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Abstract

In 1995 Aichholzer et al. 2] introduced a new kind of skeleton for a polygon. It
1s defined as the trace of the vertjces when the initial polygon is shrunken in self-
parallel manner. Straight skeleton has only straight line segments which coul be
useful when parabolic edges of medial axis need to be avoided. Straight skeleton
provides a canonical solution to thé problem of roof construction in the architecture
field. The straight skeleton nay prove useful for other applications of the medial
axis, for instance, shape recognition and terrain reconstruction from a river network
as well. | |

The geometry of the straight skeleton is still not wel] understood and it is unclear
whether the best known algorithm is close to optimal. We implement an O(n?) time
algorithm for drawing straight skeleton of an arbitrary simple polygon. Next, we
studied the special case where the polygon is monotone with respect to a coordinate
axis. On the basis of some important observations, we conjecture that possibly the
worst case time complexity of computing the straight skeleton for a monotone polygon

is O(nlogn). We executed our algorithm on randomly generated monotone polygons.,
Experimental results justify our conjecture. '
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Chapter 1

Introduction

Skeleton like structure is often used for the description of basic topological
characteristics of a 2D ob ject. Skeletons have numerous applications inside and out-
side computer science as is documented in Kirkpatrick [10]. In the literature of Image
processing and the computer vision, the skeleton of a geometric shape is informally.
defined as a set of discrete points in raster environment located in the centers of cir-

cles that touch more than one points of the object boundary. Medial axis serves the
similar goal in the continuous vector environment. |

1.1 Straight skeleton and medial axis

The medial axis of a simple plane polygon P may also be referred as symmet-
ric axis or skeleton. One of the more picturesque is the grass-fire analogy: imagine
wgniting all boundary points of P. If the flame burns inward at q uniform rate, then
the quench points where the flame meets and extinguishes itself define the medial
az18. Equivalently, the medial axis is the locus of all centers of circles inside P that
touch the boundary of P in two or more points. The medial axis was proposed and
named by Blum in 1967 [5). The pattern recognition literature uses it heavily as
a one-dimensional structure that represents two-dimensional shape. It finds wide
 applications in solid modelling, mesh generation, pocket machining etc 8].

The medial axis of an arbitrary simple polygon consists of line segments and
parabolic arcs, where each parabolic arc corresponds to a reflex vertex. The medijal
axis of a simple polygon describes the Voronoi diagram whose sites are the open
edges and vertices of the polygon boundary. Inspite of many uses of medial axes,
their curved arcs have been considered to be a shortcoming in different applications;

©.8. computer representation of arcs and actual construction of arc segments. This
led several researchers to investigate and form piecewise-linear approximations.



Figure 1. (a) Medial Axis (b) Straight skeleton of same polygon

In 1995 Aichholzer et al. [2] introduced a new internal structure of a simple
polygon, called the straight skeleton. It is solely made up of straight line segments
which are pieces of angular bisectors of polygon edges. The straight skeleton of a
simple polygon is defined by shrinking the polygon, i.e. translating each of its edges
at a fixed rate, keeping sharp corners at the reflex vertices, and watching where the
vertices go. The straight skeleton is quite similar to the medial axis; in fact, the two
are equivalent for convex polygons. However, the straight skeleton of a nonconvex
polygon has fewer edges than the medial axis. Unlike the medial axis, the straight -
skeleton is not a Voronoi diagram in any sense.

The straight skeleton can be used to construct a polygonal roof over a set
of ground walls (2], reconstruct a geographical terrain from a river map, or define a
pattern of folds that will make all the edges of a paper polygon colinear (although
this last property is true of other bisector graphs [2] as well). The definition of
straight skeleton can be generalized to arbitrary planar straight line graphs [1], where

it has (potential) applications to planar motion planning, and to three-dimensional
polyhedra, where it has potential applications to solid modelling.

1



Chapter 2

Straight Skeleton and its properties

2.1 Straight Skeleton

While the medial axis is a Voronoi-diagram-like concept, the straight skeleton
i1s not defined using a distance function but rather by an appropriate shrinking process
for P. Imagine that the boundary of P is contracted towards P 's interior, in a self-
parallel manner and at the same speed for all edges. Lengths of edges might decrease
or increase in this process. Each vertex of P moves along the angular bhisector of its
incident edges. This situation continues as long as the boundary does not change
topologically. There are two possible types of changes:

1. Edge event : An edge shrinks to zero, making its two neighboring édges
adjacent now.

2. Split event : An edge is split, i.e. a reflex verte: runs into this edge, thus

splitting the whole polygon. New adjacencies occur between the split edge and
each of the two edges incident to the reflex vertex.

3
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Figure 2. (a) Two simultaneous edge events (b) A split event
(name the vertices in fig 2a, 2b & use those names in above description)

After either type of event, we are left with a new, or two new, polygons
which are shrunk recursively if they have non-zero area. Note that certain events |
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will occur simultaneously even if P is in general position, namely three edge events
letting a triangle collapse to a point. The shrinking process gives a hierarchy of

nested polygons. The figure 3a shows the polygon during various stages of shrinking.
Each inside polygon is obtained after an event (edge/split) occurs in the polygon -
immediately encloses it. The outermost polygon is the original polygon.,

Figure 3: (a) Polygon hierarchy during shrinking, (b) its Btraight skeleton

The straight skeleton, S(P) is defined as the union of the pieces of angular
bisectors traced out by polygon vertices during the shrinking process. S(P) is a unique
structure defining a polygonal partition of P. As mentioned earlier, we will use the
terms arcs and nodes for denoting the objects that form the boundaries of skeleton
regions, in order to distinguish them from the objects forming the polygon, which
will be called edges and.vertices. Each edge e of P sweeps out a certain area which
we call the “face” of e. Bisector pieces are called “arcs”, and their endpoints which
are not vertices of P are called "nodes” of S(P). Each edge/split event introduces a
node of degree three into the evolving straight skeleton.

In degenerate cases, the straight skeleton can have nodes of degree higher
than three, introduced by simultaneous events at the same location. In most cases,
we can handle these events one at a time using standard perturbation techniques,
replacing the high-degree node with several nodes of degree three, connected by zero-
length edges. The only exception occurs when two or more reflex vertices (and nothing
else) reach the same point simultaneously. We call this a vertex event (See Figure
4a). Unlike edge or split events, a vertex event can introduce a new reflex vertex into
the shrinking polygon, although the total number of reflex vertices always decreases.
Any perturbation of the polygon that removes a vertex event radically changes the

structure of the polygon’s straight skeleton. See Figure 4(b).



(a) (b)

Figure 4. (a) A vertex event.
(b) Perturbing a degenerate polygon can radically alter its skeleton.

2.2 Properties of Straight skeleton

In straight skeleton, S(P) of a polygon P, arcs can be classified into two types: convex
arcs and reflex arcs.

e Each convex vertex of P gives rise to a convex arc of S(P).

e Fach reflex vertex of P gives rise to a reflex arc of S(P).

o While convex arcs can also connect two nodes of S(P), this is impossible for
reflex arcs.

Property 2.1 (/2]) : Reflex arcs of S(P) only emanate from reflex vertices of P.
(This implies that each new vertez generated during the shrinking process is convez.)

Property 2.2 ({1]) : The faces of S(P) are monotone polygons.

Property 2.3 ([2]) : S(P) is a tree and consists of exactly n connected faces, n-2
'nodes and 2n-8 arcs.

2.3 Characterizing the split point

Before going for the determination of split point coordinates, we will define two
regions.

Region-I: Area bounded by the currently tested edge e and by the bisectors leading |
from the vertices at both ends of this line segment (see Fig. 5).

Region-1I: Area enclosed by the ”supporting lines” of edges forming the reflex vertex
R. (Observe that the bisector at reflex vertex R always lies in the Region-II).

1 |
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(a) (b)

Figure 5: (a) Region-I of edge e, (b) Region-II of reflex vertex R

Let B be the split-point corresponding to reflex vertex V. The edge under considera-
tion is edge ‘e’ (see Fig. 6). This point B is intersection of |

e the bisector of V and

¢ bisectors of the angle between supporting line of edge ‘e’ and the supporting
lines of the edges incident at reflex vertex V

The point B is eqm’dz’stant from the supporting lines of edge ‘e’ and the edges incident
at reflex vertez V (i.e. B, = BM = BN; see Fig. 6). Point B must lie in Region-1I
of V.

Region-I of edge e
- Region-I of edge e
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(a) (b)

Figure 6: Intersection ﬁoint computation for a reflex vertex V which yields a split
event(point- B) and the currently tested line segment e cannot be used (see Fig. 6b).

Simple intersection test between the bisector starting at V and the supporting
line of currently tested edge ‘e’ rejects the line segments laying “behind” the vertex
V. Simple check should be performed to properly handle the case when one of the

line segments starting at V is parallel to e. The resulting point B is selected from all
the candidate B points as the nearest point to vertex V.

We end this section by emphasizing the fact that a reflex vertex does NOT

imply that it can cause only split events. It can cause either edge event or a split
event. (see fig. 7)



Figure 7: Reflex vertex can yield to both cases:
an edge event (point A) or a split event (point B)



Chapter 3

Straight skeleton of monotone
polygon

A simple polygon is said to be monotone w.r.t. a line L, if its intersection with
any line perpendicular to L is connected. Without loss of generality, we assume
that unless specified otherwise, all monotone polygons considered in this report are
monotone w.r.t. Y-axis. We investigate the effect of monotonicity on computation of
the straight skeleton.

3.1 Relation between distance along bisector and
- perpendicular distance from edge, for a vertex
Let V be a vertex of the polygon. Let it be a common end-point for edges e and e’
V’ be its position at any instant during the shrinking process (before V vanishes, due
to edge/split event). (see'Fig. 8).
r = dist(V, V’), 0 = internal angle at vertex V

d = distance through which e, ¢’ have moved in self-parallel manner to reach V’

d=r sin 0/2 (3.1)

Figure 8: relation between d and r



3.2 Properties of Straight Skeleton of Monotone
Polygon '

Observation 3.1 During the shrinking process, monotonicity of a polygon is preserved.
(Note that this implies, the two newly generated sub-polygons after a split event in a
monotone polygon are again monotone. )

Observation 3.2 (a) The sub-polygons created due to each split event are disjoint.

(b) A reflex vertex belonging to a sub-polygon can split only those edges which belong
to same sub-polygon.!

Lemma 3.1 For any split event in a monotone polygon, the reflez vertex and the
edge being split always belong to the different monotone chains.

Proof : We will prove it by contradiction. Assume that the reflex vertex and the
edge being split belong to the same monotone chain.

Let R be the reflex vertex formed by the incident edges e; and e, Lot es be the edge
belonging to the same monotone chain as that of R and split by R. Let M be the
intersection point of supporting lines of edges e; and e3; N be the intersection point
of supporting lines of edges e, and e3. Let I be the split point where R will split the
edge e3. | |

1

monotone chain

- From section 2.3, we know that [ is intersection of bisectors at M and R. Join points
I and N. Draw IB 1 e; and 1C 1 e3. Since [ is split point, IB = IC.

IN.sin(ZINB) = IN.sin(ZINC) = ZINB = /ZINC

Hence IN is bisector of ZBNC.

Note that, during the shrinking process, the edge e3 moves in self-parallel
manner and its end vertices move along the bisectors of corresponding internal angles.
Consider an instant just prior to meeting R and the edge e at point I. Whatever
polygonal edges may be between V] and V3, both V; and V, mowve along the bisector of
the ZVi MV,. At the moment node I is created, both end-vertices of ez are coincident
(at I). Length of edge e, is reduced to zero at point I. Thus an edge event and a. split
event occur simultancously at point I. Out of the two sub-polygons generated due to
the split event, one has zero area.

' Although it seems obvious, this observation will be important when we prove one of the lemmas,

9



We may observe the same thing from a different viewpoint as follows -
at I, ey, one of the incident edges at R, vanishes. So R is no longer a reflex vertex. Due

to edge event of e;, a new node of straight skeleton is created at I. As per Property 2.1,
this is a convex vertex. So no split-event can happen due to R. ]

Lemma 3.2 Let A and B be two reflex vertices belonging to same monotone chain.
If A 13 above B (i.e. having larger Y coordinate value), then — the edge split by the
split-event due to A is either same edge split by the split-event due to B or is above
it.

(w.l.g. we have assumed the polygon to be Y-monotone. )

Proof : If both A and B cause split events, then either these split events will occur
simultaneously or one will occur before other. Now consider the following three cases
case 1: ‘A’ causes split event earlier than ‘B’

We know that the two sub-polygons generated due to the split event are
monotone (see Observation 3.1). The split event due to A will put vertex B’ (the
position of verter B when the split event occurs) into the the lower sub-polygon (since,
B lies monotonically below A). As the two polygons are disjoint, if B is to split an
edge, it must belong to this lower sub-polygon. Hence, if A causes a split event earlier
than B, then B can’t split an edge above the one split by A.
case 2: ‘B’ causes split event earlier than ‘A’

Following similar reasoning as above, A will belong to the upper sub-polygon
and hen<e cannot split an edge below the one split by B.
case 3: Both split events occur simultaneously.

If the biscctor of reflex vertex B is to split an edge above the one split by A
then the bisectors of A and B must converge (i.e. the bisector rays must meet at
some point). So they can’t be end-points of same edge. (otherwise monotonicity and

convergence are not stinultaneously possible. see Fig. 9)
I

A

right
monotons
chain

lefrt
monotons
chain

Figure 9: Both end points of an edge can’t be reflex vertices
(otherwise divergent bisectors) |

Hence the edges incident on A are different from the edges incident on B. Let [ be

the point where the simultaneous split events occur. I must lie on both the reflex
bisectors b4 and bp.

10
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Figure 10: Simultaneous split events

Note that, for a valid split event at I, only one edge can be split at that particular
point. (since, two edges at a point implies that it is their common end-point and in
that case, no question of occurrence of a split event as the other part of the split edge

will have length zero.) So if split events due to A and B occur simultaneously, they
split the same edge. , n

Before proceeding further, we highlight two points of special importance
which will be used in the further discussions. We assume that the vertices (hence
the edges) of the polygon are listed in clockwise order. Let R be a reflex vertex. Let

€prev ANd €neye be the previous and next (in clockwise sense) edges incident at R. (see
Fig. 11).

Nezxtyp = intersection of supporting line of e, .., and the supporting line of edge which
we want to test whether it can be split by R

Prevp = intersection of supporting line of ep,.., and the supporting line of edge which
we want to test wlgether 1t can be split by R

Lemma 3.3 Reflex vertex R can not split an edge ViV,, if (a) Nextp and Prevg lie
outside the segment V|V, and (b) both these intersection points are on the same side
of Vi and on the same side of V. However the converse is not true.

| Proof :

Y left monotone chain

e_prev

right monotons chain

e_next

Reglon-I of edge V1V2

edge being texted
whether it can be
split by R

Vi

Figure 11: Nextp and Prevg
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If N extp and Prevy satisfy the conditions, then there is no overlap of Region-I of
edge being tested and Region-II of R. (see sectijon 2.3). (Observe that in the Fig.

11, the shaded regions don’t overlap.) It is obvious that if these two regions don’t
overlap, then R can’t split the edge V; V5. | '

In order to disprove the converse, consider an cxample in Fig. 12. Here,
Nextg and Prevp lie on different sides of V,. But the split point I lies outside
Region-I of the edge V;V,. Hence R cannot split edge V; V5.

left monotone
chain

right monotone
R chain

Region-I doesn’‘t contain I.
50 this edge can;t be splic by R.

Figure 12: example to show that above condition is sufficient, but not necessary.

Observation 3.3 A4 reflex verter R can split an edge (say e = V,V, ) and only that
edge, if R lies in Region-I of e, and either of the following is true — |

(a) the bisector at R intersects the segment ViV,, or

(b) both Nextp and Prevg intersection pomts lie on the segment 7R %2Y

Region-I of edge e

Next_R V2

(a) {b)

Figure 13: case (a) and (b) of Observation 3.3

Observation 3.4 Valid range of slepe for supporting line of an edge to be split is
limited by the slopes of the edges incident at reflex vertez R. (See Fig. 14).

12



valid range of slope for supporting line (L)
of an edge so that it can be split at I

supporting line (L) of an edge whlch
is to be split at I, must be tangent (a) (b)
to the circle somewhere in arc PQ only

Figure 14: conditions for an edge (and its supporting line) to be split by a reflex
vertex R

Valid range of slope for the supporting line L is bounded by the slopes of
supporting lines of ¢, and e,. Observe that if slope of L exceeds the limit set by e,
then edge ep will be reduced to length zero at I. Reasoning for this is similar to that
given in proof for Lemma 3.1. Case for e, is analogous to e,.

Let I be any valid split point due to reflex vertex R. Let e, and e, be the edges
incident at R. This observation( 3.4) gives the conditions which must be satisfied by
the edge which can be split at I by R. We know that point I must be equidistant
from the supporting lines of e,, e, and the edge to be split(See section 2.3). Hence
the supporting line of the edge which can be split at I must be tangent to the circle
centered at I and which touches the supporting lines of e,,e,. The portion of the-

circle in which this supporting line can be tangent is limited by its valid range of
slope (See Fig. 14b). In iF‘ig. 14a -

P : point where a line parallel to edge ¢, is tangent to the circle

1

Q : point where a line parallel to edge e, is tangent to the circle

- Thus the supporting line L must be tangent to the circle somewhere in arc PQ. Of
course, point I must lie in the Region-I of this edge being split (See section 2.3).

Conjecture 3.1 A reflex vertexr of a monotone polygon can split only one
edge.

We have tried to find out how many edges of monotone polvgon can be
split by a reflex vertex. Running the tests on several typical instances of monotone
polygons generated interactively, we found that the candidate edges which give rise to
a valid split-point in a split-event by a reflex vertex, during the shrinking process, is at
most one. (The polygons are gencrated using a JAVA applet. User can generate any
arbitrary polygon as he/she wishes.) This experiment strengthens our conjecture.
In appendix C, we show an instance of a monotone polygon and along with the

13



trace of computing the straight skeleton. This demonstrates the justification of our
conjecture, i.e., for a monotone polygon, each reflex vertex splits at most one edge.

If we can prove this conjecture, then an algorithm with O(nlogn) time com-
plexity to compute straight skeleton of monotone polygon is easy to develop. The
algorithm would be just a simple modification of the algorithm implemented in this
dissertation (see Appendix B). The modification would consist of — |

(a) candidate edges for split-event due to a reflex vertex will be from a monotone
chain different than that of this reflex vertex (reason: Lemma 3.1).

(b) search for candidate edges for split-point can be stopped when we find the first
edge which can be validly split (see section 2.3) by the given reflex vertex (say
R). (reason: conjecture 3.1)?

(c) for any reflex vertex V belonging to same chain as that of R (in above step b), the
search for candidate edge (which may be split by V) will consist of the edge split
by R or edges below(above) it, if V is below(above) R (reason: Lemma 3.2).

We conclude the chapter by pointing out that Lemma 3.3 and Observations 3.3, 3.4
may prove important in proving the conjecture.

‘of course, we need to prove the conjecture first

i4



4.1 Previous Results

Although the medial axis can be constructed in linear time 6], the fastest known
algorithms for straight skeletons are much slower. The main difficulty is that changing
the positions of reflex vertices has a significant non-local ~ffect on the skeleton. This
nonlocality makes techniques such as incremental construction or divide-and-conquer
fail. The following table lists the time and space bounds of various algorithms. Here
n 18 the total number of vertices, r is the number of reflex (nonconvex) vertices, and
€ 1s an arbitrarily small positive constant. Note that r = O(n) in worst case.

Table 4.1: Time and space complexity of earlier algorithms

Time Space | Reference
O(n’logn) O(n) 1] :
O(nrlogn) O(nr) 12, 3]

O(nlogn + nr) : O(n) 4]

O(nlogn + nr) O(n + r?) 1, 9, 3.
O(nlogn + nrlog(n/r)) O(nr) 11,9,3
O(nlogn + nr + r?logr) O(n) 1, 3]
0(n1+f + ?Lﬂfli+frﬂfll+f.) O(RIH +n5/11+£,r9/11+5) L3]

Though the subquadratic algorithm 3] is a significant theoretical improve-
ment over earlier results, the authors of [3] observe that, because of the complexity

of the range-searching algorithms involved, they would be less efficient (slower) in .
practice. |
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4.2 Future Work

An obvious way ahead is to try and prove the conjecture 3.1. Proving it would give
us a O(nlogn) algorithm for computing straight skeleton of monotone polygon. The
geometry of the straight skeleton is still not well understood and none of the time
bounds has proven to be tight. It is unclear whether the best known algorithm is
close to optimal. Finding algorithms with better time complexity for general cases
of computing straight skeleton of any arbitrary simple polygon and a polygon with
polygonal holes is still an open problem.

Some of the approaches which can be tried are — (a) For monotone polygon,
extend the bisectors of reflex vertices till they meet an edge of the polygon. Thus
the polygon is divided into convex pieces. Compute the straight skeletons of these
individual pieces and try to merge them. This idea is analogous to finding medial
axis of a polygon in linear time [6]. (b) Using duality to check whether it can help to
reduce the time complexity of computing straight skeleton.

16



Appendix A

A few false startsl

Let us see few approaches which we have tried and found that they don’t improve
the complexity of straight skeleton computation!.

A.l Triangulating a monotone polygon

First triangulate the monotone polygon. The bisector of each vertex wil)
lie in a unique triangle. (for the time being, disregard the degenerate cases.) Then

in the dual graph of triangulation, process the nodes with degree one in successive
iterations. |

At start of the iteration, the nodes of degree one are placed into a list. During
the iteration, each node (i.e. the corresponding triangle) of the list is processed as
discussed below. At the end of iteration, all the nodes belouging to the list are deleted
from the graph. We iterate like this till all the nodes in the graph are processed.

Processing a node in the dual graph:

If the bisectors of some vertices lie in the current triangle, compute intersec-
tion of neighbouring bisectors. It is also possible that some bisectors might enter from
the adjoining triangles are also taken into account while computing the intersections.
Out of those intersection points which lie in this triangle, the one having least dis-
‘tance to its corresponding edge becomes the new node of straight skeleton. Compute.
the bisector at this new node. As before, check for intersection of remaining with
this new bisector. When none of the neighbouring bisector pairs intersect inside this
triangle, we mark the node corresponding to this triangle as processed. The bisectors
which remain un-intersected at end of processing current triangle are carried forward
to the adjacent triangle.

Objective: A monotone polygon can be triangulated in linear time {11]. By pro-

cessing each triangle only once, we attempted to get an algorithm with linear time
complexity.

Problem: Our wrong assumption was that the number of bisectors per triangle is

'This part is included in the report so that in future, time is not wasted in following these
approaches,

17



constant. Also, triangulation of a polygon is not unique. This will have a significant
impact on the implementation of such g procedure. |

Counter-example: A regular polygon’s straight skeleton will take O(n?) time using
the above procedure. Observe that all bisectors of regular polygon will meet at one

A.2 Successive neighbouring bisectors’ intersections
for case of Convex Polygon

The idea was to compute the intersections between all pairs of neighbouring
bisectors. The intersection point having minimum distance to its corresponding edge
becomes the new node of straight skeleton. Compute bisector at new node and its
Intersections with its neighbouring bisectors. The nearer of these intersections to jtg

becomes the next node of straight skeleton. Continuing like this, compute the straight
skeleton of given convex polygon.

Objective: Objective wasg to compute straight skeleton of convex polygon in linear
time.

Problem: Because of non-local nature of events, the straight skeleton compnted
using above method may not be correct. A counter-example can be easily constructe
such that after finding the first correct node of straight skoleton, the next node is not,
given by the bisector at this latest created node, but by some other pair of the
bisectors. So it results in wrong computation. To correct it, we have to make a linear

scan after each computation of new node. This modification for correct computation
makes the method O(n?).

18



Appendix B

Implementation of Straight
Skeleton computation algorithm

For the sake of completeness, the algorithm implemented for computation of straight

skeleton is given below. The algorithm given by [4] has been implemented in C during
the dissertation. The results are available in two formats-

1. an interactive GUI which displays the computed straight skeleton graphically
and allows chronological tracing of the events during the shrinking process

2. a text-file listing the nodes (with coordinates) and the arcs of the computed
straight skeleton.

The basic data structure used by the algorithm is a set of circular lists of
active vertices (SLAV). This structure stores a loop of vertices for polygon boundary
and for sub-polygons created during the straight skeleton computation. In the case
of convex polygon, it always contains only one list(since no split events occur for

convex polygon). In the case of a simple non-convex polygon, it stores a list for every
sub-polygon created during the shrinking process.

Given a simple convex polygon P, only the edge events occur and the straight skeleton
S(P) is computed in the following steps (We suppose the polygon vertices and edges

are oriented counter-clockwise and the polygon interior is on the left-hand side of its
boundary):

1. Initialization:

(a) Organize given vertices Vi,Vo,...,V, into one double connected circular
~ list of active vertices (LAV) stored in SLAV. The vertices in LAV are all
active at this moment.
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- (b) for each vertex V; in LAV add the pointers to two incident edges e;_; =
Vi-1Vi and ei = V;V,,, and compute the vertex angle bisector (ray) b;,

(c) for each vertex Vi compute the nearer intersection of the bisector b; with
adjacent vertex bisectors bi—1 and b4, starting at the neighboring vertices
Vi-1, Viq1 and (if it exists) store it into a priority queue according to the
distance to the line L{e;) which holds the edge ;. For each Intersection
point /; store also two pointers to the vertices V., Vs, that means two origins
of bisectors which have created the intersection point I. They are necessary

for the identification of appropriate edges (e, and e,) during the bisector
computation in later steps of the algorithm.

2. While the priority queue with the intersection points is not empty do:

(a) Pop the intersection point I from the tront of the priority queue,

(b) if the vertices/nodes V, and Vj, pointed by I, are marked as processed then

continue on the step 2, else the edge e between the vertices/nodes V,, V,
shrinks to zero (edge event),

(c) if the predecessor of the predecessor of V, is equal to V, (beak of the roof)
then output three straight skeleton arcs V, I, V,I and VeI, where V, is the

predecessor of V, and the successor of Vi in the LAV simultaneously, and
continue on the step 2,

(d) output two skeleton arcs of the straight skeleton V,I and V;/
(e) modify the list of active vertices/nodes
® Mark the vertices/nodes V,: V;, (pointed to by 1) as processed,
¢ create a new node V with the coordinates of the intersection I,

e insert this new node V into the LAV. That means connect it with the
predecessor of V,, and the successor of Vi in the LAV,

® link the hew node V with appropriate edges e, and e, (pointed to by
- the vertices V, and Vi),

(f) for the new node V , created from I, compute:

}

¢ a new angle bisector b between the line segments e, and e, and

e the intersections of this bisector with the bisectors starting from the
neighbour vertices in the LAV in the same way as in the step le,

® store the nearer intersection (if it exists) to the priority queue.

It can be seen that in the steps 1c and 2f, there are duplicities among the
intersection points in the priority queue. The algorithm always computes one inter-
section for one vertex. Step 2b removes these duplicities.

B.2 The algorithm for non-convex pplygons

Algorithm for non-convex polygons is in pririciple sitnilar to tﬂﬂ algorithm described
in the section B.1. As an extension, it handles the Intersectidns that may generate
polygon splits (split events): |
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1. Imitialization:

(a) Generate one LAV as in the convex case, store it in SLAV,

(b) compute the vertex bisectors as In the convex case,

(c) compute intersections with the bisectors from the previous and the following
vertices as in the convex case and for reflex vertices compute also the
intersections with the "opposite” edges. Store the nearest Intersection
pomt I of these three ones into the priority queue. In addition store also
the type of the intersection point (edge event or split event).

2. While the priority queue is not empty do:

(a) Pop the lowest intersection I from queue as in the convex case. If the type
of I is the edge event, then process steps 2b to 2g of the algorithm for
convex polygons, else (split event) continue within this algorithm,

(b) if the intersection point points to already processed vertices continue on
step 2 ay in the convex case,

(c) do the same as in the convex case, only the meaning is a bit different,
because more local peaks of the roof exist,

(d) output one arc V-I of the straight skeleton, where vertex/node V is the one

pointed to by the intersection point I. Intersections of the split event type
point exactly to one vertex in LAV/SLAV,

(e) modify the set of lists of active vertices/nodes (SLAV):

e Mark the l\rertex/nﬂde V (pointed to by I) as processed,

® create two new nodes Vi and V, with the same coordinates as the
inI;tf:l*.semtimli point |,

¢ search the opposite edge in SLAV (sequentially),

e insert both new nodes into the SLAV (break one LAV into two parts.
Vertex Vi will be interconnected between the predecessor of V and the
vertex/node which is an end point of the opposite line segment. Vo will
be connected between the successor of V and the vertex/node which is
a starting point of the opposite line segment. This step actually splits
the polygon shape into two parts (as discussed before in this section).

e link the new nodes V1 and V2 with the appropriate edges.

(f) for both nodes V; and V:
¢ compute new angle bisectors between the line segments linked to them
In step 2e,

¢ compute the intersections of these bisectors v-ith bisectors starting at
their neighbor vertices according to the LAVs, the same way as in step
le. New intersection points of both types may occur, and

¢ store the nearest intersection into the priority queue.
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Appendix C

An example for Conjecture 3.1

Figure 15 gives an instance of a monotone polygon generated interactively. The
straight skeleton of this polygon is computed. The table below describes the shrinking
process. It can be noticed that each reflex vertex marks exactly one edge for split
during the shrinking process (while inserting in the priority queue).

22

Distance Reflex Vertex Edge split(vl to v2) format: (id) x vy
20.565 ( 2) 142 268 (28) 166 247 (29) 130 238
9.428 ( 4) 176 260 (27) 202 223 (28) 166 247
17.001 ( 5) 214 255 (26) 254 226 (27) 202 228
2.797 (. 7) 236 231 (26) 254 226 (27) 202 228
5.119 ( 8) 259 238 (25) 278 236 (26) 954 226
3.296 (10) 291 240 (23) 302 245 (24) 989 227
5.211 (12) 353 246 (19) 362 242 (20) 337 231
10.665 (21) 333, 241 (11) 334 284 (12) 353 246

Priority Queue built

.Oplit Events that actually take place:

Distance Reflex Vertex Edge split(vl to v2) format: (id) x
3.296 (10) 291 240 (23) 302 245 (24) 282 227
2.797 (7) 235 9231 (26) 254 226 (27) 209 228
6.211 (12) 353 246 (19) 362 242 (20) 337 231
5.119 (. 8) 259 238 (25) 278 236 (26) 254 226
9.428 ( 4) 176 260 (27) 202 228 (28) 166 247

20.565 ( 2) 142 268 (28) 166 247 (29) 130 238
10.665 (21) 333 241 (11) 334 284 (37) 353 241
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