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Chapter 1

Overview
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1.1 Introduction

(antum computation and quantum information is the study of information
processing task that can be accomplished using quantum mechanical system.Like
many simple but profound ideas it was a long time before anybody thoughi, of
doing information processing using quantum mechanical system.

The story began at the turn of the twentieth century when a revolution was
going in science. Several problem arisen in physics. To explain those problems
Lhe modern theory of Quantum mechanics was introduced . Since then quantinm
mechanics hag been an indispensable part of Science |, and has been applied with
cnormous suceess to everything under and inside Sun |, including the structure of
the atom , superconductors , the structure of DNA |, and the elementary particies
of Nature.

What is Quantum mechanics 7 in a word quantum tnechanics is a matlie-
matical framework for the construction of physical theory.For example Quantun
electrodynamics can describe the interaction of atoms and light with accuracy.
Quantuin electrodynamics is built under the framework of quantum mechanics.
The relalion of a particular physical theory like Quantum electrodynamics with

(quantum mechanics is just as computer operating system is related to a specific
application software.

t

Fhe rules of quantumn mechanics are simple but even the experts find them
counterintuitive. One of the major goals of quantum information and (rantinm
computation s to develop tools which sharpen our intuition about quant.ur me-
chanics. In the early 1980 the interest arose whether it is possible to signal faster
than light. using quantum mechanics which is a big no-no according to Einstein’s
theory of relativity. This problem has a nice implication towards another famous
problem of quantum mechanics - can we clone an unknown quantuin state 7 If
the answer is ’yes’ then it is possible to signal faster than light! fortunately it
was proved that unknown quantum state can not be cloned in gencral - a lnnd-
mark result of quantum mechanics which effectively supports Einstein’s theory
of relativity. Another related historical strand contributing to the development
ol qantinnm computation and quantum information is the interest dating to the
1970s , of obtaining complete coutrol over single quantin system.Since the 19704
many technique for controlling single quantuin state has been weveloped, Quan-
lum computation and Quantum information naturally fits into this problem.
Despite this intense interest | efforts to build quantum information Processing
systems have resulted in inodest suceess to date. Small quantum computers , ca-
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pahle of doing dozen of operations on a few qubits( state of a two level quantinn
mechanical system) represent. the enrrent art of practical guastum compuating,
Pxperimental prototype of quantumn cryptography has been demonsirated and
hins teached in the level of real world application.

So far we have been talking about rules and power of quantum mechanies.
[3ut what this has to do with computer science? Let us now turn our attention to
computer science - another triumph of twentieth century. The modern incarnation
of computer science was announced by Alan Turing in a remarkable paper in 1930,
Turing developed a model of computation known as Turing machine , which now
we know as programinable computer. Turing showed that there is a Universad
Turing Machine(UTM) which can be used to simulate any other Tuving machine.
[orthierinore he claimed that the Universal Turing machine completely enptures
what is means to performn a task by algorithmic means, That is , if an algoritlnie
can be performed on any piece of hardware , then there is an equivalent algoritin
for 1 UTM which performs the same task as the algorithm running oun the persann
cotnputer. This assertion is known as Church - Turing thesis.

On the other hand Computer hardware development really was of o a
pace when Barden, Brattain, Shockley developed transistor(1947). The enormous
prowth of computer hardware was codified by Gordan Moore which is known as
Moore's law. The laws states that computer power wiil double for constant cost
rouiighly once every two years.

Amazingly Moore’s law held true in the decades since 1960s. Nevertheless,
aost ohservers expect that the dream run will end some time during the first two
decades of twenty-first century. The approach to fabrication technology will not
help hecause the size of the chips are going small and small and quantwn eflect
has stared Lo dominate the current 1C fabrieation technology. So it seens thad
il we wanl to overcome the problem we really need to go in different compt-
ing paradigm. Fortunately quantum computal ion and the possibility of building
quantum computer has really shown a real challenge towards this above wen-
tioned problems. But the earlier question arose if elassical computer can strnnilado
guantanm compater; The answer was given by Richard Feynioan, He showoed that
if (uantum computer is simulated by classical one then the cflectiveness ol quaati-
i computer will be reduced and it's computing power will not he exploited
totally.

So Feyuman's idea suggested that we need to built quantun computer if we
want to use the power completely. So far lot of progress has made towards the
building of quantum computer and the progress rate is not too bad. 1BM has
Already made a small model of quantum computer. So the hope of wmaking aun
wseful quantum computer within next, may be dyrs are very well alive.

Lot us now look for what guantum computer can do in principle? and what
is 11’ advantage over today’s even best computer? It is veally nice to sy tha
quantum computer can be used to perform some tasks in real time (polvnonial
time) which have no known real tiime algorithm in elassical compiter at loast up
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Lo these days.

Let us now again turn our attention towards Church-Turing thesis(Strong!).
Randomized algorithm pose a challenge to the strong Church-Turing thesis. 'There
I8 some problem which have solution through randomized algorithin bhut are not
yet possible to solve with deterministic Turing machine. This threat to C-T1" thesis
was solved by adding a rather ad-hoc portion in the C-T thesis. The modificd
C-'1' thesis was:

Any algorithmic process can be simulated elficiently using a probabilistic Tnring
machine

This ad-hoc change motivated Deustch. He began to think that is there ANy
paradigim of computing whose equivalence is absent in even the modified Church
Turing thesis. Fortunately he got an example. Suppose we have a boolean function
of single variable. Call the function f(x) where x e{0,1}. Suppose it is required
sy Lhr to compute the function in today’s computer (it must he complicnted
). So if we are asked to check whether the function is constant or baluneed in
Lhy an o single processor system, simply we can not. Deusteh was able (o desipn
h guantum algorithm to eflectively conclude within the required time, whether
the fonction is balanced or not. After this remarkable resu!t by Deusteh, he
himsell with Josza extended this procedure to a n variables boolean function.
The problem was as follows: Given a n variable hoolean function f where the
pronyise is given that the function is either constant or balanced. The problem
I8 to decide in polynomial time whether the function is balanced or constant.
This problem has no solution by classical algorithm in polynomial time. But the
Deasteh-Josza algorithi showed that quantum circuit can be made which can
decide the problem in polynomial time!

But the most striking result came in 1994 when Peter Shor developed a poly-
nomil time algorithm for factorization. Factorization is a problemn which has
no pplynomial time algorithm in classical computation so far. 1t is the shor's
resly which really motivated computer scientists to think seriously about SULIE
L computation. Beside Deustehi-Josza & Shor's algorithm another landmnrk
nlgonithim camo through Grover. Popularly known as Grover’s search alporithm.
CGirover's algorithn is a scarch algorithm. If some one is given an unsorted file
nned masked to search for a particular one |, the worst case classical time comypilex-
ity i O(N) where N is the no of entity in the file. Surprisingly the worst case
performance of Grover's algorithm is O(V/N).

What are the sources of the enormous power of these quantumn algoritiim?
The pmswer in a word is "Quantum parallelism”. What is meant by SUBTHEINT
parallelism? Let’s think about it in informal way. We will come 1o more forma
definition later. We all know that the smallest unit of compustation in classicn
computation s bit. It can be either zero or one. Can it be in the SHCTPOSe
#tate of zero and one? From classical computing view the answer is a big ‘no-no'.
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But let us think about qubit, the fundamental unit. of quantum computation. .ol
us consider the state of a two level qubit Jip). It can be in the state 0Y or [1)
Surprisingly enough it can be in the state of a superposition of 10) & |1}, i.e it
cnn be in the state: 1) = «]0) + 3|1), where || + |5]2 = 1. This feature is really
allowed by the superposition principle of quantum mechanies.

Now oue can informally think as the quantum state can be in s SUperposition
of |0} & |1} so the essence of zero and one come together and create parallelisi
[nformnlly speaking this intuition is quite correct. We will come to more Tormal
preseription when we will be dealing with quantamn algorithin.

One of the ever biggest. question of computer science is "Whether P=NI or
not”. This question arose many many years back and remains unanswered over
sinee ingtead of some intense effort by some of the best brains. After the remark-
able ”Shor’s magic” people started to think about whether quantimn computer
can resolve the big question. Here we note that factorization problem is NP
problem (not known to be NP complete). So solving factorization problem i
polynomial tiine does not give any help towards solving "P=NDP" issue.

‘Muny effort have been made to attack this NI complete problem by quan-
tune algorithm. But designing polynomial time quantum algorithin for this prob.
lems seems very difficult, and looks as hard as designing classical algorithm for
this problems. There is recently some weak indication by C.H.Bennett that even
(quantuin computer will not be able to solve NP complete problems in polynominl
time. Although still it is widely believed and proved to be fruitful in IRNY Cases
that quantum algorithin can surely speed up some NI* complete problems, which
s also an almost impossible task by classical means.

Let's now move from computer science to information theory. One of the
most tascinating aspects of recent work in fundamental gqrantum theory is the
emergence of a new notion, the concept of quantum information, which is (jHitoe
different from it's classical counterpart.

We may think of classical information as being embodied in a physical systemn
which has been prepared in a state unknown to us. By perforting a measureient
to identify the state we acquire the information. We know that the fundamental
il of elassicnl information, a bit, can have value cither 0 or 1. We often alows
the receiver o have some prior knowledge about the values, say O will bhe veceivid
with probability pO(respectively pl). Shannon’s theory in this scenario gives a
precise mathematical quantification of information and leads to great practical
intorest.,

One of the most striking difference between classical and quantin inforiation
I8 Lthe role of measurement. Given a classical we can always with certainty {ell
that if it’s value is 0 or 1. No problem. But the scenario is not so sitmple in case
of qubit. Suppose we are given a qubit [¢) = o]0) + f|1), where |a]? + Zi."
The orthonormal basis is given by {|0), 1)},

What does it mean? 1t weans that one can find the qubit in the state 0) with
probability ||? and can find it in the state 1) with probability |/3]? respectively,
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Hnt Lo get the information we have to measure the qubit and it will project the
state in one of the two orthonormal basis vector and the information abont iLhe
ortginal qubit will be lost for ever. This type of feature never arise in elassical
information processing.

Anotlier most striking difference with classical and quantum information is
Lhe 7" No cloning theorem™, Given a classical bit we can make as ALY COPIeS as
reauired of this bit. But in case of qubit quantum mechanics does not allow ns
to copy an unknown quantum state perfectly!.

Despite of all the interesting feature, the most remarkable feature of (uantim
niechanies is the nonlocal correlation. Nonlocal correlation comes from the feature
ol "Quantumn Entanglement”, the heart of quantum information.

What is mean’t by quantum entanglement and nonlocal correlation? Let's
Iwgm informally. Suppose Alice and Bob are supplied a joint quantum siate
2(]00) 4 [01) + ]10) +[11)) [1]. Now it is asked that wlmt are the individual stato
nf Allee and Bob. Siple, both of them having state U0 -+ 1)) (just. Tactorize
[1]). Now i Alice measure his qublt and gets |0) thm whm is the state of Bob.

Clearly it is either {0) or |1) with probability 0.5 in both cases. So Alice gets no
Information about Bobs state on average.

Nuw consider a little different situation. Assume Alice and Bob are stpplied
state (|(ll)) +{11)). Now they are asked about there individual state. What wil]
be tht' mlswvr? Note one can not factorized as before. So conclusion is that Alice
and Bob exist together, they can not be separated. They are entangled.

Now let us see how eutanglement can interact with information retrieval.
Assume Alice and Bob are now separated far far away. Alice measures his qubit

and gots |0}, Then Alice lllllllotlmtoly know that Bob’s state is projected into state

|}, So though Alice and Bob are separated by any distance nonlocal correlation
always exists between them!

Using this type of nonlocal correlation and entanglement Benett and Brassad
developed quantum teleportation. It is the quantum teleportation which dra-
matically changed quantum information theory and information theorists were
sunted by the power of quantum mechanics. Informally speaking quantum Lele-
portation is just analogous to classical fax machine. By quantum teleportation an
unknown quantum state can be transferred to a distance party using oitly local
operation and classical communication. Beside teleportation another remarkable
protocol namely Quantum dense coding have been developed. Since then rate of
progress of quantum information is enormous. And today scientists are trying
mostly to quantify quantum entanglement more accurately, effort have heen go-
bug to make quantumn information more quantified just as classical information
(thanks to Shannon). Lot of progress have been macde in this field.

This incredible features of quantum mechanies has started to interact, with e
workd of secured communication, eryptology. As Shor's algorithm can factorize in
polynomial time the widely used crypto system like RSA are seems to he already
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in trouble. Quantum mechanics has shown the way of designing some ineredibie
crypto pmgowl which can not be broken even by the use of quantum computer,

Some of these protocol have been implemented already. We will come back to all
those issues more formally later in this work.

1.2 Future Direction

Clearly the technology must, progress a long way before quantum computers are
ready to fulfill their destiny as the world’s fastest machines. There is a lonz roac
aliwad. But somewhere at the end of that road, high on a hill, stands a shining
castle. We are just beginning to venture down that road. Researcher has startec
to believe that we will eventually arrive at the gates of the castle though the way
may be difficult. But when that will be? difficult to answer at this stage. May Do
another 5-Gyrs we have to wait.

On the other hand the technology for quantum information theory is much

more matuye than quantum computation. Prototype crypto system has all ready
been implemented and almost reached to commercial level. Quantum telepor-
tation has ‘been reported to realized effectively. And from many experimental

facts we are now in a position to understand the differen . feature of quantum
information more correctly.

So the road to road to quantum computation may be a long one, and there is
no telling for sure how long, but it certainly has been and will continue to be a
fancinating voyage.

We strangly believe this century is going to experience one of the ever fascinat.-
ing discoveky of science and technology - Quantum Computer. It's the challengn
for today’si engineers and physicist.
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Chapter 2

Basic Quantum Mechanics

2.1 Introduction

In this chapter I am going to describe some basic laws and result of quantum
techanics that is required for the study of Quantum information and Quantuin
cotnputation. In most of the cases I will describe only the required result or some
brief proofs that will be useful for our purpose. Intense mathematical treatment
will be avoided in some cases. Rather we will rely more on physic.l and computing
technique to describe the results of quantum mechanics.

2.2 Hilbert Space Formulation of Quantum Mechanics

In a word Quantum Mechanics can be described as a mathematical model of

physical world. To understand the model properly Hilbert Space formalism was
introduced.

Hilbert Space:

1. It is a vector space H defined over @ (space of complex numbers). Vectors
will be indicated generally by Dirac notation e.g |1).

3. Inner product is defined as (.|.) : H ® H— > € has the following property
(1) Positivity: (¥|¢) > 0;
(1) Linearity: (g(aly) + blg)) = a(dl¥) + b(dlp).

(iil)Skew symmetry: (8[y) = (¥]¢)* |
ol = (vlg)3

Meaning of quantum state:

LQuaituin stdates are encoded version of a physical reality. i Hilbert Bpace
they are treated as a vector.,

8.1t is complete in norms:

Observables:

Observable is a property of a physical systemn that in principle can be mes-
siriel. In quantum mechanics the observable are self adjoint operator.
-fm A be an operator. 1t's adjoint A! is defined as:

(6 Ay) = (Ald|).

- A {8 said to be self adjoint iff A = A'. Any self adjoint operator has a spectral
- devetrpesition in a Hilbert Space. For example A can be written as:
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A = Y, r,

where a,, is the eigen value and P, is the corresponding orthogonal projector on
the space of leigenvectors with the eigen value q,,.

Measur&ment

In Quantum mechanics measurement of an observable means getting a eigen.
value of the bperator as a outcome with a certain probability. The original (quAL-
tum state i projected onto a eigen state of the corresponding eigen valne. TR}

If A = ¥a, P, then the probability that the measured outcome will be (l, I8

_ . : : : L
glvon by P = (¢|P,|¢) where ¢ is the original quanium state Hefore the mensire-

] K i 3 . T ‘ toet p ] ' Pﬂl‘p}
wment. The final state of the system is projected into CISE

Dynamics:

The evolution of a quantum state is unitary i.e it's dynamics is given by n sell

adjoint unitary operator called it's Hamiltonian {(H). The dynamics of a state is
given by

Sy = —iH |y(t)).

2.3 Qubit

The fundamental unit of information in classical information theory is a bit.
Which can take value either 0 or 1 at a time. The fundamental unit of information
in Quantum information theory is qubit. If we consider two dimensional Hilbert,
space with two orthogonal vectors |0), |1) then the most general form of a (qubit
deflned over that hilbert space is given by:

i

lv) = «l0) + SI1) where a2 4+ |4 = 1.

"The meaping of the qubit is that if we measure 1) in th - hasis |0}, [1) then
the probabillty that |0) is obtained is |«|? and the probability that 1) i8 obtained
i |4]°.

2.4 Density Operator

We starts with an example. Let we are given a two particle state |¢) -
a)8) + b|11). Now if first particle is measured in the basis 1H0), [1)} then if we
get result |0} (with probability |a|?) we know that the state of the second particle
iz immediately projected to |0). Similar cases arise for the other case. So we see
that the first and second particle nre highly correlated. If we know the siate of
one Lhen we can deterministically say about the state of the second particle.
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Now let us consider an observable acting M acting on the first, particle. This
I8 expressed a8 M @ I. The expected value of the observable in the state [y s
given by:

(Y|M ® I|p) = {a*{0| ®I(U| + 6" (1| @ (1)(M ® I)(a|0) ® |0) + 1) ® [1)) =
ja*{0| M |0) + |b]*(1|M|1)

This expression can be written in the form:

(M) = Tr(Mp)
pr = |al2[0)(0] + [b[2]1)(1].

The operator p, is called the density operator of the first particle. 1t is self
adjoint, positive, and has unit trace.

2.5 DPure and Mixed state

If the state of a system is a state in the Hilbert space then it is called a pire slato
otherwise it will be called a mixed state. If a state is pure then the corresponding
density operator p satisfies p? = p. Because this is simple to check for p = |y,

In general the density operator can be expressed as:

p = Lip:vi) (¥i]. Where 0 < p; < 1. For mixed state there will be two or more
terms. So we see that for a mixed state p? # p.



Chapter 3

Quantum Information

3.1 Introduction

Before stu{tlng discussion on Quantum Information theory let me quickly review

classical information theory very briefly. The basic need of information the 0Ly I8
to encode some amount of news (information) by some means and to decode the
encoded version to retrieve the news when required.

Whatever paradigm we choose this is the basic objective of studying Informa-
tion theory. In classical information theory the fundamental unit of informaniion
i8 bit. We encode an amount of information by the classical bits which can he
oither 0 or 1 at a time but essentially not both.

To decode the information essential strategy of the receiver is to measire the
bit which we can always do easily classically.

The receiver can also have some priori knowledge of the outcome. Say the re
ceiver knows that the probability that 0 will occur is py and the priori probability
of 1 is py. In this scenario Shannon's remarkable theory gives precise mathematicnl
quantification.

These features of classical information differs dramatically in case of quantun
information. The fundamental unit of quantum information is a qubit. In a two
level systam with orthonormal basis {|0),|1)} the most general form of a qubit
is given by |¢) = a|0) + 3|1) where |a|? + |§]? = 1. The infurmation is encoded
in a&f. In contrast to the classical physics, quantum meast.cement theory places
several limitation over the amount of information that we can extract. Most
remnrkablk fact is that although most of the information is inaccessible bt still
it In useftd. And this feature of quantum information makes a huge impact on
cryptography and quantum computing.

Another great difference of quantum information with classical infortantion
I8 that like classical information quantum information can not be copied. The
fact is guaranteed by one celebrated result of quantum mechanics naumelv " No
Cloning Theorem”.

The most remarkable difference between classical information and quantun
informatign is due to Quantum entanglement. In the chapter 1 I have already
described what is meant by quantum entanglement. If two classical systein inter-
acts once and then they are kept few light years apart. Can measurement over
one of themn effect the state of the other? certainly the answer is "No’. But. if we
allow two quantum system to interact in such a way that quantum entanglement
Is establised between them, and then we separate them as many light. years as we
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wish, the mecasurement on any one of them changes the state of the other. The
magical "Quantum Entanglement” has no classical counterpart. Quantum
entanglement is the heart of quantum information. 1 will describe two of the 1.
jor breakthrough results namely ”Quantum Teleportation” and "Quantum
Dense Coding” , which was made possible because of entanglement., in the
npeoining section.

3.2 Quantum no cloning theorem:

Theorem: Unknown quantum state can not be copied
Proof: Let if possible there exists an unitary operator U which is a cloning
operator.

U(10),19)) = {0)|0)
U(i1), |#)) = [1){1)

[n the above expressions [¢) is the state on which the wanted state will is
copicd. Now let us apply the linear superposition principle on {7 I U exists then
the following must be true:

U(a]0) + B11). [8)) = aU/([0), |6)) + U ([1), |6)) = af0)|0) + b1}

Which is in general not equal to (a|0) + b|1))(al) + b[1)).
Hence universal quantum cloning machine does not exists.

3.3 Unitary Transformation

1 ‘ | : : ,
Before describing further result of quantum information let 5 o first state o
nseful single qubit & two qubit quantum state transformations.
Single qubit quantum state transformations: {1, X,Y,Z,H}

I:0) = |0)
I:]1)—> |1)

X {0) = [1)
X:|1)—=|0)

Y : |y = |D)
Y : 1) = -|0)

Z : |0) — |0)
Z:|[1) > —]|1)
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H (10) + [1))
H:|l)—>

(10) = 1))

S-S

Double qubit quantum state transformations: Controlled Not
(CNOT)

CNOT is a two qubit quantum gate where the first bit i« taken as control hit
If the control bit is 1 then the gates flips the second bit and if the control bit

is () the gate keeps the second bit as it is. In both the cases it keeps control bit
unchanged.

Mathematically this transformation is given by:

Chot @ [00) — {00)
Chot - |01) — [01)
Chot 2 | 1) = |11)
Chot t [11) = [10)

3.4 Quantum Dense Coding

Say Alice receives two clagsical bits, encoding the number 0 to 3. If Alice wants to
send this information to a distant separated Bob then he has 1o send 2 elassicn]
bit of information. Surprisingly enough Alice can do the same job by sending only

one quantum bit (qubit): through quantumn channel if he shares one maximally
entangled pair with Bob.

Dopending on the information Alice has to send Alice corforms one of the
transformation {1, X, Y, Z} on his qubit of the entangled pair 1) = ﬁ(\(){l) +

[11)). The resulting state is shown in the following table.

[

Value Transformation Noew state
0 I 75 (100) -+ [11))
] X —75(110) + |01))
2 Y ——f (—[10) + jul))
3 Z —7(100) — |11))

Alice then sends his qubit to the Bob.
Now Bob applies a controlled not gate to two qubits of entangled pair.

Initial state Controtled not [First bt Second bit
J(00) +]11)) L (joo) + o1)) L (0) + 1)) o)

b

L0 +j01)) (1) + [on)) (1) + [0)) )
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7‘;(*I€IU) +101)  (=]11) + [o1)) Lo (=11 4 [0)) )
5000 —[11) Loy - [10) L0y -11)) -0

Bob can ndw measure his qubit without disturbing the quantum state. If the
measurement geturns |0) then the encoded version was either 0 or 3. And if the
measaremaont i(!t.ul‘ns 1) then it was either 1 or 2.

Then Bob apply Hadamard transform on the first qubit and measures it (o
distinguish between 0,3 and 1,2.

3.6 Quantum Teleportation

Alice and Bob are two distant separated party share some priori maximally on-
tangled state say |p) = 71§(|00) +[11)). Alice has a qubit |x) = a]0) + 8|1} which
he wants to send to Bob.

What Alice does is that he operates |x) with his half of the entangled pair i.c
Lhe tate is given by: .

IX) @ |p) = J={cr|000) + ¥|011) + ]100) + S|111)} = UMD ENIINE
b (e]0) = A1) + 9+ (1) + Bl0)) + v (1) — FJ0Y))}.

Now Alice does bell state measurement on his two qitbits and gets onteome
clther of ¢, ¢, 9%, ¥~ with equal probability. Then Alice muwkes phone call to
Bob to indicate his outcome i.e Alice use two classical bit of information to tell
Bob elther of the four outcomes .

Bob can now easily retrieve x accurately by the following decoding process:

Alica’s outcome | Bob's state Decoding
ot a]0) + F|1) !
s ' al0) - 1) Z
Yt a|l) + 3]0) by
v ol1) - A0) )y

Afltor the decoding process Bob can successtully retrieve the original state y
Lo him,



Chapter 4

Quantum Cryptography

e

4.1 Introduction

Cryptography is the science of encryption and decryption of message. Tlie basic
need of cryptology is to encrypt some message using a key to prevent the message
from unauthorized intruders. It should be guaranteed that if the intruder does
not have the knowledge of the key then it should be absoiutely difficult for hin
to retrieve the original message. Another objective of cryptology is that person

having the complete knowledge of key it should he easy for him to decrypt the
original message.

The real breakthrough in cryptography came when Rivest, Shamir, Adleman
discovered an amazingly simple scheme for encryption a..] decryption. Theis
scheme is popularly known as RSA. The basic principle that they used in RSA.
is the one way property of the factorization problem i.e given a large niunber
there was no polynomial algorithin to find it's prime factors. Otherwise i nore
body is provided some prime numbers and a large number then it is easy to
check that whether the prime numbers are the factors of the large number (just
multiply the factors and check).

Things were going right until Peter Shor’s came with a polynomial tite quan.
tum algorithm for factoring large number in 1994. The algorithm shows if quan-
tum computer can be made in reality then all the RSA ba od erypto system will
e evacuated in a moment.

. Another important question in classical crypto system is to establish some
common key between two distant separated partics. The widely used scheme that
classical crypto system use is mainly based on famous Discrete Log Problen:
The problem says that if some body is given «® and ¢« is kunown then there is no
polynomial time algorithm exists so far to extract . But it has been also shown
that with the help of a quantum computer D.L.P can be easily broken.

So the question came how key distribution problem can be solved effectively
siich that even with the help of quantum computer intruders will not he able to
retrieve the key.

Fortunately using the power of quantum mechanics Bennett and DBrassard
discovered a scheme for key distribution which is secure even against. atiack by
quantum computer. Their scheme is popularly known as BB84 protocol,
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4.2 BDB84 Protocol

Alice and Bob, two distant party want to establish a common secret key hetween
thent. The communication link between them are one classical communication
channel and one quantnm communication channel.

The basic steps of the protocol are as follows:

1:Alice sends Bob a sequence of photon randomnly and independently chosen
[rom 4 polarization, horizontal (1,), vertical (¥_.), 45 degr.e (V'z), 135 degrec
(V)

2:For each of the photon Bob randomly choose either of the rectilinear bhases
{liorizontal , vertical (i.e in Z basis)} or diagonal bases {45 degree, 135 degree
(I.e in X basis)}.

3:3oh records his chosen bases and the outcome of the measurement for each
photon.

4:130bh then publicly announces his chosen bases but not the outeome of the
measirement.

BirAlice, after receiving Bob’s bases compare with his own bases and tells Bob
in which of the cases they have used same bases.

G:ln the cases they mateh in the bases they keep the resnlt otherwise Lhey
diseard the corresponding polarization bit.

= Alice and Bob now can convert the polarization of the remaining photon
into raw bits. They decide horizontal and 45 degree polarized photon as 0 and
vertical and 135 degree polarized photon as 1.

Alice TS W, > [ [e> ] W, > W, > [ >V, >
Bob's basis X Z X X 7 X 7
Bob's osnlt | W, > | [P | [Wo> | ¥ o> | (W, > [ > ]|V,

_H“i-l_'i“H_lllt‘HH&gﬂ X \/ \/ X B >-'\ o \/ I A
e / ‘ R o o e

A — i i rmm el — - - —ddu

From the table one can see how the key is generated where Alice sends 7
qubits one by one and Bob performs spine measurement. randomly in one of the
lnses.

Now let us consider what a possible eavesdropper can do. Eavesdropper can
tap the quantum mechanical channel and can measure the photon in the randomly
chosen bases. In the measuring process eve introduces large amount of error
heecanse on mersurement the state of the photon. Now to detect the presence of
envesdropper Alice and Bob publicly compare some portion of the key, 1 the error
rate exceeds a predefined limit then they detect the presence of cavesdropper and
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discard the key string. They then repeat the whole process again to establish o
new key.,



Chapter 5

Quantum Computation
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5.1 Introduction

In the enrrent. chapter [ am going to deseribe how the power of Guantum mechan-
les I going to have a huge impact on the clagsical complexity and compitation
Lheory.

The modern idea of computer science first came through Alan Turing. Twr-
ing {irst, developed a model of computation that we know current day as pro-
grammable computer. Turing shows that if a task can be performed on a piece of
hardware then it can be algorithmically computed in a Turing machine. Moreover
Turing shows that there exists an Universal Turing Machine (UTM) which can
in principle simulate any other Turing machine. Everything was poing right wntil
randomized algorithm arrived into picture. But the threat to Turing thesis be-
canuse ol randomized algorithim was easily removed by changing it to the following
statement:

Any algorithmic process can be simulated efficiently using a probabilistic Turing
machine

Another most important issue in computer science since it’s birth is whether
"I’ = NP7, This question has no answer till today. Intense resecarch in the Hold
ol theoretical computer science has been able so far to reveal many facts about
Lhe structure of complexity theory.

It is known that P is a subset of NP but it is not known whether the subset
ig. o proper one? It is known that the hardest class of problem in NP is the
NP (Complete problein. Hois also known that NP2 Complete problems can be
polynomindly reduced from one to another, So finding a polynon..al time algorithm
for one of themn is simply mean that P = NP, Another very interesting complesity
class is NI Intermediate(N PIT) class. That is there exists some problem for
which no polynomial time algorithm is known till today and also this problems
are not known to be in NP Complete.

NPl = NP — (NPCU P)

In the classical computation theory NPT problems has no effective solution
apparently, Example of NPT problems are factorization, graph isomorphism,
(uadlratic reciproeity ete. It 18 also not known that whether

These are some of the key issues of computer science. In the nexi sections
| will try Lo deseribe few guantum algorithm and associated faets which have
major impact in these issues,



5. Quantum Computation , 22

[ S

Quantum Algorithm

.2 Deutsch’s Problem

Suppose a single variable boolean function f : {0,1} — {0,1} is given. Now it
is asked to check whether the function is balanced i.e {f(0) # f(1}} or constan
e {f(0) = f(1)}. Suppose the function needs t second for computation once.
So it is clear that classically on a single processor to answer the above guery i
needs 24 second. Can we do it within t second? Fortunately we use the power of
quantmin mechanic: to solve the problem effectively.

Let ais consider a two qubit transformation Uy acting as tollows:

Up : leh i} = Ale) ly @ fla)}

Urfle), 5 (10) = 11)} = Z5Us{l),10)) = J5Us{2),[0)} =
1) (=) (z)(j0) - [1))

Hence we have the following:

U 5 010) +10) JU00) 1)) = 00 (= DA©) + -0/ 0] Loy 1)

the original function is constant then we will be always getting |+) and if the
function is balanced then we will always get |—).

Thus on a single quantum computer the total solution can be found in |
seconds as the separate computation of f need not to be done for 0 and 1.

Now if the first particle is measured in the |+) = ;%(H}} % {1)) basis then if

Let me now consider the generalization of the Deutsch problem popularly
known as Deutsch Josza Algorithm

L

0.3 Deutsch Josza Algorithin

Deutsch Josza Problem:

In a n variable boolean function |, the promise is giver that the function is
cither constant or balanced. Now can we decide it in polynomial time whether
the function is balanced or constant.

Obviously the problemn is of exponential complexity classically. Amazingly this
problem can be solved polynomially using Quantum Algorithm.

Let us take a n bit quantum register and apply n Hadainard gates in parallel.
We define the parallel Hadamard transform Hn) as:

H = HQH® ... s 11

The n qubit state is transformed to
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Where .y means bit by bit multiplication(mod 2) of two n bit binary striug
atid then mod 2 addition.
Applying‘ H™  on  the initinl state  {|0))*|1) transforms W into

AT (=D @)= 1)) 5 (10) — 1)

Now if we observe the terin

& TG (- 1) (1)

If { is n constant function the sum is (=1}, ; which vanishes unless y=0).
lHence i we ineasure n bit register we obtain the result |y = 0 with probability
L.

But if the function is balanced then the sum is zero. Hence the probability of
obtaining the measurement outcome |y = 0) is zero.

Hence we can easily decide the promise of the function in polynomial time |
in fnet the thine complexity is a constant and the space complexity i8 O{n).

5.4 Shor’s Factorization Algorithin

I"robleim: Given an integer N which has two prime factor p , g such that N=pq.
So far this problem has no known polynomial time classical algorithu but it
has heen shown by Shor’s in 1993 that the problem can be solved efliciently nsing
quanium algorithm.
Step 1:[t's a number theoretic fact that the problem of finding prime factors
of N is equivalent in finding the period of the function

fon(r) = a®modN
i

Where a is a randomly chosen integer less than N and such that g.c.d(a, V) =

Step 2:If the peried r is such that r is even and a% # —1(modN) then it is
possible to find the factor of 1.

Step 3:0t's a mathematical fact, the probability that r sati fies the condition

of Step 2 is greater than 3.

. ’ . o L
Step 4:Ouce 1 satisfies the above mentioned condition the the g.e.d(az + 1, V)
and g.e.d{ai — 1, N) give the two factors of N,

Step B:All the steps except finding r can be done in polynomial time in clas-
sienl computer. We can now use quantum algorithm to find rin polynomial time.
Lot 1, bits are required to store N where L > log,{N). The gqnantum algorithm
runs in time polynomial in L.
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.ot e now briefly explain the basic strategy of Shor’s algorithin. Let vs take
two L bil register. Both register is loaded with initial valne 0. So the total state
is |0}]0). Let us now apply Hadamard transform on the first register to make the

state S }:;‘f:[,_l |2}]0). Now let us apply Uy, , to this state, to obtain the following

Stato,

2‘.1 f.

z_lf Z::I::U-‘AI I:I:Mfﬂ,ﬁ'(m))

At this stage all the possible values of f, y are encoded in the state of the
scecottd register, but they are not all accessible at the same time. Also we are
interested only on the periodicity of the function. If it was possible that we could
dictate the outcome of the second register, then repeating the process a few times
woe enn get easily the value of the period.

But unfortunately quantum mechanics does not allow the dictation over see-
ond register.

Now let us use the main strategy used by Shor to extrace Lhe period. The tool
Shor used is Quantum version of Discrete Fourier transform popularly known as
¢uantum fourier transforin.

What ever be the outcome of the second register the cutcomne of the first
'EL/rJ

. , L2 . . .
vegister is of the form |4) = £3°.2," " |jr +{) where 1 is the period of fan(x), |
is an offset value and € is a normalization factor.

Now let us apply D.F.T on the value of the first register.

2L

UI)F”I"J:) = ilr Zy : E:I?}J(Qﬂifﬁ'ly)

The advantage of applying Q.F.'T' is to eliminate the offset 1 and make it 15 a
phase factor. The output of the first register can be written as:

[Gout) = L T5zb eap(2mily/r)|j22 /1)

- Now on measuring the first register we can easily find out the value ol ¢ as L,
is knowi,

Complexity

The computation of the function f, y can be done in O(L?). The time com-

plexity of the computation of D.F.'T is O(Llog(L)). Hence total algorithm runs
in polynomial time in L.

5.5 Discussion

[ have here mentioned three quantum algorithm. Beside those there also exisis
sote ineredible quantum algorithm, one among them is due to Grover. Iu his
algorithm Grover has shown that the searching in a unstructured database can boe

done quantin mechanically in time ()(\AN)) where as it's classical counterpart
needs (V).
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We have seen that quantum algorithm can solve at least. one NPI problem. Bt
the main gquestion regarding the solution of NI Complete problems still remnins
ns open challenge. Although there is some weak indication that even quantum
computer can not solve these problem efficiently.

3ut some researcher still believe the challenge still alive for future.
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Chapter 6

Sharing of secret quantum information

6.1 Our Goal

In a distributed computer network suppose Alice wants to distribute a secret
information to some distant partics By’s. B;'s can operate locally on his part of
information and can communicate between them using classical communication.
Alice needs guarantee that any of the B;’s should not be able to reconstruct
the total seeret information to him using LOCC with others. In case of ¢lassical
computer network this problem has apparently no solution. Here we disciiss how
this problem can be tackled with the help of quantum mechanies in a distributed
quanti network.

6.2 Introduction:

In a distributed computer network say machine A has a secret information (Key)
which he wants to keep distributed in some distant machine By, By . 3,
Morcover the distribution should be such that if A or some other person antho-
rized by A wants to get back the information, he should be able to do that. Now
all the B;'s can use their part of total information for some local use. But it
Jionld be confirmed that none of them should get the total information of the
key when By are allowed to operate only locally and can communicate classically
within them. This is a redsonable assumption in case of distributed network.
This problem has apparently no solution in case of classicai computer network.
Because individually each of the By’s caniread their part and then make phone
call to cach other to reconstruct the total information to any of them, Can we
solve the problem using quantumn network?

Fortunately we can, if we replace the classical links of the network by proper
entangled quantuin channels, classical machines by quantumn machines.

Iirst question that arises in case of security issue is that can any [; recreate
the the total inforination about the key without having any help from others.
Fasentially he can not. Because if the information (pure state) is distributed
throwgh proper quantum entangled chaunel then the individual state of any [3; i
A mixed state. And we kinow there exists no unitary operation which can transform
inixed state to pure state,

The next iimmediate question is that can they do it by taki: z only distant help
from others via classical communication. Essentially that is dependent on how
pood the channel is. In a recent work T.Brune has shown a large class of pure state
miltiparty channel, which he called web state, are useful for Jdie distribution atid
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concentration of quantum information in a distributed quantum network. Bt
Lhis states are not useful for our purpose. Beeause if information is clintribniod

by these states then any of the B, can reconstruct the information to hit using
only LOCC with others.

In this current work we have investigated a class of pure multiparty sinte that
e be used for our purpose. We mainly discussed the case of a 4 party network.
We hope that the result can be extended to a multiparty network.

Pure state are generally costly to prepare and it is also difflicult to prevend
them from natural decoherence. So one solution is to use proper mixed entangled
state. In case of a 4 party network if we distribute the information by Smolin's
4 party unlockable bound entangled state then it is irnpossible for the B,'s to
concenirate the total information to one of them using only LOCC. We have
generalized this idea where we have a class of mixed channel for genernl multiparty

network from which it is impossible for B;'s to reconstruct the whole information
to one of them using only LOCC.

In section 2 we have discussed the structure of the entangled pure chiannel
that can be used for distribution and concentration of quantum information in
hgeneral multiparty network and the corresponding protocol. In section 3 we
have discussed about the level of secreey that we can achieve with ihis channels,
And finaliy we have made a short discussion of overall work and left few LPen
(juestion in the section 4.

6.3 Protocol for distribution and concentration of
quantum information:

Sy we have (N+1) parties where N is odd. Let Alice, one among them, has a
seeret, information in the form of a qubit [¢) = «|0) + #|1) and |e|? + f =1

The chiannel they share is given by X120 841) = [ ® Y, 4,5, + 1) 60 Y7, ;9.
Where S is the bit by bit complement of S. The state is properly normalized, i.e
YoMl Ry = % Where a is the complex conjugate of a. In each S; the no of 0’s is
o,

The protocol has two phase. The first one we call Distribuzion phase and the

p- next one we call Concentration phase. In the Distribution phase Alice perforn

bell state measurement, on his two qubits 4} and the first qubit of X120 Net).
Depending on his outcome ¢t ¢, vt = Alice makes phone call to other N
parties to perform unitary operation I,0.,0y4, 0, respectively on their qubit i.e
parties 2,3,4,.... N will individually apply I for measurenment result. o, o, for ¢,
a, for Y, o, for p~. The state of the N partics become Y, a;8; + 437 4,5,
Distribution phase is over.

Now let Claire who is authorized to Alice wants to concentrate the informai ion
Lo im0 elaire shares a properly normalized state X1z, N = (S ®([0) +
(55, 0:9:) @ 1) with the parties among whomn the original state was distributed.
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Let the parties among whom the state is distributed arve B3, 135, ... N E
In the concentration phase each of the D;'s performns bell measurerment on
their two qubits. They then inform Claire their measurement results by phone
call. Claire then perform unitary operation on his qubit given by [];—; ®();. Where
Oy’ are either I if the outcome of Bi is ¢* or o, if the outcome is ¢~ or g, if the
outcome is ¥+ and otherwise o,. Claire thus can recover the state |) exactly.
Joncentration phase 18 over.

In the protocol we can also use an eqivalent channel given by {xi,2, ..~y Vi
' = ’ .
0) @ 5, 4;,5; + 1) ® 35 4, Si. Where a; = a, exp(ify).

6.4 Proof of security

Let us first discuss the case of pure state channel in a 1:3:1 system Le A
{13,, 134, By} : C. The shared channel is given by:

N Ay Bty = |0) @ (4{000) + (y|011) + az|101) + a4|110))+
1) @ (a1]111) + a2|100) + a3|010) + a4]001)}.

Now we note that this state can be written in any {A, B} 2 {Bj, By} cut as
a linear combination of ¢* ® ¢+, ¢~ @ ¢7, ¥+ @ Y1, ¥~ @ ¢~. As for example
IN A i) = (@1 +a2)d" @ 97 + (a1 — az)p” @ ¢~ + (az + at @ v+ (ay -
QP (i). |

Now if information can be reconstructed in any of the Bi's using LOCC that
copnivalently mean that Bi's can distill 1 ebit between A and any of them using
1,OCC ouly. ';

Now we Investigate different possible strategy by Bi’s to distill 1 ebit between
A and any of them.

case I
Let us consider a possible decomposition of |x a,B,.p,,8,) 88
l\;l,fi. ,H’j,ﬂa) — Ad)fﬂﬂ.;ﬂl ® Yent + f“/}rrm:r‘z @ wgrrl + Tﬁ/”mnm:} o2t dﬁ'pr:! --------------- (2)

Where Yimazts Ymaz2s Ymars are three maximally entangl g state between A
and 3, and Ve, Ypri, Ppr2 are three pairwise orthogonal states hetween 15, and
13, whore 4., is 8 entangled state and ., ¥p2 are two product state, Now if /3,
and 13, can discriminate using LOCC only these three orthogonal states then they
can distill 1 ebit of entanglement between A and By. Now if we trace out A and
13, in the representation of |x A, g, B,.8,) then the state of other two parties is given
ll}’ PA B = l”’l + ag|2P[tj:+] -+ ‘(11 — ﬂg‘zp[’(‘[?m] + II"L;] -+ ﬂdlgp[dfﬂ -+ l”*:i - I'JL,'.||"a I}Iffil
We note that the rank of py g, < 4. Now in representation (2) 1t we trace out 13, .
13, the state between A and By is given by pla g, = |APP[¥mori] + 1|2 P}
12 P[mara). The rank of pl < 3. So in general pap,&pla ., are not equal. 5o
this decomposition is not allowed, in general.
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case lI:

Lot if possible | XA,y 1o 002) = 51 Mithnar, © Yprpoeeene. (3). Where 4y, 8 are
pnirwise orthogonal and ¥y, are pairwise orthogonal. Now if we trace out the lirst,
two parties from (3) the state between other two party 13, and I3, is a separable
atate where a8 from (1) we know after trace out of A and B, the state hetween
I3, and I3y is a entangled state. So 1n general this decomposition is not nllowed.

case III: If it is possible that |x A B, B2.Bs) = Z‘,l NiWmaz; @ Wprieeee - (.3} where
Vypar; 8 ATC 10 general not pairwise orthogonal the argnment of case II generaliy
does not hold.

It Is in general looking difficult to discard the situation although we can show
sutne convincing argument regarding the impossibility of decomposition of the
stitle |x 4.8, H,.8,) in the above mentioned from.

\We know that 1-ebit between two party can be distilled out from a thiree party
;11 Z) stare cffectively using only LOCC. And so far we don’t have effective
genernl procedure to distill 1-cbit from a three party |W) state. So it might he

interesting to see if the state |XA,HI.H1,H;;) can be transformed into a3 party
(11 Z) in general.

Lot us check if 3 party |GH Z) can be distilled between say A I3 B3,y The
SLale [\ 4 1. 0g. 1) CAN b written as X A5y B} = (@1|000) + ag]0L1) -+ (y|110) 4
ay | 101)) ®[0) + (2| 001) +ag|010) +a1|111) +a4|100))®11). Now if By canimeasure
his qubit in preparation basis i.e {|0),|1)} basis the state between A, I3;, Dy is ei-
ther (H-;1““”)4‘&4'011)+ﬂ2|11())+{13|101)) or ((lgl()[)l)+ﬂ;;l()1(])+{L1|111>+ﬂ.4 “J“))
Now A can measure his qubit in {(z]0') + y|1)), (y*|0') — z*|1'})} basls. So the
iolut state of ), By will be either {2(a1]00) + aa|11)) + " (@2|10} + a;|01))} or
(0 |00) + aq|11)) — x*{ax{10) + a3]01))}. If we consider the first state then
om = Pleay|0) + yrag|l)] + Plragdl) +y*az|O]. Now if 3 party GHZ state
has to be distilled between A, By, B, then it must be satisfied (cray/ytay) =
(1* ayfvag )&y, fotaz) = (x*ay/yaq). From this two relation we get layay|? =
lry4]? which is in general not satished for any choice of a;'s.

Otherwise if By measures his qubit in {(z,[07) + 1)) G ]07) a1
hasis then the joint state of A, I3y, 32 either 10Y ® (ra,|00) + zagfl 1) + a0 +
1) + 1) @ (za|10) + waz|01) + yrap|11) + y*asl00)) or |0) @ (yu [00) +
yag 1) — 27 ay|01) — 7 as{10)) + 1) @ (ya]10) -+ yas]01) —z"a, |11) — 2" 0B)). I
Lhe state is to be a GHZ state between A, By, B, then from the first state we have
cy(le(ayagt)) = —2*y*(Refazar’)) which implies |Re{agag*)/lte(aiaqd®)] = L.
Which is not possible in general.,

)

Now we look forward to implement the shared channel b mixed state. 1018
ensy Lo check that distribution and concentration of information can he done
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using mixed state of the form Xoired, 5 yer = 2 POy ® 5 -+ 1) ® 5. Where §
is the bit by bit complement of S and P[] is the projector operator . The state
in properly normalized, 1,e 2_; a; * 4y = %. Where @ is the complex conjugate of a.
In each S; the no of 0's is odd.

We claim the following lemma:

The state given by Xmizved, o . n4i 18 8 PPT state in any (1,i):(2,3,..0-
[.i+1,...N+1) cut for all i.

Proof: A

We observe in the mixed state the projector P[|0) ® S; + |1) ® Si] is present
(IS contains odd no of 0’s. Now if we take the indicated cut then the form of a
projector will be either P{]00) ® S1; + 111) ® S1;] where S1; contains even no of
0's or P{l01) ®52; + |10) ® S2;] where S$2; contains odd no of )’s. Now for the first
form we note that the projector P[[O@Ugli + |1 ®151;] is aiways present hecause
this form falls under the form of projector we have chosen for the iixed state.
Similar argument holds for the second form of the projector. And the original
mixed state is invariant under all such 2:(N-2) cut because we have exhausted all
quch projector in the preparation of the original mixed state. Hence clearly this
state is o PP in the above mentioned cut and hence not distillable in the above
cnut.

-
e

From the above mentioned lemma we conclude that ¢hit entanglenient can
not be distilled between first party and one of rest N-1 partics by other N-2
party using only LOCC. Hence if the 1st party say Alice distribute the state
) = |0} + 3|1) among the rest N parties then the complete information of [1)
can not be concentrated to any of the intermediate party using only LOCC with
others. |

}

6.5 Discussion:

In the current work effort has been made to develop a protocol for distribution
of seenred information in a distributed environment. We have first discunsed the
possible structure of pure entangled state used as channel to achieve the secrecy.
The problemn has been discussed for a 4 party network., We have given some
convincing argument about the usefulness of pure state for the purpose although
the rigorous proof of secrecy remains open. We hope the result will motivate our
readder to prove formally the possibility of using pure state as & secret channel in
o distributed environment. Result can be also extended to a N party general
distributed network and will be investigated elsewhere.

We have solved the problem completely using mixed state channel for general
nltiparty distributed environment. The N+1 party channel that we have nused.
is o PP in (2:N-2) cut and hence 1 ebit can not be distilied between Alice and
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any 13; using LOCC.

We have presented here a class of pure and mixed state usciul as seeret chan-
nel. The question about the most general form of the channel remains open. The
problem suggest that a more insight into characterization of entanglement in a

multiparty system might be useful in generalization of the problem.
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