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Chapter 1

Overview

1.1 Introduction

Quantum computation and quantum information is the study of information
processing task that can be accomplished using quantum mechanical laws.Like
many simple but profound ideas it was a long time before anybody thought of
doing information processing using quantum mechanical system.

‘The story began at the turn of the twentieth century when a revolution was
going in science. Several problem arisen in physics. To explain those problems
the modern theory of Quantum mechanics was introduced . Since then quantum
mechanics has been an indispensable part of Science, and has been applied with
enormous success to everything under and inside Sun, including the structure of

the atom, superconductors, the structure of DNA, and the elementary particles
of Nature.

What is Quantum mechanics? In a word quantum mechanics is a mathemat-
ical framework for the construction of physical theory. For example Quantum
electrodynamics can describe the interaction of atoms and light with accuracy.
Quantum electrodynamics is built under the frainework of quantumn mechanics.
The relation of a particular physical theory like Quantum electrodynamics with
quantum mechanics is just as computer operating system is related to a specific
application software,

The rules of quantum mechanics are simple but even the experts find them
counterintuitive. One of the major goals of quantum information and quantumn
computation is to develop tools which sharpen our intuition about quantum me-
chanics. In the early 1980 the interest arose whether it is possible to signal faster
than light using quantum mechanics which is a big no-no according to Einstein’s
theory of relativity. This problem has a nice implication towards another famous
problem of quantum mechanics - can we clone an unknown quantum state?. If
the answer is 'yes’ then it is possible to signal faster than light! Fortunately it
was proved that unknown quantum state can not be cloned in general - a land-
mark result of quantum mechanics which effectively supports Einstein's theory
of relativity. Another related historical strand contributing to the development
of quantum computation and quantum information is the interest dating to the
-1970s, of obtaining complete control over single quantum system. Since the 1970s
many technique for controlling single quantum state has been developed. Quan-
tum computation amnd Quantum information naturally fits into this problen.
Despite this intense interest, efforts to build quantum informnation processing
systems have resulted in modest success to date. Small quantum computers, ca-
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pable of doing dozen of operations on a few qubits ( state of a two level quantum
mechanical system) represent the current art of practical quantum computing.
Experimental prototype of quantim cryptography has been demonstrated and
has reached in the level of real world application.

We may think of classical information as being embodied in a physical systenn
which has been prepared in a state unknown to us. By performing a measurement
to identify the state we acquire the information. We know that the fundamental
unit of classical information, a bit, can have value either 0 or 1. We often allows
the receiver to have some prior knowledge about the values, say 0 will be received
with probability pe(respectively p;). Shannon’s theory in this scenario gives a
precise mathematical quantification of information and leads to great practical
Interest.
~ One of the most striking difference between classical and quantum information
is the role of measurement. Given a classical bit we can always with certainty tell
that if it’s value is 0 or 1. No problem. But the scenario is not so simple in case
of qubit. Suppose we are given a qubit |1) = a]0) + 8]1), where lael® + |32 = 1.
The orthonormal basis is given by {|0),]1)}. _

What does it mean? It means that one can find the qubit in the state 0) with
probability [|* and can find it in the state |1) with probability 18]? respectively.
But to get the information we have to measure the qubit and it will project the
state in one of the two orthonormal basis vector and the information about the
original qubit will be lost for ever. This type of feature never arise in classical
information processing.

Another most striking difference with classical and quantum information is
the "No cloning theorem”. Given a classical bit we can make ag many copies as
required of this bit. But in case of qubit quantum mechanics does 1not allow ns
to copy an unknown quantum state perfectly!

Despite of all the interesting feature, the most remarkable feature of criantam
mechanics is the nonlocal correlation. Nonlocal correlation comes from the foatire
of "Quantum Entanglement”, the heart of quantum information.

Now consider the situation. Assume Alice and Bob are supplied state 715(|U(}) -+

|11)). Now they are asked about there individual state. What will be the answer?
Note one can not factorized as before. So conclusion is that Alice and Bob exist
together, they can not be separated. They are entangled.

Now let us see how entanglement can interact with information retrieval. As-
sume Alice and Bob are now separated far far away. Alice measures his qubit and
gets |0). Then Alice immediately know that Bob’s state is projected into state
10). So though Alice and Bob are separated by any distance nonlocal correlation
always exists between them! Entangled state or quantum correlation is a pecidiar
property of a multi particle system that cannot be explained by any classical cor-
relation. This plicnomena is manifested through the violation of Bell's ineqguality,
Now the question arises whether this entanglement can have any other manifes-
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tation which can be used for some physical process like information processing
or distant communication. Surprisingly such kind of manifestation exists nature
.. by way of teleportation of an unknown quantum state, super dense coding,
quantum key distribution. Teleportation of a quantum state is a very powerful
application to information processing as quantum states are indecipherable by
any physical means. Dense coding is a process which seems to be the opposite of
teleportation where by sending a qubit one send 2 bits of information.

Using this type of nonlocal correlation and entanglement Bennett and Bras-

sard developed quantum teleportation. It is the quantum teleportation which dra-
matically changed quantum information theory and information theorists were

stunned by the power of quantumn mechanics. Informally speaking quantum tele-
portation is just analogous to classical fax machine. By quantum teleportation an
unknown quantumn state can be transferred to a distance party using only local
operation and classical communication. Beside teleportation another remarkable
protocol namely Quantum dense coding have been developed. Since then rate of
progress of quantum information is enormous. And today scientists are trying
mostly to quantify quantum entanglement more accurately, effort have been go-
ing to make quantum information more quantified just as classical information
(thanks to Shannon). Lot of progress have been made in this field.

Perhaps the most spectacular application of quantum correlation is the quall-
tum computer, which could allow, once realized, an exponential increase of com-
putational speed for certain problem, for example the factorisation of large num-
bers into primes. Again the superposition principle along with entanglement play
the principle role. This offers the possibility of massive parallelism in quantian
systems as in quantum theory n qubit(two level) systems can represent 2" numn-
bers simultaneously due to superposition principle and tensor product Hilbert
space structure for multi partite system.

The power of quantum computation comes from the above said quantuin par-
allelism. Classically the time taken to do certain computations can be decreased
by using parallel processors. To achieve an exponential decrease in time reqiires
an exponential increase in the number of processors, and hence an exponential
increase in the amount of physical space needed. As in quantum systems the
amount of parallelism increases exponentially with the size of the system,. an
exponential increase in parallelism requires a linear increase in space needed.

- This incredible features of quantum mechanics has started to interact with the
world of secured communication, cryptology. As Shor’s algorithm can factorize in
. polynomial time the widely used crypto system like RSA are seems to be already
in trouble. Quantum mechanics has shown the way of designing somne incredible
crypto protocol which can not be broken even by the use of quantiun computer.
Some of these protocol have been implemented already. We will come back to all
those issues more formally later in this work.



Basic Quantum Mechanics

2.1 Introduction

In this chapter I am going to describe some basic laws and result of quantun
mechanics that is required for the study of Quantum information and Quantum
computation. In most of the cases I will describe only the required result or some
brief proofs that will be useful for our purpose. Intense mathematical treatment
will be avoided in some cases. Rather we will rely more on physical and computing
technique to describe the results of quantum mechanics.

2.2 Hilbert Space Formulation of Quantum Mechanics

In a word Quantum Mechanics can be described as a mathematical model of
physical world. To understand the model properly Hilbert Space formalisin was °
introduced. ,

Hilbert Space:

1. It is a vector space H defined over @ (space of complex numbers). Vectors
will be indicated generally by Dirac notation e.g [¢).
2. Inner product is defined as (.|.) : H ® H — @ has the following property

(1) Positivity: (y|@) > 0;

(ii) Linearity: (¢|(aly) + blp)) = a(g|p) + big|i).
(iif) Skew symmetry: (6|) = (¥]9)"

3. It is complete in norms:||¢|] = ($l¢)?

Meaning of quantum state: |
Quantum states are encoded version of a physical reality. In Hilbert .space
they are treated as a vector.

Observables:

Observable is a property of a physical system that in principle can he mea-
sured. In quantuin mechanics the observables are self adjoint operators.
Let A be an operator. It's adjoint A' is defined as:

(plAy) = (Alg]y).

A is said to be self adjoint, iff A = Al Any self adjoint operator has a spectral
decomposition in a Hilbert Space. For example A can be written as:
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A=23a,P,

where a,, 8 the eigen valuc and P, is the corresponding orthogonal projector on
the space of eigenvectors with the eigen value a,,.

Measurement

In Quantum mechanics measurement of an observable means getting a ecigen-
value of the operator as a outcome with a certain probability. The original quan-
tum state is projected onto a eigen state of the corresponding eigen value. ¢. g

If A= Xa,P, then the probability that the measured outcome will be (,,
18 given by P = (¢|F,|¢) where |¢) is the original quantum state before the

measurement. The final state of the system is projected into : ¢|’f,“ !j?l ok

Dynamics:

The evolution of a quantum state is unitary i.e. it’s dynamics is given by a
self adjoint unitary operator called it’s Hamiltonian (H). The dynamics of a state
is given by

L19) = —iH|y(t)).

2.3 Qubit

The fundamental unit of information in classical information theory is a bit.
Which can take value either 0 or 1 at a time. The fundamental unit of information
in Quantum information theory is qubit. If we consider two dimensional Hilbert,
space with two orthogonal vectors |0}, |1) then the most general form of a qubit
defined over that hilbert space is given by;

l) = a|0) + B|1) where |a]? + |B]? = 1.
The meaning of the qubit is that if we measure |¢) in the basis |0}, 1) thew
the probability that |0) is obtained is |a|* and the probability that |1) is obtained
is | B[,

2.4 Density Operator

We starts with an example. Let we are given a two particle state Y
a|00) + b|11). Now if first particle is measured in the basis {103, 11)} then if we
get result [0) (with probability |a]*) we know that the state of the second particle
Is immediately projected to |0). Similar cases arise for the other case. So we see
that the first and second particle are highly correlated. If we know the state of
one then we can deterministically say ahout the state of the second particle,
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Now let us consider an observable acting M acting on the first particle. ‘This
18 expressed as M ® I. The expected value of the observable in the state |3} is
given by:

(IM @ 1) = (a* (0] @ (0] + b* (1] ® (1[)(M @ I)(al0) @ |0) + b[1) ® |1}) ==
|al*(01M[0) + [b?(1]M|1)

This expression can be written in the form:

(M) = Tr(Mp,)
p1 = |al*|0}(0] + |62 1)(1].

The operator p; is called the density operator of the first particle. It is sclf
adjoint, positive, and has unit trace.

2.5 Pure and Mixed state

It the state of a system is a state in the Hilbert space then it is called a pure state
otherwise it will be called a mlxed state. If a state is pure then the corresponding
density operator p satisfies p° = p. Because this is simple to check for p = |y (v

In general the density operator can be expressed as:
p = X;p;|v¥i) (|, where 0 < p; < 1. For mixed state there will be two or more
terms. So we see that for a mixed state p? # p.



Chapter_ 3

Understanding Entanglement

i— il il

As we have discussed earlier quantum correlation or quantum entanglement
i8 something which is peculiar in quantum mechanics and has no classical analog.
Einstein, Podolsky and Rosen tried to show that quantum mechanics is inconi-
plete using some two particle entangled state. But with a great surprise to many,
Bell showed not all the results of quantum mechanics can be reproduced by any
local realistic theory however hypothetical it may be. Again entangled state was
used to show this result.

Let us consider a system of two particles where Alice holds one and Bob holds
the other and they be far apart. Let A, A’ denote measurements that Alice can
make where outcome will be 11 only, B, B’ denote measuremen:s that Bob can
make where outcome will be +1 only.

All Local-Realistic theories will produce the following results of measurements

of Alice and Bob which will be bounded above and below.

-2<[{(A,B)+(A,B)+ (A, B) - (A, B) <2

or, ~2 < Beysy < 2 (called Bell-CHSH inequality)
But if we consider Alice and Bob are sharing singlet states

,) = 71§[|0>A|1)B = 11) 40} 5]

e,

and they choose the observables A, A’ B, B in_such _a way that a,a bl
lie in the same plane with ¥ radians seperating a/,b and b,a and @ a, b

Then the above inequality will become —2+v/2, a direct contradiction. But for
any product state or for any mixture of product states the above inequality is
satistied. Now the question arises: Do all entangled states violate Bell's inequality
and in this sense non-local?

Surprisingly there exist states namely which although entangled satisfy Bell's
inequality. Let us give an example of such a state which is called the Werner

state. Wp = FIU ) (U,|+ 55T Q1

For0 < F' < 715, W satisfies Bells inequality. Now it will be shown that for
1 <F< % the Werner state is entangled but satisfies Bell’s inequality. We now
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- construet a unitary operator called flip operator in the following way:
V on a 2@ 2 system acts in the following way

Vile) @ o) = 14) ® |¢)

Hence for all product states

(Y] ® (BIV ]y &0 |p) >0
Hence for all product states P, Tr(p.V)> 0.

If for any density matrix of a 2 ® 2 systemn p, shows Tr(p.V)< 0 then p is
definitely entangled.
In case of Werner states Wy, Tr(WpV) < 0 for L < P <.

But there is violation of Bell’s inequality for F' > 715

Hence, if for a given density matrix, Bell’s Inequality is satisfied, the state
might have quantum correlation (i.e. entanglement). But just now we constructed
the flip operator which can sense entanglement. It is not true that if Tr(p,V)> 0
means that p is separable. Consider the following state
pp = PV ) (V.| + (1 — p)|0)]0)(0{(0], for 0< p < L Tr(p,V) > 0. But, we will:
show later that for p > 0 this state Py 1s entangled.

We will now proceed to understand entanglement by using some necessary
conditions for separability of Mixed states in general. A breakthrough result is, a
separable state remains a positive operator if subjected to a partial transposition,
(say on particle 2). A separable state is ps = Lyw PV ® P! 2)

where 1 and 2 denote the particle or system label. Taking the partial transposce
on p, with respect to particle 2, we get

po = Zaw; PV @ (P{®)T

T denotes the usual transpose operation. After the transpose operation a positive
operator remains a positive operator. Hence, p, = Z,w; PV @ Q;? = p* whero
(; is also a positive operator.

So for all separable states partial transposition keeps it positive.

We now show an example of a state which is not separable and does not
remain positive after partial transposition is done over it. Any density matrix in
some basis |i7)(kl] can be written as pyy = Piirt|E7) (Kl
P71t = pyalig) (Kl
Now take p,? = p|W,)(W.| + (1 — p)|00)(00).
pgm _

l—p 0O 0 0
0 p/2 —p/2 0
0 -p/2 p/2 O
() 0 0 ()



l1-p 0 0 —p/2
0 p/2 0 0
0 0 p/2 0
-p/2 0 0 0

which is definitely negative for p > 0. So, p, is entangled for p > 0. Interestingly,
NPT(non negative under partial transposition) density matrices are entangled
and this criterion is necessary and sufhicient for 2 ® 2 and 2 ® 3 systems.



' Chapter 4

Quantum teleportation and dense
coding

4.1 Introduction

Before starting discussion on Quantum Information theory let me quickly review
classical information theory very briefly. The basic need of information theory is
to encode some amount of news (information) by some means and to decode the
encoded version to retrieve the news when required.

Whatever paradigm we choose this is the basic objective of studying Informa-
tion theory. In classical information theory the fundamental unit of information
is bit. We encode an amount of information by the classical bits which can be
either 0 or 1 at a time but essentially not both.

To decode the information essential strategy of the receiver is to measure the:
bit which we can always do easily classically.

The receiver can also have some prior knowledge of the outcome. Say the re-
ceiver knows that the probability that 0 will occur is py and the priori probability
of 1 is p;. In this scenario Shannon’s remarkable theory gives precise mathematical
quantification.

These features of classical information differs draunatically in case of quantim
information. The fundamental unit of quantwin information is a qubit. In a two
level system with orthonormal basis {|0),|1)} the most general form of a qubit
is given by |y) = a|0) + 3|1) where |a|? + |B]? = 1. The information is encoded
in a and . In contrast to the classical physics, quantum measurement theory
places several limitation over the amount of information that we can extract.
Most remarkable fact is that although most of the information is inaccessible but
still it is useful. And this feature of quantum information makes a huge impact
on cryptography and quantuin computing.

Another great difference of quantumn information with classical inforimation
is that like classical information quantum information can not be copied. The
fact is guaranteed by one celebrated result of quantum mechanics namely "No
Cloning Theorem”. x

The most remarkable difference between classical information and ¢uantum
information is due to Quantum entanglement. In the chapter 1, T have al-
ready described what is meant by quantum entanglement. If two classical system
interacts once and then they are kept few light vears apart. Can measurement
over one of them effect the state of the other? certainly the answer is 'No™. But
if we allow two quantum system to interact in such a way that quantim en-
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é'-tinglemel#,;iﬂ cstablished between theny, and then we separate them as many
light yearsg as we wish, the measurement on any one of themn changes the state
of the othdr. The magical "Quantum Entanglement” has no classical count.er-
part. Quantum entanglement is the heart of quantumn information. I will describe
two of the major breakthrough results namely ” Quantum Teleportation” anud
"Quantum Dense Coding”, which was made possible because of entanglement,

in the upcoming section.

4.2 Quantum no cloning theorem:

Theorem: Unknown quantum state can not be copied
Proof: Let if possible there exists an unitary operator U which is a cloning

operator.

U

( 0)10)
U(

D)

In the above expressions {¢) is the state on which the wanted state will is
copied. Now let us apply the linear superposition principle on U. If U exists then
the following must be true:

"lq._-.,ll"
i

0), ¢
1), ]¢

g
o

1

U(al0) +b]1),1¢)) = aU(]0), |¢)) + bU(|1), |¢)) = al0}|0) + b|1){1)

Which is in general not equal to (a|0) + b]1))(a|0) + b|1)).
Hence universal quantum cloning machine does not exists.

4.3 Unitary Transformation

Before describing further result of quantum information let me first state some
useful single qubit & two qubit quantum state transformations.
Single qubit quantum state transformations: {I , X .Y ,Z, H }

I:1{0) — |0)
I:1]1) —|1)
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Z : |0y — |0
Z : |1) — —Il)

— 75(10) + 1))
— 75(10) = 1))

Double qubit quantum state transformations: Controlled Not
(CNOT)

CNOT is a two qubit quantum gate where the first bit is taken as control bit.
If the control bit is 1 then the gates Hips the second bit and if the control bit
is 0 the gate keeps the second bit as it 1s. In both the cases it keeps control bit
unchanged.

Mathematically this transformation is given hy:

Chot : UO) |OU)
Cﬂﬂt : ) >
Crot & |10) — [11)
Chot = {11} — |10)

4.4 Quantum Dense Coding

Say Alice receives two classical bits, encoding the number 0 to 3. If Alice wants to
send this information to a distant separated Bob then he has to send 2 classical
bit of information. Surprisingly enough Alice can do the same job by sending only
one quantum bit (qubit) through quantuin channel if he shares one maximally
entangled pair with Bob.

Depending on the information Alice has to send Alice performs one of the
transformation {7/, X,Y, Z} on his qubit of the entangled pair |¢) = ﬁ(i(][)) +

[11}). The resulting state is shown in the following table.

Value Transformation
New state

0 I -5 (]00) + |11))
| X —(110) + [01))
2 Y 75 (=10) +101))
3 Z —5(100) — [11})

Alice then sends his qubit to the Bob.
Now Bob applies a controlled not gate to two qubits of entangled pair.
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Initial state Controlled not First bit Scecond bit
2=(]00) + |11)) —5(100) + |01)) 7 (10) + 1)) j0)
J=(110) + 101)) Z(I11) +Jo1)) 2 (1) +]0)) 1)
A0 +o1))  L(—j11) + Jo1)) A +H0) )
A0 —1D)  Hey - 10) Lo -y )

Bob can now measure his qubit without disturbing the quantum state. If the
measurement returns |0) then the encoded version was either 0 or 3. And if the
measurement returns |1) then it was either 1 or 2.

Then Bob apply Hadamard transform on the first qubit and measures it to
distinguish between 0,3 and 1,2.

4.5 Quantum Teleportation

The BBCJPWI[9] protocol illustrates the following method. Alice and Bob are
two distant separated parties sharing some a priori maximally entangled state
say [@) = 12(100) + [11)). Alice has a qubit Ix) = a]0) + B]1) which she wants to
send to Bof

What Alice does is that she operates [X) with her half of the entangled pair

Le., the state is given by:

X) ® |p) = 715{{1]000} + al011) + F|100) + AI111)} = %{¢+(a|()) + A1) +
@™ (0) = BI1)) + ¥+ (al1) + B10)) + p(a]1) - BlO))}.

Now Alice does bell state measurement on her two qubits and gets outcome
either of ¢*, ¢, ¥, v~ with equal probability. Then Alice makes s phone call to
Bob to indicate her outcome 1.e., Alice uses two classical bits of information to
tell Bob either of the four outcomes. |

Bob can now easily retrieve |x) accurately by the tollowing decoding process:

Alice’s outcome Bob'’s state Decoding
PF a|0) + G|1) I
e a|0) — B]1) Z
P a|l) + 3]0) X
Pt ajl) — 3]0} Y

~ After the decoding process Bob can successhully retrieve the origina) state | )
to hit. Hence by utilizing prior shared entanglement Alice is able to conmmunicnte
the full quantum information of [x) by transmitting merely two bits of classical
imformation to him.

For teleporting an arbitrary nnknown qubit the BBCIPW protocol FeQUITeS
one maximally entangled channel and two bits of classical comnunication, But
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what if some a priori information is available about the qubit to be teleported?
Ghosh et al[8] have shown that even if the state to be teleported is known to he
one of the two non commuting qubits, the channel must be maximally entangled
L.e., the sender and receiver must share one chit.



Chapter 5

Teleportation of entanglement

5.1 Our Goal

Suppose instead of a single qubit an arbitrary state of two qubits is to be tele-
ported. The arbitrary state may or may not be entangled. Our motivation here
18 to sort out the protocols, channels for teleporting arbitrary entangled states in
particular of two qubits. The resources required in terms of channel entanglement(
ebits) and classical communication (cbits) shall also be investigated.

5.2 Situations regarding requirement of resources for
teleporting entanglement using LOCC on the subsystems

Consider now a different situation. A source delivers an arbitrary two qubit en-
tangled state to Alice which must be finally shared between Bob; and Bob,.
Instead of state teleportation Alice has the task of entanglement teleportation.
It would suffice if Alice shares a maximally entangled state with Bob,; and
another with Bob,. Alice would then just teleport the two qubits using the
BBCJPW protocol. But what if Alice shares with Bob;-Bobs, less than two
ebits of entanglement? Suppose Alice shares with Bob; and Bob, the GHZ state.
IGHZ) = VIE(IOGO) + |111)). Would the same feat be possible now? Gorbachev

and Trubilko[10| have considered this case and shown that if the state has been
prepared in the Schmidt basis {|0'0"),|1'1")} i.e., if Alice knows that the state is
of the form |x) = a|0'0") +3]1'1") with known |0'0"),|1’ 1"} but unknown Schnicdt
coefficients a, then this state can be made to share between Bob; and Bob,.
Ghosh et al[12] have shown that even if Alice and the two Bobs share the state
lghz) = 715( |000) + |1¢'1}) where |¢) and |¢ ) are not necessarily orthogonal, it

is possible for Alice and Claire to make the two Bobs share the state |y ) =

alg0’) + Ble'1).

5.3 Description of exact teleportation of an arbitrary
entangled state of two qubits via two maximally
entangled channels by using the BBCJPW protocol

Suppose Alice; and Alice; share with Bob; and Bobs two maximally entangled
channels in state |17). In addition Alice; has qubit C; and Alicey has qubit Cs
where C; and C; are arbitrary entangled state. Thus systems A, and C, are in
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Alice,’s possession, A, and C, with Alices, B; with Bob; and B, with Bob,. Now
if Alice; and Alice; perform a Bell measurement on their systems CyA; and C,A,
and communicate classically the results to Bob; and Bob, respectively who then

apply the respective unitary transformations resulting in the original entangled
state of C; and Cs to be shared between Bob; and Boby. The number of ebits
required is two and the cbits required are four.

0.4 Teleportation of entanglement via GHZ states

Suppose Alice shares with Bob,-Bob, system less than two ebits of entanglement,
as in the case of the GHZ state, |GHZ) = 715(|000) +{111)). Gorbachev and Tru-

bilko[10] have considered this case and shown that if the state has beer prepared
in the Schmidt basis {|0°0"),|1’1")} i.e., if Alice knows that the state is of the
form |x) = «[00") + B|1’1") with known 0'07), [11") but unknown Schmidt

coeflicients «a, G then this state can be made to share between Bob, and Bob,.

9.5 Teleportation of entanglement via two same Bells
' mixture channels

Consider the following situation[13] ppy = wP[|¢*)] + (1 — w)Pl|ld7)] Jld2) =

¢) = a|00) + B|11) with |a|? + |82 = 1. Now both pairs Alice; and Bob; and
Alice, and Bob, share the channel in the state peym. Then Alice,, Alice;, Bob,
and Bob, together follow the teleportation protocol Pg. The ocutput state op,p,
is ||?]00){00] + (2w — 1)2a3*100) (11} + (2w —1)?Ba|11){00] + 1814111 (11|, which
remain inseparable for each w % . Interestingly only for w=1/2 does the channel
itself become separable.,
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Chapter 6

Searching for channel states as well as
protocols with lower:entanglement as
resource

6.1 Smolin’s state

Stolin{11] discovered a gtat o shared boetween four parties which has some intor-
esting properties, If four parties are kept apart, no entanglement can be distilled
between any two parties by LOCC. In any 2 parties vs 2 parties cut the state

state. It will be shown that any two parties sharing the Smolin’s state can teleport
Some pure entanglement ( though not exactly)in a proper basis. Then we study and
Compare their initial and final entanglement. After that we study the teleportation
of entanglement through the channel state wPl|¢*) ®|p*)]+ (1-w)P|[pt) R|pt)]
and will show that it teleports all pure entangled states in g given basis exactly.
It also teleports entanglement in g maximally entangled states (in any basis).

Consider the Smolin’s state [11] shared between four parties Alice;, Alice,, Bob,
and Bob,

e, = HPI9) @164+ PlI ) 0167)] + Pllut) o)+ pijye @)

[¥)aB = |00) + gj01) + 7/10) + &]11)

where Alice; has qubits A; and A in her possession and Alice, has (guhits B, and
B in her possession. The joint state state s given by P[ly) 4 B| ® pf,fl BiCy Dy -

Now Alice; and Alice; perform Bell measurement on A A, and B,B; and
communicate the result vig classical communication to Bob, and Bob, respec-

transformations on their qubits, namely Ci and D,
Protocol using the result of the Bell Measnrement.

Measurement Operator

#') 4



¢ 0,
) Oy
) a7,

T'he final state shared by Bob; and Bobs, is a Bell mixture:

7cn, = |SF PP + (22 2 Pll67)] + |E2 2 P(lyr+)] + 5F P Plv)]

We find that if the initial state is any of the four Bell states in either
(100), |11)) basis or (|01}, 10)) basis then it is teleported exactly. The entangle-
ment of initial state is

E(lYan)) = —Ailoghy — Alog,

14/ 1-4|8y—aé|?
where Aj, Ay = v 2“’ |

The output state has entanglement of formation

E(UCIDI) = E(C(p))

where e(x) = 1+\/§:‘-”[0921+\€1—_I’ 1-\/2'1‘__1710921- =
ana z = C(p) = maz(0, Ay — Ay — A3 — X\g)

where Al > /\2 > A3 > A4

ac,m =

Ak

ln—ﬁ‘?
2
Lk
2 —Y |2
1=

Hence the class of input states for which the output state is entangled, satisfy
A1 2 A2+ Az + Ay where \,’s are the eigenvalues of the above raatrix.
Case for input states with known Schmidt basis.

Take the input state [¥)) 15 = \/quf?),q R x)p+ V1= Ao 4@ |IxHp

NOW pSAlBICIDI — %Edi=1P“Bi>A]B] ® 'Bi)cli)l] Whel‘e
\B1) = |¢7),|By) = |¢7),|B3) = |[¢+),|Ba) = ™)

Also,
D)+ | x) = |B))
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Ox) = |t xt) = | B
Ox )+ loty) = |B)
OXT) — |otx) = |B)

The transformation of basis |Bi) — | B! is by the following unitary transfor-
mations.

Uai10) 4, = |§) 4,
U/h 1)-’11 == ¢'_L)/’u
U0, = |x) p,
Unil)p, = |x1t)p,

U(_?, U)CI — ¢’)C,
Ul Dey = |ét)e,
Unl U>D1 = IX)AI

Uﬁl 1>U1 = 'X-L>Al

’

p° UA: @ UB| @ UCI ® U»Dl p’ Ulfh X Ulﬂl ® UJ-CI ® ULDI?

!

P = a1 PlB) g5, ® 1B, |

l

W)ap = ﬁ+‘)2ElBi)AB + 2 X gy

The output

ey = PASERRPYBY) 4 AT 2 pyi )

Now W) ap = VAlp4) ® XB) + V1 -}l ® X3)
pa = Ada){dal + (1 ~ AMoi) (o]

T'he corresponding eigenvalues are A, 1 — \.

- E(1WaB)) = ~MogA — (1 - A)log(1 — A)

The final state botween Bob, and Bob, is

pern = PRSP B 4 | i 2 pyy gy,

Now p = (0, ® 0y)p" (0, @ Oy)
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In our case pto=p,

Here T, = (? -(_)?)

HlldR:\/\/;_?ﬁ\/;—) = p asp=ygp

R gives the eigenvalues Wi, Wa, Wy, wy = l‘/x*%l_“j]r", ] ‘/’T‘"“/gﬁqlﬂ, (0,0

Now F(p) = e(C(p)) where

E(IH) — l—f-vz}—-:r!logzl—i-v’zl-—::! l-vzj'l-—:r!zog?l—v;h:r!
where r = Clp) = maz(0, A; - A, — Az — Ay)

Also Wy > wp + wy + Wy

or that the entanglement is preserved in case of teleporting a ‘state in kiown
Schmidt basis. Though the teleportation of the pure entangled state in g given

basis has been changed to a mixed state the entanglement of formation(which is
a measure of entanglement) remains unchanged.

6.3 Teleportation of entangled states via the state:

Consider PABiCiD, = wWPlpt) 4 0 ® 16%) 8,0, + (1 — w)Pll¢™) 4,0, ® '415"‘)'19101]

This state has the interesting property that in g ? party vs 2 party cut it
has 1 ebit of entanglement. Consider the Input state

Wag = a|00) + A01) + Y110) + 8]11) which is to be teleported.
Using Bell measurement and LOCC the output state is

e :wP[alUU)—Fﬁ]Ul)+7[10)+6[11)]+(1~w)P[rlf|00)—nﬁl{Jl)-—’}fll(J)+c5|ll)]

Now Tenp, 18 entangled iff the self adjoint matrix o7, D, has atleast one
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negative eigenvalue,

ol Dy =
x| (2w — 1ap* (2w — 1)ya? v(3*
(2w — 1)Ba* 13|? Sar* (2w — 1)65"
(2w — 1)ary* ad* v |2 (2w — 1)~6*
3 (2w - 1)36* (2w~ 1)6~ 6]

Now for the case when w = 1/2 the state PA By Dy 18 nOt entangled in genoral
and not all input entangled states give the corresponding states entangled. An
example of this would be the maximally entangled state
v|00) 1+ [zlﬂl) + 7110) + §/11) where

1

(Y =— 756
7 = 7158"“’
— 1 if4+d—w
Y= /3¢
& = 1 Piq&
75 ;

where the output is not entangled.
Now interestingly one can teleport pure entanglement ejther in (00}, [11))
basis or (|01),]10)) basis exactly for any w. For w # 1/2, let us choose,
— 16
 =Tre

3 = roett
Y = 130t
O = T‘dﬁigd

and § = ()1 -+ 94 — 92 — 93
The cigenvalue expression gives us:

| % - A+ 4w(l — w)(r? + ri)(rd + rHA2 - A(rir? — rird)(r? + ré —
ry — 13) + 2(2w — 1)2r1r2r3r40c}39~—r;"'rf(r§+rg) — rgrg(rf—l—rf)] — [(rry —
rg?";;)2+4(2w— 1)2?“1?‘2?‘3?48?:?129/2”(?‘1 T4 +T‘g?‘3)2—-4(2w- 1)2?"1 ?"2?"3?‘40()829/2] = ()

Clearly by analysis of sign the expression always has a negative eigenval_ile
unless the original state is itself not entangled. This indicates that the output is
entangled if the input is entangled.

6.4 Entanglement in the channel state p4,5,c,p, in the
A;Bl VS C]DI cut

Now what about the entan lement in the channel statoe Ay p, In the Ay By vs
g 131 C Dy
D1 eut? There is a standard result that distillable cntanglement is bounded

above by log neg calculated for the state pi,p ¢ n, where log neg is defined
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as the snum of the negative eigenvalues of the partially transposed matrix w.r.t

eithoer AlBl Or C}D;.

log neg (E,) has been calculated for PA B D, and it was found to he
v, = 2 — H(p) or distillable entanglement, Ey of pa, p,c,p, should satisfy
Ed E 2~ H(p)

Again there)is a well known conjecture by Eisert et.al [14] which tells that if
Alice and Bob share some pair of qubits, with some classical information about
the state, then if they lose that classical information quantified as DI, then the
amount of distillable entanglement they lose is related to DI as

AL, < DI

Using this result one can show that E;, for P A, B,C, D, Satishes (here, p = w

kg > 2 — H(p)
S50
Fq =2 — H(p)

and g > 1 for p # 1/2
5O the channel state with p # 1/2 has distillable entanglement more than 1 ebit
and interestingly in these cases only oc,p, remains entangled for all input pure

entangled states.

6.5 Discussion:

It Ay, By,Cy, Dy all are far apart and when A\ B, share some pure entanglement,
then, let A B; try to teleport the state to C, Dy so that the teleported state
remains entangled for all input pure entangled states. The relevant question is
what is the required entanglement of the channel! state PA By D, 10 the cut
AlB; VS CIDI

One obvious solution is

PABCID = '¢'+)AICI (¢+,®[I‘¢+)(¢+I | IITI@I]BlDl

For this channel and standard Bennett protocol all pure entangled states

between A;B; will be teleported to C, D, keeping some entanglement. Obviously
the entanglement of the above channel state E}, is greater than 1.
But it is an asymmetric channel state. Qur previous example is a symmetric
channel state but one thing is common. Required entanglement should be greater
than 1 ebit. We conjecture that for some distant parties, if two parties want to
teleport some pure entanglement(inexactly with the aim that the teleported pair
remains entangled) then more than 1 ebit of entanglement is necessary.
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