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Abstract :The problem of randomly generating simple polygons is of considerable im-
portance in the praciical evaluation of algorithms that operate on polygons by generating
lest instances, where it is necessary to check the correctness and to determine the CPU-
consumplion of an algorithm ezperimentally.

Till now no polynomial solution for uniformly mndam generation of polygon is known.
Auer and Held[2/, considered a class of heuristics for this problem. In this thesis, we present
an algorithm for the generation of simple random polygon in random manner after a prepro-
cessing which takes O(nllogn) time. Though the worst time required to generate a polygon
may be O(n?), the actual CPU time needed for the generation is very less.

We also considered finding the visibility graph of those generated random simple polygons

which will be helpful for many problems. We considered already ezisting algorithms for this
puUrpose.
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1 Introdlzction

Visibility graphs of a simple polygon plays important role in many geometric problems, for
example, in robat path planing, morphing, communicating animation data, to name few. In
this report we will study the problem of computing visibility graph of a simple polygon. In
order to test the algorithm we need to generate simple random polygon of arbitrary shape,
This problem is important in its own right and has many other applications apart from those
indicated earlier. We first discuss the problem of generating random polygons, then we will
discuss the problem of computing visibility graphs.

1.1 Generation of random polygons

Given a set S = {s;,..., 3n} of n points, we would like to generate a simple polygon P, such
that the points of S form the vertices of P. A polygon is said to be randomly generated
on a point set .S, if probability of getting that is -}; if there exist k possible simple polygons
with the point set S. -Sinte no polynomial time solution is known for the generation of
random simple polygons, we focus on a algorithm that offer a. gaod time complexity and still
generates a rich variety of different polygons.

In addition to the theoretical interest of its own, the generation of random simple polygons
1s an useful tool for testing and verification of time complexity and CPU-time consumption
of algorithms that operate on polygons. For testing the correctness of algorithm, we need to
generate diverse set of input data such that all branches of the algorithm will be executed
with high probability. The same motivation applies to the practigal testing of an algorithm'’s
CPU-time consumption.

Recently, the generation of random polygons has received some attention by researchers
working on the applied problems in Computational Geometry. A heuristic for generation of
simple polygons has been investigated by J.O’Rourke and Viramani [10]. Their algorithm
moves the vertices while creating a polygon. Thus it does not fall in %0 the class of algorithm
presented in this report. | |

An O(n?) algorithm for the generation of x-monotone polygons was described by Zhu

et al [14]. For arbitrary simple polygons, a class of heuristics are proposed by T. Auer and
M. Held [2, 3]. These are

Steady growth algorithm: It is incremental algorithm adding points one after the other;
Space partitioning algorithm: It is a divide and conquer algorithm:

Permute & reject algorithm: It creates random permutations ef (polygons) until a sim-
ple polygon is encountered:

2-opt moves algorithm: It generates a random (may be non-simple) polygon and then
repairs it (if necessary) by swapping the end points of crossing edges so-called 2-opt
moves; and



Incremental construction & backtracking algorithm: It goes on constructing the polyg-

onal chain as long as it remains simple. Backtracking is applied when a non-simple
chain is encountered.

Although the worst case complexity of first two algorithms is O{n?), they will not generate
all possible simple polygons on set S. The third method (Permute & reject algorithm)
generates a polygon in O(nlogn) time, but there is no guarantee that it will be a simple
polygon. Also, no bound on number of times the algorithm is to be run to get a simple
polygon is given. The time complexity of the fourth method is O(n*). The efficiency of
the fifth method depends on the amount of backtracking. Fourth and fifth methods are
not suitable for practical problems. A simple algorithm for the generation of star shaped
polygons is also discussed in that paper. “ |

In this report we propose an algorithm for generating random simple polygons. Given
the set of n points, we construct a data structure of size O(n®) in O(n®logn) time. Next
generation of each polygon on the same point set needs O(n?) in worst case. We implemented
our algorithm on different instances of randomly generated point sets. Though the worst

case time complexity of our algorithm is O(n?%), the actual CPU-time needed is observed to
very less. |

1.2 Generation of visibility graph .

The visibility graph is a fundamental combinatorial structure in computational geometry; 1t
is used, for example, in the application such as computing shortest paths amidst polygonal
obstacles in the plane. The visibility graph of a set of non-intersecting polygonal obstacle in
the plane is an undirected graph whose vertex set consists of the vertices of the obstacles
and whose edges are the pairs of vertices (u,v) such that the open line segment hetween u
and v doesn’t intersect any of the obstacles. In case of polygons, the visibility graph consists
of vertex set corresponding to the vertices of the polygon and the edges are pairs of vertices
(u,v) such that the opea line segment between u and v completely lies inside the polygon
and does not intersect any of the edges of the polygon. |

Till now lot of work is done on the computation of visibility graph of polygons. In the

~ worst case the visibility graph of a set of obstacles with n vertices may contain O(n?) edges.
~ An O(n?logn) algorithm for this problem was given by Sharir and Schorr [12]. Later, worst
case optimal O(n?) algorithms were given by Asano et al. [1] and Welzl [13]. Hershberger [9]
has described a output-sensitive algorithm for the case of computing the visibility graph
of a triangulated simple polygon. Overmars and Welzl [11] have given an algorithin for
computing the visibility graph for a set of disjoint polygonal obstacles whose running time
is O(E logn) and space is O{(n), where E is the number of edges in the visibility graph.
Later Ghosh and Mount [8] have given algorithm which computes the visibility graph of
an arbitrary set of disjoint obstacles. The worst case time complexity of their algorithm is
O(E + nlogn), where O(nlogn) time is required to compute the triangulation of obstacle
free space, and O(E) time is required to compute the visibility graph. The space complexity



of the algorithm is O(F + n). All the above mentioned algorithms can be used to find the
visibility of simple polygon.

We have implemented the algorithm given in the book by Overmars et.al.[4], which takes
O(n?logn) time. .

In sections 2 and 3 , we discuss the generation of random simple polygons, its algorithm,
complexity issues and some experimental results. In section 4 we disciss visibility graphs,
its algorithm and complexity issues.



2 Generation of random polygons

Let S = {s, ...+ 8n} be set of p points. Initially we will give you a brief outline of the
algorithm. Later we will explain each step in more detai] The main idea of our algorithm
for generating random simple polygons is that, starting with a random empty triangle, we
grow it to a random simple polygon, by adding new €mpty triangle randomly, which is
adjacent to the triangles we have ‘already chosen. The outer boundary of union of these
adjacent triangles forms the random simple polygon.

The algorithm works as follows:

e In Preprocessing step, to each pair of points u, v € S, associate all possible empty
triangles' on the plane whose one of the sides is the line seg.nent v, |

* During the generation of polygon,

L. First we choose a pair (u, v) (i.e., the edge 7w ) randomly from the set of n{nl)
pairs.

2. Next, randomly select a triangle A associated with &, We drop all triangles
associated with three edges of the triangle A, which are overlapping with triangle

A. Still if any triangle remains associated with any of these edges, then that edge
will be added to Future#Candidate_Lz'st, which is empty initially.

3. for (|S|-3) times, repeat the following 3 steps:

I Choose an edge e randomly from Future.Candidate_Iist

IT Choose a triangle A still associated with e randomly, so that it does not
overlap with alretady chosen triangles and also the third vertex of the triangloe

A is not an end vertex of any edge we have already chosen.Delete ¢ from
Future_Candidate_List. '

I1I Delete all triangles associated with these three edges of triangle A which aye

overlapping with A. Still if any triangle remains associated with any of these
edges, those edges will be added to Future_Candidate_List.

e Now, report the edges of the selected triangles, which appear on the boundary of only
one selected triangle.

In the next two subsections we will discuss the above two steps in detail.

2.1 Preprocessing

In the preprocessing step, with each pair of points (u,v) € S, we attath possible empty
triangles whose two vertices are u and v. Here we use a modified versioh of algorithm for

'whose all the three vertices are points of S and no other points of S are inside it. |



finding Empty.Convez.Polygons by Dobkin, Edelsbrunner and Overmars [6], which is given
below.

For each pair of points u and v in S,

1. keep two empty list RightSideTriangles and LeftSide Triangles.

2. Sort all other ( {S| — 2 ) points in S by angle w.r.t. the line @ around u in counter
clockwise order?. Let the sorted list be SortedList = {py,..., ps|-2} in the increasing
order of angle.

3. 1 no point lies on line segment %¥ do
if any point lies on right side?® of %¥, do
set i = ( |8§] — 2), add p; to RightSide Triangles list,
set RefAngle= /uvp; , decrement i by 1
while p; is on right side of line v do
1f Zuvp; < RefAngle do
add p; to the RighiSideTriangles, set RefAngle= £uvp;,
and decrement i by 1.

endif
endwhile
endif |
i f any point lies on left side of uw, do
set 1 =10 |
while area of Auvp; is zero do
increment i.
endwhile i
tf pi lies on left side of v do
add p; to LeftSideTriangles list.
set RefAngle= Zuvpy, increment i by 1.
endi f
whaile p; is on left side of line v do
t1f Zuvp; < RefAngle do
add p; to the LeftSideTriangles, set RefAngle= Zuuvp; and
increment 1 by 1.
end: f
endwhile
endif |
endif

nine

2If two points make the same angle with W0 at u, the point which is near to 4 will come first in the
SortedList, if angle made by them is greater then 7 else the point which is far from  will come first in the
SortedList. |

Jangle made is greater then o

fangle made is less then



Here we observe that when we sort all other points by angle around the point u with
respect to line wv, the points which makes angle less than 7 lies on left side and the points

which makes angle greater then.r lies on right, where the orientation of the line %7 is from
u to v

2.2 Generation of Polygon

In this step we generate a simple polygon randomly using the empty triangles generated in the

preprocessing step. We keep two lists Polygon_Edge.List - to keep the edges of simple polygon

as 1t 18 growing, either clockwise or counter clockwise direction® and Future Candidate_List -

to keep edges of triangles chosen which still has some empty triangles associated with them.
The algorithm for generation of simple polygon is as follows:

Step—1 Choose a pair of points u and v randomly from S, and hence edge u7.

Step-1I Choose a empty triangle A\, associated with edge WU randomly. Add the three edges
of the A to Polygon_Edge_List in counter clockwise dircction. Drop all the triangles
associated with these three edges of A, which are overlapping with A. If any of

these edges are still associated with one or more triangles, those edges are added to
Future_Candidate_List.

Step-III set i = 1
whilei < (|S]| —2) do

A: Choose a edge e randomly from Puture_Candidate_List

B: Choose randomly a triangle A, if exist, which is still assaciated with edge e,
and does not overlap with triangles chosen in previous steps (i.e. not intersecting
polygon generated so far), also third vertex of Ais not the end vertex of any edge

~1n Polygon_Edge_List.
delete e from Future_Candidate_List.
if No such triangle A exist for e, do
. goto-A:
end:f.

C: Delete edge e from Polygon_Edge_List, and insert other two edges of A to Poly-
gon_Edge_List thus we get a polygon with i+3 edges in counter clockwise order.
Delete all the triangles associated to the newly inserted edges of A in the Poly-
gon_Edge_List, which overlaps with A. If any of these edges are still associated

with atleast one triangle, we add those edges in Future_Candidate_List.
increment i by 1.

endwhile
Step-IV - output the edges in Polygon_Edge_List.

—-Reie—

we use counter clockwise direction.
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Whenever an algorithm for generation of random polygon is proposed, the first question
to ask is, whether it generates all possible simple polygons uniformly and randomly on given
set of points. Note that, given a set of n points, any simple polygon with those points as
vertices, can be split into empty triangles whose vertices are the vertices of the polygon.
Thus, every possible simple polygon with these n vertices can be mappe to at least one set
of empty triangles such that each triangle is adjacent with at least one other triangle in that
set.

In the preprocessing step, we generate all empty triangles and associate each triangle with
three of its edges. In the reporting step (i.e., generation of random polygon), we generate a
random sequence of edges and a triangle corresponding to each edge such that we get a set
of triangles in which each triangle is adjacent with at least one other triangle in that set.
Thus, the outer boundary of union of those triangles gives us a simple polygon.

The second question which we have to answer s, on a given set S of n points after the
preprocessing, is it possible to get a simple polygon of n edges with the random selection
of edges and empty triangles as proposed in step 27 The answer is NO. Considered the
following example Figure 1 of 10 points. In our random sequence of selection of edges and
empty triangles, the selected triangles are in the order a,b,c,d,e,g.f. Then we can observe

that there exist no empty triangle by which we can include point 5 to the simple polygon
generated on remaining 9 points.

2 |
Figure 1: Example of random selection of empty triangles which doesn’t yield

simple polygon on given set.

5o we have to replace the step A of Step-I1II by
A: if Future_Candidate List is empty
goto the Step-I and Start fresh.
endi f

Choose an edge e randomly from Future_Candidate_List.



2.3 Implementation details and Complexity

Here we consider the implementa.tion 1ssues and complexity of algorithm in two sections. In
first section we discuss the complexity of preprocessing step. In the next section we discuss
the implementation and complexity of random simple polygon generation step.

2.3.1 Preprocessing Step:

Consider the set S of n points. There are O(n?) pair of points. In preprocessing step,
sorting of the other points by angle around a point u, with respect to an edge ¥, can be
done in O(n logn) time. Computation of all possible empty triangles associated with wg
can be done by scanning the SortedList only once; so the time required is O(n). So, for
each pair of points ¥ and U, we can associate all possible empty triangles in O(n log n)
time. Since there are O(n?) pairs, we can associate all possible empty triangles to all pairs
of points in S, in G(n® log n) time. |

Using the results in [5, 7], it is possible to do the sorting around all the points simultaneously
in time O(n?). So with small modifications in the preprocessing algorithm, we can associate
all possible empty triangles to each pair of points in a given set S, in O(n?) time.

On a set of n points, the number of empty triangles associated with a pair of points ig
O(n) ®. Since with each pair of points we are keeping all possible empty triangles, each
empty triangle appears exactly 3 times in the list. of empty triangles. As the number of
empty triangles on a set of n points is O(n?), the space required will be O(n?).

2.3.2 Generation of simple polygon

We implemented above algorithmi and tested on different instances. We used doubie link list
data structure to store the edges of growing simple polygon, i.e., Polygén_Edge_List, and an
array Future.Candidate_List, which eontains pointers to the edges in Pélygon_FEdge_List. To

generate random points on plane and for the selection of edges and triengles randomly, we
used rand() function in standard C lbrary.

Now we will discuss the complexity issues. With each edge UT we kept the triangles
which are on left and right side of Ww separately, so whenever we choose an empty triangle
A associated with an edge @7 in Step-1I or Step-1IL.B, we drop all the. triangles associated
with %V which are overlapping with A (i.e., in the same side of A} in constant time. So, the
complexity of the algorithm depends on the number of times Step-III.B is executed, where
the selection of new empty triangle associated with edge ww, which is non-intersecting with
the simple polygon generated so far, is done.

Now we discuss about Step-IILB in more detail. Whenever an edga %w is selected ran-
domly in Step-1I1.A, few empty triangles, associated with UV, may overlap with the interior
of the polygon, generated so far. In Figure 2, empty triangles attached to T# are numbered

8This bound will achieve to each pair if all points in the set are on convex hull boundary of that set



from 1 to 11, and the shaded area indicates the interior of the already generated polygon.
Note that, some of those triangles intersect the shaded area.

Figure 2: Empty triangles associated with edge Wv and polygon generated so
far. .

Since the empty triangles associated with Tv are ordered with respect to angles, we can drop
few triangles in O(logn) time. For example, the triangles 1, 2, 3, and 11, associated with
edge o, which are intersected by the edges adjacent to @o in Polygon_Edge_Listin O(log n)
are the members in this subset. But it may be possible that we nay choose a triangle A
(say triangle 9) in Step-111.B, which may be intersected by a polygonal edge which is not
adjacent to edge W¥ in Polygon_Edge_List. Detecting such an edge (with respect to Q)
requires O(n) time in the worst case. If such an event occurs, we have to drop & from
the empty triangle list associated with %@, and we have to select another triangle randomly
among the remaining, if any, associated with %v.

Step-I11.B is executed atleast |S| — 3 many times. At 4.5 iteration of Step-11I.B, we
choose a triangle A still associated with edge %o randomly and we check whether the
chosen triangle A intersects with the polygon so far generated. This needs O(2) time since
there are at most i+2 edges in the already generated polygon. If such an intersection is
empty, then we may proceed for inclusion of another point (if any}. Thus, the lower bound
“on the complexity of our algorithm is EL_S:'; Si = O(n?).

In the Step-II and Step-1I1.C, we add the edges of triangle, choosen in Step-11113,
which are still associated with atleast one empty triangle, after droping the triangles associ-
ated with them which are overlapping with the choosen one, to tl:c Future_Candidate_List.
Since we are choosing exactly n-2 triangles, we are adding atmost O(n) edges to the Fu-
ture_Candidate_List. So, in worst case O(n) triangles associated with each of the edge in
Future.Candidate_List will be checked in Step-III.B. Since the checking in Step-111.B will
take O(n) time for each of the triangle, the worst case complexity of our algorithm will be
o(n?). |

In the next section we are giving experimental results, like, CPU-consumption, average
time taken to generate one random simple, etc.



3 Experimental Results

We implemented our algorithm on Sun Server 3000 running on Sun Solaries 2.6, and run on
randomly generated point sets of varying sizes (n). For each n, we have generated three sets
of points. For each such example, we computed 50 different simple polygons.

A set of 50 random simple polygons are generated on each of the above mentioned data
sets, after computing all empty triangles, and avarege time (in milliseconds) taken to generate
a simple random polygon is plotted against number of points which given in Figure 3.
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Figure 3: Time, taken by CPU against No. of points.

After the preproscessing (i.e., computing all possible empty triangles) on a data set of
500 points, the average time taken to generate a.simple random polygon is around 2 seconds.

At the end of the this report we included snapshots of randomly gencrated simple poly-
gons by our algorithm on same data set.
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4 Visibility Graph of Simple Polygon

Let P be a simple polygon with n vertices. The visibility graph G = (V, E) of polygon P
1s an undirected graph whose vertex set V is vertices of polygon P and edge set E is set of

vertex pairs, such that a pair ( 4, v} in E means the line segment TV lies completely inside
the polygon P and doesn’t intersect any edges of polygon P.

The naive method is, consider all possible O(n?) pairs of vertices of G and check their
intersection with n edges of P, which leading to O(n®) running time complexity.

Here we are discussing a algorithm given in book by Overmars et. al.[4], which takes
O(n?logn) time to compute the visibility graph of given simple polygon. The main idea is
that, while computing visibility of all other vertices against a vertex p, in a simple polygon,
to check the visibility of a vertex, it is better to use the information which we got while
checking visibility of some previous vertex in some order. So here best way 1s to consider all
the other vertices in clockwise direction with respect to vertex p.

A point w will be not visible to p if the line segment pw intersects atleast one edge of
P or that line segment pw will be completely out side the polygon. So we consider a half
line p from p and passing through w, p must hit a edge of P before it reaches w or it ig
tully out side the polygon P.

While treating the vertices in cyclic order around p we therefore maintain the polygon
edges intersected by p in a balanced search tree T. The leaves of T store the intersected
edges in order: the leftmost leaf stores the first segment intersected by p, the next leaf stores
the segment that is intersected next, and so on. Any interior node v, which guide the search
in T', store the rightmost edge in its left subtree, as in the examp:e Figure 4.

? Oel OE; OE.Q, OEE

Figure 4: The search tree on the intersected edges.

Ireating the vertices in cyclic order effectively means that we rotate the half-line p around
p. So the approach is rotational plane sweep. The events in the sweep are the vertices of P,
While swapping the half-line p, whenever it touches a vertex w, we check for the visibility
of w by searching the the tree structure T if not empty, else we check whether the half-line
Is outside or not. And at the same time we update the tree structure 7.

The algorithm of computing the visibility graph is as follows:

1. Initialize a Graph G = (V, E) where V is the set of all vertices d¢f simple polygon P,

and F = 0.

2. for all vertices of P

11



3. Sort all the other vertices of P according to clockwise angle that the half-line

from P to each vertex makes with positive x-axis.In case of tie, vertices closer to p
should come before the vertices farther from P. Let { wy, ..., w, } be the sorted
list. | | -

4. Let p be the half-line parallel to positive x-axis starting at p. Find the edges of

polygon P that are properly intersected by p, and store them in a balanced search
tree T in the order in which they are intersected by p.

5. for i«~0ton
6. do if Visible(w;) then add a edge pw; in E
7. Insert the edges of P incident to w; that lie on the clockwise side of the
half-line p from p to w; into tree T.
8. - Delete the edges of P incident to w; that lie on the counter clockwise
side of the half-line p from p to w;y from tree T
9. ends f
10. endfor
11. endfor

The subroutine Visible must decide whether a vertex w; is visible to p. It returns true
if w; is visible to p. There are three cases we have to consider in th:; Visible routine. They
are, 1) The edge PW; may be completely out side the polygon, 2) the vertex w;._; is on the
line pwy;, 3) the vertex w;_, is not the line Pw;.

Since we keep the polygon edges either in clockwise or counter clockwise direction, we
can easily decide case 1. In case 2) we once again have two cases 1) Wy 18 visible to p, in
which case we have check in the tree T for an edge, if any, intersecting pim;, 44) w;_, is not
visible to p, then w; is also not visible to p, In case 3 we have to check in T for an edge, if
any, which intersects the line segment Piw;.

The algorithm for Visible is as follows:

1. 1f the edge pwy; lies completely outside the polygon
2 refurn false.
3. elseif i = 1 or w;_, is not on the edge pio;
4 search in T for the edge € in the leftmost leaf.
D. 1f e exists and Pw; intersects e
6 return false
7 else |
8 .return true
9 endif
10. elseif w;_; is not visible to p
11. return false
12. else search in the tree T for an edge e that intersects w; W; ¢
13. tf e exists
i4, return false

12



15. else

16. return true
17. endif
18. endif

4.1 Complexity

Since balanced search is used, visibility of a vertex w; to p in visible takes O(log n) time.
S0 steps & to 10 in visibility graph takes O(nlogn) time. Also step 3 in visibility
graph takes O(n log n) time. Therefore the visibility of all other vertices to vertex p takes
O(nlogn) time. Since there are n vertices, the total complexity is O(n? logn). The
space complexity depends on how we are storing visibility graph G. If we use matrix then
complexity is O(n?), otherwise if we use link list, then it is O(|E)).

9 Conclusion

In this report we considered generation of random simple polygon, and its visibility graph.
We given a algorithm for generation of simple random polygon. Though the worst case

copthlexity of our algorithm is O(n3), CPU-utilization is very less. This algorithm will be

very help full for practical purposes, since we can generate many number of simple random
polygons on a given data set, after one preprocessing. |
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