € {0, 1}%. Selection
operation in simple GA chooses the strings from current population in proportionate to



their fitness values for reproduction. It is simple in SOOP as the fitness of a strings
s its only objective value and total ordering of strings is possible based on the single
objective. A few such selection techniques are tournament selection, roulette-wheel se-
lection and ranking selection[7]. But implementation of selection method in MOGA is
really a problem because dominance relation gives a partial ordering of the strings in
terms of their fitness to reproduce. Earlier we discussed some algorithms like MOGA
and NSGA II that impose total ordering of solutions based on dominance relation and
distance based niching strategy. Avoiding imposition of such Htness ordering, we have
proposed an elitist-selection technique that will be elaborated in following section. A

population is a collection of binary strings s that constitutes the genotype space. The
steps of EMOGA are following:

Step 1 : Initial population (o of size N is produced randomly, followed by fitness eval-
uation and assignment of each individual in (Jo.

Step 2 : Crossover operation is performed on Qg to produce Q,. Fitness evaluation and
assignment of new individuals are performed.

Step 3 : Population (), is generated from @), by mutation operation. Fitness evaluation
and assignment are performed on altered individuals.

Step 4 : Population @, and Q, are merged together to have a population @m of size
2. Elitist selection is performed on @m to produce a new population . of size N.

Step 5 : The termination condition is examined. The process terminates when the con-
dition is satisfied. Assign the final population @y < @,. Otherwise, assign (Jy + Q,
and go to step 2.

In this implementation, we applied single-point crossover operation|8] and bit-wise
mutation operation. Also the mutation probability is varying with generation.

2.4 Elitism

Elitism operation is often applied to preserve previously found best solutions in the
subsequent generations. This operations ensures that once a good solution is found
in an intermediate generation, it is never lost until a better solution replaces it. In
1996, Rudolph(11] and Bhandari et al.[1] have shown that a stmple GA with elitism and



non-zero mutation probability always converges to the global optimum solution, though
without elitism this is not always possible.

From the above discussion, it is clear that elitism plays an important role in evoly-
tionary computing. In the context of MOOP, the meaning of elite solutions differs from
that in SOOP. Here all the nondominated solutions in a population are elite solutions
and are equally important. Preserving all elite solutions may block the avenues of new
solutions in subsequent generations and result in premature convergence of the algorithm
to a suboptimal point. So elitism must be applied in a controlled manner(4] such that
search process does not stagnate.



Chapter 3

Elitist Multi-Objective GA

3.1 Elitist-Selection in EMOGA

The suggested multi-objective genetic algorithm, EMOGA, differs from other elitist
MOEA in its elitist sclection operation. In this section we shall highlight on the elitist-

selection algorithm, its computational complexity and lastly the theoretical foundation.

In the proposed elitist-selection operation, the parent population ¢}, and offspring
population Q). (produced by crossover and mutation operations) are merged together to
form a new population (), of size 2V. Rank assignment is performed for each individual
In m and individuals are classified according to their rank. An individual is said to
be in rank subpopulation R;, O <1 < 2N -1, if the rank of the individual is {- So the
current set of nondominated individuals belong to Ry. If the number ofindividuals in
Ty, 88y ng, is less than or equal to the population size N, all the individunls from Ity are
taken to the new population Gn. Remaining (N — ng) individuals are taken randomly
from R;, 1 <1 < 2N — 1. When ng is grater than N, we do the following for each
objective function f, 1< k< M :

The current maximum value f"%% and current minimum value ™ of f; are found
out from rank subpopulation Ry. The span of f; is divided into d number of regions.
The individuals in Iy are classified based on their Jr value. An individual is said to be
in region subpopulation G;, 1 €3 <difits fi value lies in the 7** region. Then, each
region is visited in round-robin manner and one individual is selected from each region.
The individual which is best in other objectives, except fy, is chosen. If there are more
than one such individual, tie is broken by selecting one randomly. On the other hand,
if the region is empty, it is skiped out. The process 1s continued until exactly ¢ number

10
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of individuals are chosen based on the objective function f;.

After the above steps are followed for M objective functions, new population Q,,
consists of cM number of individuals. Remaining (N — ¢M) number of individuals are
chosen randomly from the rest of the individuals in Q,,. This newly formed population

(Jo becomes the parent population for the next generation. The detailed algorithm of
ELITE_SELECT routine is described below:

Procedure ELITE.SELECT

Input : @),(Parent Population), Q(Child Population), N( Population Size),
d(Number of Regions), ¢(Number of individuals to be chosen for
each objective component).

Output : Q,(New Population)
Begin

1. Initialize Q,, +« 0.

2. Merge Q, and Q. to form a population (Jm of size 2N,

3. Using dominance relation defined earlier, rank each individual in Q,,. An indi-

vidual s; € Q. is said to have rank r; if it is dominated by exactly 7; number of
mdividuals in Q,,.

4. Construct rank subpopulations Ry = {8 € Qu:7 = 5,1 <i< 2N}, j =

0,1,...,2N =1, Let ng = |[Rp|, number of nondominated solutions in Q,,.
5. if ng < N then
6. Qn + Q,UIN,.
7.  1em + (N —mng); selected + 0.
8.  while selected < rem do
9. fori + 1to 2N —~1do
10. if B; # () then

11. Choose one individual s randomly from R;.



12. Qn < QuU{s}, R; « R, — {s}; selected + selected -+ 1.

13. if selected = rem then
14, Exit from inner loop
end if
end if
cend for

cnd while
15. else
16. for7 +— 1to M do

17. Find maximum and minimum values of fi in the set R,. Let those
be denoted by fme and fmin respectively,

18. Divide the objective space into d number of regions along the ith
objective. Let the region boundaries be Jios fiyy-- -, fi,» Then
we have fi; = f™Mand fi, = f™Z More generally,

A i R

19, Construct the region subpopulations Gi = {s € Ry : Jion < fils) <
fu(s)h,i=1,2,.... 4

20, selected + 0.

21. ~while selected < ¢ do

22. for j +— 1 tod do

23. if G; # 0 then

24, Choose the individual ¥ & (7; which is best in other

objectives (select randomly if there is more than one).
25. Qn « QuU{s}; G; «~ G;—{s}; Ry « Ry~ {s};

selected +=— selected + 1.

26. if selected = ¢ then
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27. Iixit from inner loop
“end if
end if
end for
end while
end for

28. rem 4+ (N —cM); selected « 0.

290. while selected < rem do

30. Randomly select a rank 7" € {0, 1,..., 2N — 1},
31. 1f 12,-: ;{: @ then
32. Choose an individual s randomly from ...
33. Qn ¢ Q.U {8}; selected + sclected + 1.
end if
cnd while
end if

34. return Q,,.

End Procedure

3.2 Computational Complexity

Step 1 needs constant time. Step 2 merges the populations and takes O(N) compu-
tation. Determining rank of each individual in a population of size N requires checking
dominance for each pair of individuals; the number of such pairs are ¥C; i.e. QO(N?).
Since comparison for dominance needs comparison of M function values, in total step 2
takes O(M N*) comparisons. Step 4 and step 6 takes O(N) time. Considering the worst
case where remaining solutions (after storing all rank 1 solutions) may belong to same
rank, step 8 will be executed at most O(rem) times. Since rem < 2N, step 8 takes
O(N) computation at most. Now step 9 is executed 2NV — 1 times for each execution of
step 8. In total steps 8-14 take O(NV) computations. Step 16 is executed M times. Step
17-19 takes O(N) times for each execution of step 16. From the previous logic, step 21
can be executed ¢ times in worst case for each objective. Since step 22 is always executed
d times for each execution of step 21, step 23 is executed G{N) times for each objective.



14

But steps 24-27 can not be executed more than O(c) times for each objective. Step 24
takes O(M N) amount of computation to find the best solution in other objectives. So
total computation of choosing ¢ individuals from M objectives is O(cM?N). Remain-
ing solutions are chosen in O(N) time. Assuming that ¢ = QO(N), overall worst-case
computational complexity of the ELITE_.SELECT algorithm is O(M?2N?)

3.3 Discussion on Theory

The basic philosophy of EMOGA is to divide the objective space into a number
of regions along each of the M objectives. The current nondominated solutions are
categorized region-wise and optimization is done in each region along the objective in-
dependently by picking best solutions in other objectives. For the sake of simplicity, let

us consider a bi-objective optimization problem. Also we will assume that the region
length is fixed.

In their work on convergence of elitist GA (EGA) in 1996[1], Bhandari et al. es-
tablished that with a positive mutation probability, elitist GA always converges to the
global optimal solution after infinite number of iterations. In the algorithm of EMOGA,
elitism is maintained by copying the current nondominated solutions from the combined
parent-child population to the parent population of next generation. If the number of
nondominated solutions never exceeds population size N, with the similar argument we
say that the algorithm always converges to the pareto optimal front with probability 1 as
the number of iterations goes to infinity if the mutation probability lies between zero and
one. The difficulty arises when the number of nondominated solutions in the combined
population exceeds population size N. In that case we apply the technique explained
in the preceding paragraph. In an intermediate generation, we consider a region along
first objective. The nondominated solutions in that region are optimized on the second
objective. If the region location and size is fixed throughout the process, it follows from
the convergence of EGA that the algorithm always finds global optimal value of second
objective in that particular region. Since the proposition is true for each region and each
objective, the algorithm ensures optimization along each objective with the restriction
of number of regions d. The nondominated solutions are optimized on each of the objec-
tives, which leads the current nondominated front to the pareto optimal front. As with
simple EGA, once a pareto optimal solution is found, it survives throughout the process.



Chapter 4

Experimental Results and
Comparisons

In this section, we discuss the Implementation results obtained using EMOGA,
along with its comparison with two other wel] known multi-objective GAs, NSGA II
and NPGA, for a suite of six test problems. The first two problems are string search
problems and defined on binary domain. The following four problems are mathematical
functions which are already used to test optimization algorithms. In order to compare
the performance of proposed method, two other existing MOGAs, NPGA (non-e]itist)
and NSGA 1I (elitist), were also implemented for the same set of six problems. In oyr
experiment, string length L = 50 and Crossover probability p. = 0.85 are chosen. The
mutation probability p,, is sinusoidal in nature and varjes with generation number Gen;.
It takes the value from 1 /L t0 0.45. The mutation probability is defined as follows:

- § . v
P = (R cos(Ugem))

where GEN is the total number of generations after which the algorithms terminate.

Before we proceed to actual problems, we define some performance measures that have
been nsed on those methods.

4.1 Performance Measures

As we have alrcady addressed the goals of MOGA in section 2.2, the measures
Hausdor(f Distance(IT D} and Average Distance(AD) give the distance of resulting set
of solutions from true pareto oplimal front. These are the measure of closeness of a set

15
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2 of N solutions from a known set of pareto optimal set P*. According to the following
delinitions, ITD is' a metric but AD is not a metric.

Let there be two solution sets 4 and B and dn(z,y) denotes the hamming distance
between two solutions z, y € {0,1}%. Then we have,

dh(mr A) = T&f dh(:‘:: U)

IID(A, B) = max {I&agc dn(z, A), nax dn(y, B)} (4.1)

Z f!;,(:ﬂ, A)
AD(A,B) = &4 B

(4.2)

As the measure of distribution of the nondominaled solutions in the final population
along the pareto optimal surface, two distance based measures, Front Spread(FS) and
Mazimum Separation(MS) are defined. The measure F'S (A) denotes the length of the
nondominated front in solution set A whereas MS5(A) indicates the maximum separat-
ing distance between two solutions in solution set A Formal definitions in bi-objective
space are as follow:

Let there be a population A of nondominated solutions and d.(z,y) denotes the
Ivuclidean distance Letween two solutions z, ¥y € D. Then we can have,

|2 i A
X', x4, xt XL, x4

where x*,x7 € A and f(x;) < Ji(x;) for 1 <i<j<|A]

|A]—1

FS(A) = 3 d(x',x*!) (4.3)
1 =1 -

MS(A) = !15132.[\::4'{(1*:()(‘,}(”1)} (4.4)

The measure S provides useful information about the distribution of the obtained
nondominated solutions. However, this measure does not give-eorrect information all
the time. If for one algorithm the solutions are clustered at some distant regions on
the pareto optimal front and for another the solutions are wel] apart from each other, it
may happen that former gives better F'S. In order to have proper distribution measure,
we use the metric MS. If the 'S values of both algorithms are more or less same, the
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algorithm which shows lower M.S value is better,

In order to check the convergence property of the algorithms, we keep track of
the generation in which first pareto solution appears in the population for the problems
where the pareto optimal solutions are known a priori. The generation is denoted by
Geny,. Another performance measure for the first test problem is whether the algorithm
can find optimal solution at all. Success fate indicates the number of times the al-
gorithm finally achieved the optimal solution per hundred run. We keep track of the
number of distinct nondominated solutions in the final population and denote it by N;.
Last but not the least, actual execution time is denoted by CPU Time which 1s counted
in second. Though this metric is highly system and implementation dependent, while
the methods are executed in same system with their best existing implementations, it
can provide information about their runtime performance.

4.2 Test Problems

4.2.1 Problem I

The problem is a simple string search problem. Let s be a binary string of length
50. It states :

. I’s in s from position 1-25
Maximize f; = i 2rp
O
# l's in ¢ from position 25-50
25

It is clear from the definition of the two objectives that though the problem is
multi-objective, it has got an unique optimal solution as the objectives are not conflict-
Ing with each other.

Maximize f, =

4.2.2 Problem II

This is also a string search problem but, with conflicting objectives

Maximize f; and f, where

7 # 1's in pos. 1-25 4 # 0’s in pos. 26-50
1 —_—

)
o0
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f, = TS pos. 1-10 + # 0's in pos. 11-35 + # 1's in pos. 36-50
' | S e e e eeenes ! - |
o()

Unlike the first problem, this problem gives a number of optimum solutions that

|

Parcto optimal
front

L6

0.4

= o By A W A - o Em Ep W a we

-m—---ﬂ----'-----*---_.--

00 0.4 0.6 1.0

Figure 4.1: Objective space of Problem II

make a tradeoff surface. The pareto optimal set_consists of the finite number of strings
with all 1’s in positions 1-10 and all 0’s in positions 26-35 (the positions where both

objectives agree}). Figure 4.1 shows the objective space and parelo optimal region foy
the problem.

4.2.3 Problem III

We observe the performance of proposed MOGA on simple and most studied Schalf-
fer’s problem[12]:

Minimize fi () = =2,
Minimize fo(x) = (z — 2)?,
—A <z < A

This problem has pareto optimal solutions z* € 0,2] and pareto optimal sur-
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Figure 4.2: Decision variable and objective space of Problem 11

face is given by 2 = (VT = 2)% in the range 0 < f¥ < 4. The continuons pareto
oplitnal region is shown in Figure 4.2, For our experiment, the value A4 = 10 have been
used,

4.2.4 Problem IV

Schafler’s socond problem(12] is the following:

[ —ZI itz <1,
r—-2 fl<zr<3,
d—-z if3<z<d,
\z~4 ifz >4,
Minimize fy(z) = (z — 5)2,
-0 <z < 10,

Minimize f,(z) =

In this problem, the pareto optimal set consists of two disconnected regions,
z* € {[1,2)Ud, 51}; the regions are shown in Figure 4.3, It is diflieult for an algorithmn to
maintain stable subpopulation from cach of the two disconnected pareto oplimal regions.

1.2.5 Problem V

Another two-variable problem with discontinuous pareto optimal front has been
framed by Zitzler et al.[13]:
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IFigure 4.3: Decision variable and objective space of Problem IV

Minimize f,(x) = z,,

Minimize fy(x) = g(x)h(/, (x), g{x))
where g(x) = 1+ 10z,

e,
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Iigure 4.4: Objective space of Problem V

/1 and both variables z; and z, lie in the interval 0, 1]. Here, discontinuity(Figure 4.4)

of the pareto optimal front causes SCriol
_ serious problem for the gleor; :
solutions from all regions. algorithms to have diverse
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1.2.6 Minimal Deceptive Problem

Minimal deceptive problem poses serious difficulty for simple GA. As the search
1s guided by objective values in GA, the algorithm is deceived by the optimal solution
which lies at the opposite end of the direction GA proceeds. Consequently the algorithm
converges to a suboptimal solution. Algorithms which employ elitism are better than
the non-elitist GAs in terms of handling minimal deceptive problems, once the optimal
solution is found, it is guaranteed to be carried on to the subsequent generations. Even

though the optimal solution is Jess likely to achieve for g satisfactory search space re-
duction ratio.

A minimal deceptive problem(MDP) for Li-objective optimization. can be readily
formed from test problem II for which pattern of pareto oplimal region is completely
known. In problem I, the objectives f, and f, are non-conflicting in positions 1-10{both

nhjective increase as number of 1' increnses) and 26-35(both objective increase as the
number of 0's increases).

| 1125 36~50 11-25 36—50
e een, e tteamnen, Pt e, v
111, . 1% %%, £000... 0% %% = 000... 0% xx. . R111...1% %%
1—10 26-35 1-10 2635
Pareto optimal string in Prob. 2 Optimal string in MDP

For a minimal deceptive problem, we set the maximum values for the position 1-10(all
(’s give maximum value) and position 26-35(all 1's give maximum value), keeping rest
of the things as earlier. The notation '*’ indicates any of 0 or 1.
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Table 4.1: Performance of EMOGA with different number of region

Parameter | d | HD | AD | £S5 | 175 Ny | Gen,

| Values X100 | x100

T 10 | 2.5 | 0.16 [ 3294 [ 579 | 13 200

N =60 12| 2.1 [0.127]30.83 | 3.11 T 11 195

L =50 16 | 2.2 [0.1T [ 32241 396 [ 11 2031
c = 20 181 21 [0.14| 32 | 431 113 246

P=085 |20 2.2 015 | 33.66 | 3.39 [ 127247
Run = 10 22| 2.2 101513366 3.39 [ 12 | 949

GEN = 1500 [ 24| 2.2 [0.15 33.66 | 3.30 [ 12 | 242

(28| 2.2770.15 | 3566 | 3.30 12243
S0} 2.2 [0.15[33.66 | 3.39 | 12 [ 242

4.3 Comparative Results

Before we compare the results obtained by running the algorithms on the test prob-
lems discussed in section 4.2, we conduct an experiment on proposed EMOGA in order
to fix the external parameters, number of regions(d) and number of solutions to be
chosen(c) in ELITE_ SELECT routine. In first Phase, we set N = 60 and ¢ = 20. The

From Table 4.1, As the number of regions increases, the 'S also increases
with decreasing M S values. With small increase of distance from the pareto oplimal
front(AD), it is acceptable to have good front spread with mazimum separalion as low
as possible. It is also noticeable that when d exceeds c, the algorithm does not show any
improvernent. Since it gives best result with d 2 ¢, in next phase, we keep the number
of chosen solutions for each objectives(c) same as the number of regions{d) throughout.
With other parameters unchanged, EMOGA is tested for a suitable value of d.

Table 4.2 gives the experimental results produced by EMOGA on test prob-
lem II, again for different values of d(c = d). Here, as the number of regions increases,
The distance of the resulting set of solutions from pareto optimal front decreases, but the
spread of the solutions is getting poorer and number of distinct solutions(N;) reduces.



Table 4.2: Performance of EMOGA with ¢ == ¢

[ Parameter d |[HD[AD] FS | MS Ny | Gen, |

l_!ﬂlues - - _><100 | x 100 B |
10| 3.3 1038|3557 | 4.74 |"'12 | 219

N =60 12| 3 | 0.3 [41.16 | 544 14 9951

L =50 16| 227 0.253[3‘8.32 | 4.94 137 258 |

pe = 0.85 18] 2.5 | 0.21 [ 37.19 | 4.66 |13 | 245 |
Run = 10 ' 33.66 | 3.30 [ 12 | 242

GEN = 1500 (13371 4.07 112 | 230 ]

30.68 [ 5.16 | 10 | 233 |

—— ) m — = = e L,

Table 4.3: Comparative performance of MOGAs on Problem I

=~ o s

. |

Algorithm [ IID | AD Gen, | Ngy| L, | Succoss |
(Sec.) | Rate(%)
) EMOGA | 4.6 (044 419 | 1 | 984 100
GEN =1500 | NSGATI [ 92 [6.12| - |1 | 141 0 —
NPGA [169 849 - 2 1 10.9 0
EMOGA [ 39 [042] 494 | 1T | 118 | 106 1
GEN =1800 | NSGATI |103 (613 - |1 | 173 0§ —
T NPGA [17.1 7905 - 2 | 131 0
| EMOGA | 48 [0421 520 | 1 | 139 100
GEN =2000 | NSGATI | 82 |48 - 11 19 | 0
~ NPGA™ |16 | 7417 - 1 9 " 14% 0

23



24

et B l,.l 1[.-. — P ]_T ili 'Ir r, f __rl ..;
N U : "
05 ‘y:l ;'" .:l : oml -' 'I 0 "I i i '.: Jj',,
7 Y | =TI Pty = b
o S KV - - NSGAN Ly I toar ,' NI
: AT R L = EMOGA 3 09 ’ M . "
| TRASM A n et P | ERPHINT
1] m R s VE e TR
0. ' N (TP R . 1 n MR
N £ 1 UL I I { . oM i f, tA¢ 1 T
o T T S AR R A e B T AT
B AT O R I 21 F R 1
OBfy poenedyred) N AN L b Al IR LEN LI os L RETIL ot i ; S S
NSE LT ST TR TR
t1 ;i_l e | i 1Y, J UL LLa LI TR ll' i .'_'-.'I - | RN
omifh L el et et BRI TR
4 ' ) . _ ' . T I . N . 1,11
J-L‘ﬂﬁ:?*'ﬂfr AL i!: et Ii':l':iljj'n; LTS l‘p*."q-l'fff il E" ‘.'f'.'i,'!?* v, !f"'i. I'}'ii'li.""
L gl " IR 1y A Cop et LU N L Sl
ﬂ":‘h: M ¥ RSkt ﬁ'i: T Y L I TN A
o 7y » vttt Ilu.!Li’:”',:‘. } gl ) ! L R :"I I: s
ki) ¥ b e Iyt 0y ’
008 by, ; " ’ ry
, :i* t | Y MU 0 - HM‘J L
& T NSGA N
n_" 1 I i ' | 1 k Fl ' nj L ."-" m [ i 1
200 400 800 B0 1000 1200 1400 1800 te00 a0 ADO a0 0 100 1200 1400 1800 1800
Generstion Gianarstion

The algorithm gives optimum performance with d = 18 and d = 20 ie. with & <
d < % We select d = 18 for a population size N = 60 in the subsequent experiments.
For all the above test problems, the extreme values of the objectives are known. In the
algorithm NPGA, t,4,,, = 5 is taken and dsn 15 set to be 10% of the maximum span of
the objective space. All three algorithms are tested on the problems for three different

number of iterations(GEN), results shown by taking average of 20 runs for each CEN.

From Table 4.3, it is interesting to observe that EMOGA is able to achieve
the unique optimal solution each time it is run with 1500 generations or more, whereas
NSGA II and NPGA never attain the optimal solution. Average distance(AD) and
Hausdorff distance(H D) of the final population is also significantly low in EMOGA as
compared to others. Figure 4.5 indicates the convergence rate of the algorithms for ob-
jective f; and f,. Since the objectives are non-conflicting, both the figure display steady
growth of objectives for EMOGA. NPCA attains the optimum values in intermediate
generations but unable to preserve it for rest of the generations. The result is same for
NSGA II. Inspite of being elitist MOGA, it loses the optimum values in later processing
because of the niching strategy discussed in section 1.7.

Since the pareto optimal set of solutions P* is known in problem II, it is easy to
compute front spread(F'S) and mazimum separation (MS) defined earlier, for the final
set of nondominated solutions. Table 4.4 gives the results when the algorithms are run
with different number of generations. It is Interesting to see that the final population in
NSGA II is very close to pareto optirnal front, but the solutions are poorly distributed.
On the other hand, NPGA gives good IS value though the population distance from



Table 4.4: Comparative performance of MOGAs on Problem IT

r

[ Algorithm [ HD | AD | FS | MS | N, Gen, | ¢

X
x100 { x100 (Sec.)

EMOGA |2.350.1235.36 | 3.96 [-13 | 226 | 10.6
GIZN =1500 | NSGAII | 0.6 [0.02[2334[ 648 | 7 | 372 | 15.2

NPGA 555 [2.03 | 38.18 | 9.45 | 8 | 402 | 11.6

_EMOGA | 2.6 | 0.2 [3842 | 445 | 13 | 255 | 12.8 |

GEN =1800 | NSGATI | 0.4 [0.01 | 22.22 | 595 | 7 | 456 | 183
NPGA |56 [ 1.9 [3875] 9.42 | 8 | 464 | 14

EMOGA | 29 [0.23[36.65 | 3.74 | 11 | 980 | 143

T —

GEN =2000 | NSGAII [0.5 | 0.01 | 22.66 | 6.47 | 7 | 479 | 204

NPGA [58 122 [3947| 102 | 7 | 548 | 15.7

Table 4.5: Comparative performance of MOGAs on Problem III

Algorithm | FS | MS | N, | t..
x100 | %100 (Sec.)
EMOGA [ G611.6| 62.9 | 44 | §
GEN =150 | NSGAII (6221 616 | 51 | 63
' NPGA [ 6195 979 | 45 | 5.6
EMOGA | 6186 | 624 | 43 | 7.3
GEN =200 NSGATII [601.9| 58 |52 8
NPGA | 627.3 | 1101 | 45 | 7.5
EMOGA [ 610.9 | 57.3 | 43 | 0.17
GEN =250 [ NSGATI 16224 60.3 | 53 | 10.4

| NPGA™ 1610.1 [111.27] 44 | 9.37

i

i

S
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pareto optimal front ig large.
EMOGA gives us satisfactory result both in terms of
front and solution diversity. Furthermore,
high for EMOGA. The tendency of all

optimal front instead of at the extreme
teristics plots(Figure 4.6).

dely separated in NPGA
closeness to the parelo optimal
number of distinct solutions(Ny) is always
algorithms to converge at the middle of pareto
ends is observed from the convergence charac-

Experimental results on problem III are recorded
NSGA II and EMOGA deliver better spread of pareto op

5) than by NPGA. Figure 4.8

in Table 4.5. In gl cases,
timnal solutions with much
shows the convergence rate



Table 4.6: Comparative performance of MOGASs on Problem Iv

——

T

Algorithm | pg MS | Ny T ¢

er

X100 | x100 (Sec.)
EMOGA 1641 [ 814445 5.46
GEN =150 | "NSGA It 16954 522 51 5
NPGA 11640 T7g5 7 35j 5.57

| EMOGA 1647 | 830.7 40 | 796
GEN =200 [ NSGA Ti 1037 | 8409 8

51 |78
| _NPGA 1611 18163 36 |

T 12N
EMOGA 11621 [836.5 a5

GEN =250 " NSGATT |7gs = 656.2 | 51 | 95981
T NDPGA 1641 [800.6 | 38 | 9.9z

e — s —
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.. Figure 4.9: Distribution of final solutions of Problem III

. . .
nder experimentation. NSGA II always finds maximum number of distinct solutions

I’erf;:n:;a;;gériﬂ ;Z?{H the} Table 4_-5 on problem 1V that Loth EMOGA and NPGA

lier problox NSGAHIer? t 1e two dlscﬁntinuqus_ pareto oplimnal regions, Unlike the ear-

Figure 4.11., In some cazg: t;;gpfssf: th;‘; ‘;}IOIZ P optimal front, as shown in
55 ) ws better distribution ;

;}]]:t;“;;?ﬂt:falf’f t('ilstmct solutions are conﬂiatently lower than EMS}(;&}I\]. ?’?inorfﬁilg}:lt]gh

7 Drowing the convergence plots and Figure 4,11 ig (e distribution of final solngier

on objective space using different algorithms. | Hion of final solutions

Table 4.7 gives the results of the MOGAs when run on problem V. In some cases
]
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Figure 4.11: Distribution of final solutions of Problem IV

front spread(FS) of NSGA IT and NPGA are better than that of EMOGA, but the final
solutions are not uniformly distribued unlike EMOGA(Figure 4.13. The high values of

mazimum separation(MS) are the indication of their behaviour. The convergence char-
acteristics of the algorithms are shown in Figure 4,12,

We attempted to solve the minimal deceptive problem(MDP) with the MOGAs.
After several runs with the parameter setting as in problem 11, none of {he above al-

gorithms gives the optimal solutions though EMOGA is [requently successful in Iinding
optimal solution of one objective.
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We have described the elitist multi-objective genetic algorithm and compared its
performance with two nther multi-objective genetic nlgorithms on a number of tost prob-
lems. Comparative performances were evaluated Ly using the measures defined in this
paper, In most of the problems, EMOGA performs better than NPGA and NSGA II. In
designing & MOGA for optimization, care must be taken on the goals of MOGA (section
2.2}, the resulting population should be close enough to pareto oplimal set of solutions
and well distributed over the nondominated front. In some cases, both of the existing
algorithms show good result in one aspect, poor in other, Proposed EMOGA behaves
steadily and gives satisfactory result in both aspects of MOGA- Study on convergence
property of the algorithms also indicates that proposed EMOGA is faster than NPGA
and NSGA II. It is Interesting to observe that EMOGA outperforms NPGA and NSGA
IT in particular when the number of generation is less. Unlike NSGA II, the proposed

method does not require any prior knowledge of extreme values of objectives involved.

There are a few issues which are to be addressed in the later study of EMOGA.
In the theoretical discussion of EMOGA, we have assumed that the region size ig fixed
throughout the whole process though it is not the case. We are actually constructing
the regions based on the optimum solution in the population under consideration. The
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with different d in order to get a suitable relation with population size N. Lastly, the
algotithm is to be tested for its efficiency on more complex optimization problems.
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