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Chapter 1

Introduction

Throughout our life. we make decisions. with or without conscious thought. This decision
may be as simple as selecting the color of the dress that we are going out with or as
difficult as those involved in designing a missile. The former decision may be taken in a
fraction of a second. while the latter one mught take several years. The main goal of ghis
latter kind of decision-making is to minimize cost as well as maximize gain. where gain
might be defined in different ways while dealing with different kinds of problems. In
other words, problems related to optimization of different criteria are widely prevalent in
real-life. Development of optimization algorithms has therefore been of great challenge in
computer science. The problem is compounded by the fact that in many situations one
may need to optimize several objectives simultaneously. These problems are known as
multiobjective optimization problems. The present work deals with development of some

such complex multiohjective optimization algorithms.

1.1 MultiObjective Optimization Problem

Taking the example from {15], we may think of the case of purchasing a car. The
purchaser wishes to satisfy the following criterion: minimizing the cost. insurance
premium and weight and maximizing the feel good factor while in the car. The purchaser
also wants the car to have a good stereo system, seats for six adults and a mileage of
2'Okmpl. If we view this situation in mathematical model, the available cars are the
problem’s decision variables, the conditions to be met are the constraints and the process
of minimizing and maximizing the criterion is called optimization. An objective function
based on the decision variables is used to determine an associated vector representing
how well some particular vehicle satisfies the criterion. Because multiple objectives are
simultaneously considered, this problem is known as MultiObjective Optimization

- Problem (MOOP).

In the same manner. in most of the real world problems we face, we have to
simultaneously optimize two or more different objectives. which are often competitive in
nature. Finding a single solution in these cases is very ditficult. if not impossible. In this
kind of problems. one way of thinking might be to optimize each criterion separately. In
some earlier works. efforts were made to convert the multiobjective problem to a single
objective problem. But it may so happen that optimizing one objective lead to some
unacceptable low value of the other objective(s). Thus we need to treat all the objectives

together, which needs a detailed analysis.

In the world of management, this type of problem is known as muttiple criterion decision
making (MCDM). To make things clear, we provide another example of decision making
involved in selecting mode of transport. Suppose we want to travel from a piace A o
another place B. If we avail a bus, we have to pay Rs. 5.00. If we go by a minibus. we go



a bit quicker, but have to expend Re. 1.00 more. If we want to go faster we need to pay
Rs.10.00 for traveling in super fast bus. And if we are in real hurry, we have to go by a
taxi, which will take Rs.50.00. Now if the cost is the only objective of this decision-

making process, then the optimal solution is getting the bus. Again if time were the only
factor everyone would have availed taxi. But if we do not have any such constraints, then

we can avatl any mode of transport and in real world, this problem becomes a true
multiobjective kind of problem. Because here between any two solutions, one is better
than the other in terms of one objective, but at the same time it is worse in terms of the

other objective.

Thus we are not n a position to get a singie solution, which would be the besr. In general,
in MOOP we can hardly have a single solution; rather most of the time, we have to settle
for a set of alternative optimal solutions. They are optimal in the sense that no other
solutions in the search space are superior to them when all the objectives are considered.

The set of solutions of an MOOP consists of all the decision vectors for which the
corresponding objective vectors cannot be improved in any dimension without
degradation in another - these vectors are known as Pareto optimal.

Webster’s dictionary defines the term effective as the production or the power to produce
an acceptable result; efficient is defined as acting in such a way as to avoid resource loss
or waste in functioning. The goal of any algorithm that intends to solve the MOOP should

be to achieve the Pareto-optimal set effectively and efficiently.

Evolutionary algorithms like genetic algorithms etc. are widely used as effective search
and optimization tools in many problem domains. Simulated annealing is another such
optimization technique that is based on the principle of statistical mechanics.
Conventionally these algorithms have been applied for single criterion optimization. In
recent times, attempts have been made to modify these algorithms, so that they are able to
perform multiobjective optimization. These attempts have targeted the evolutionary
algorithms more because of their population based nature. Only limited attempts have
been made in case of simulated annealing since it is essentially a point by point search. In
this dissertation, we try to alleviate the disparity in the literature by developing an
efficient multiobjective simulated annealing algorithm.

1.2 Choice of Simulated Annealing

Evolutionary algorithms are one of the popular search methods. They mimic the
metaphor of natural biological evolution [37]. Evolutionary algorithms operate on a
poputation and by applying the principle of survival of the fittest, they produce better and
better approximations to a solution. Simulated Annealing (SA) is another powerful
technique for finding good solutions to a wide variety of combinatorial optimization
problems. The concept of simulated annealing originates from the principles of the
annealing procedure, which is a physical process. As MOOPs have many solutions, till
now evolutionary algorithm (EA) has been the natural choice [2] for solving complex
MOOPs 1nstead of Simulated Annealing (SA). In the literature. there are very few SA-
based MOOP-solving algorithms. However, this dissertation attempts to use SA in the



area of MOOPs. The reason behind this chojce of SA is the powerfulness of this tool,
which stems from its good selection technique and annealing scheme. Another reason
why SA performs well is annealing, that is, the gradual temperature reduction technique

[5].
1.3 Quality Measure

Another issue in the study of MOOP that is gaining much Importance nowadays is that of
assessment of the qguality of the solution obtained by a specific algorithm, 1.€., Once an
‘Observed Pareto set' is obtained by an algorithm, it is usually of great interest to know to
what extent the observed solution set represents the true Pareto frontier. In single-
objective optimization. quality can be simply defined by means of the objective function:
the smaller (or greater) the value, the better the solution. In contrast, quality 1s itself
multiobjective in the presence of several criteria in MOOP. Because of this. there 1S not
even a universally accepted definition of “optimum’™ as in single-objective optimization,
which makes it difficult to even compare results of one method to another. Normally the
decision about what the besr answer 1s corresponds to the so-called (human) decision

maker.

As 1t is often not clear what we mean by quality in case of several optimization criteria -
closeness to Pareto tfront, uniform distribution on the front or coverage, until recently
graphical plots were used for comparmg the outcomes of Multiobjective Evolutionary
Algorithms (MOEA) and other Multiobjective Optimization (MOQ) strategies [15]. But
visual and intuitive quality assessment can often be misleading and in some cases
impossible when the number of design objectives is more than three.

As suggested in [19], we may notice that there are two distinct goals in any MOOP. One
of them is to find solutions as close to the Pareto Optimal front as possible and the other
one Is to try to disperse them as much as possible on the obtained non-dominated front. In
Some sense these two goals are orthogonal to each other, as the first one searches for
points towards the Pareto optimal front and the latter one along the front. A good
algorithm that intends to solve MOOP, should try to achieve both of these two goals. We
can also think of another goal in this context: an algorithm should Iry to maximize the

number of solutions obtained.

1.4 Goal of the Dissertation

This dissertation attempts to provide an insight into the world of MOOP, discuss some
basic concepts dealing with MOOP. Also it gives a review of the existing Measures to
check the nicety of a solution and introduces two new concepts regarding this area. The
other goal of this work is to introduce a new elitist algorithm that solves MOOP. The
basic tool that has been used in this work to solve MOOP is simulated annealing, which
has not been explored 10 a great extent in this area till date. The proposed algorithm has
been tested on different problems, and also compared with two relevant existing
algorithms: Pareto Archived Evolution Strategy (PAES) and Multiobjective Simulated
Annealing (MOSA). The éﬂmparison has been done using three existing nicasures

Error Ratio, Spacing and Spread. The probicms have also been tested using our proposed



measurc. The results show that the proposed algorithm performs quite satisfactorily
compared to thesc two existing algorithms. Also a different kind of problem called
Mimimal Deceptive Problem (MDP), that deceives the optimization algorithms from

finding pareto optimal solutions, has been explored in this work and an instance of MDP
~ has been proposed and tested.

1.5 Scope of the Present Work

The remainder of this document is organized as follows: in Chapter 2, we discuss the
basic theories of MOOP. After that we give a brief introduction to simulated annealing
and the reasonebehind its choice as the basic tool in our work. Chapter 4 deals with some
existing relevant works, viz. SPEA [4], MOSA (5] and PAES [10]. We give the outline of
our proposed algorithm in the next chapter, i.e., Chapter 5. Chapter 6 is devoted to
measures. In Chapter 7, we present the performance comparisons of our proposed
algorithm with respect to MOSA and PAES. The scope and possible direction of future
work in this field has been explored in Chapter 8. References are provided at the end.



Chapter 2

Issues in MultiObjective Optimization
Problem

2.1 Introduction

For any farther discussion on MOOP. we need to be conversant with terminologies like
dominance relation, pareto optimality. In Section 2.2, we first formally define
muitiobjective optimization problem. Then in Section 2.3, we introduce the concepts of

dominance relation and pareto optimality. Using a simple figure, we try to explain these
concepts. We extend these ideas in Section 2.4 and Section 2.5 to discuss nondominated

set, strong and weak dominance. Also we have used the concepts of ranking in comparing
the solution set obtained by different algorithms while solving traveling salesman
problem. For this reason. ranking has been defined in Section 2 6. Section 2.7 concludes

this chapter.

2.2 Formal Definition of MOOP

An MOOP has more than one objective function, which are to be optimized
simultaneously. Like single objective optimization problem, the problem has a number of
constraints that constitute the feasible solution space. A general MOOP can be described
as a vector function f'that maps a tuple of m parameters (decision variables) to a tuple of

n objectives.

- Formally:
min/max y = f(x) = (£,(x), f,(X}....  (x))
wherex = (x,,x,.x,....x_Je X
Y=y yiey, ey

Here x is the decision vector. X is the parameter space, ) 1s the objective vector and } is
the objective space. It is often referred to as vector optimization because a vector of
objectives f = (f|, 3, .... fy). instead of a single objective is being optimized. These
multiple objectives often conflict with each other. The opposing objectives place a
partial. rather than total order; ng of the search space.

2.3 Dominance Relation and Parcto Optimality

An important concept of multiobjective optimization is that of domination. Most
multiobjective optimization techniques use the concepts of dominance relation and Pareto
optimality. We give the formal definitions here corresponding to a maximization
problem. The definitions are easily extended to minimization problems.

N



Dominance Relation

Let us consider two vectors ¢ and h e X
Fhen a is said 1o dominate b ift

Viel2oony: fa)2 f(bYyATje{l,2. n S a)> [ (b)
... for all vector tunctions f.. ¢ has 2 higher or equal value than that of b and also there
ex1sts at least one vector function i tor which a's value is strictly greater than that of 4.

We can explain this usmg a two-objective optimization problem. It has five different

; . »
solutions. as shown in the figure below.
We also assume that the objective function f; needs to be maximized while the objective

function f; needs to be minimized. Five solutions having different values of the objective
functions are shown in Figure 1.

f2 (minimize)4

f; (maximize)

FIGURE I: Example of dominance, pareto optimality

Now we can use the definition of domination to decide which solution is better between
any two given solutions in terms of both objectives. Considering solution 1 and solution
2, we find that solution 1 is better than solution 2 in objective function t) as well as in 15.
Thus we may write that solution 1 is better than solution 2. i.e.. solution | dominates
solution 2. Again i’ we compare solution 1 and solution 5. solution 5 is better than
solution 1 in terms of objective function t; and they have same value in terms of objective
function f5. In this case also. we may write solution 5 dominates solution 1 Intuitively,
we can say that if a solution ¢ dominates another solution A, then the solution v is better
than b in the parlance of multiobjective optimization. Thus the concept of domination
allows us to compare difterent solutions with multiple objectives.

Properties of Dominance Relation
F'he different binary relation properties of the dominance operator are as follows:

§



Reflexive: The dominance relation is not reflexive, since any solution p does not
domunate itself. The second condition of the definition is not satisfied in this case.

Symmetric: The dominance relation is also not symmetric, because if ¢ dominates 5. it
does not imply that 4 dominates «. Actually the opposite is true. Thus, the dominance.

relation 1s asymmetric.
Antisymmetric: Since the dominance relation is not symmetric, it cannot be

antisymmetric.
Transitive: The dominance relation is transitive. This is because if p dominates ¢ and ¢

dominates r, then p dominates r-
Another interesting property that the domipance relation possess is that if a solution p
doest not dominate solution b, this does not imply that b dominates a.

2.4 Nondominated Set

- All decision vectors that are not dominated by any other decision vector of a given set are
called nondominated with regard to this set. Therefore the set of non-dominated solutions

with respect to the entire parameter space constitute the Pareto-optimal front or the
Pareto-optimal set. As stated earlier, the goal of a multiobjective optimization technique

should be to find this Pareto front efficiently and effectively.

We tocus on the previous figure (Figure 1) once again. If we compare the solutions 3 and
5, we find that solution 5 is better than solution 3 in terms of objective function f;, but
solution 3 1s better than solution 5 in terms of the objective function f;. Thus we cannot
conclude from the definition of dominance, which solution is the better one. Thus they
are nondominated with respect to each other. The set of all such points constitute the
pareto optimal set. In Figure 1, solution 3 and solution 5 constitute the pareto optimal set.

2.5 Strong Dominance and Weak Pareto-Optimality

Strong Dominance

The dominance relation previously defined is sometimes referred to as weak dominance
relation. This definition can be modifted and a strong relation can be defined as follows:

A solution « strongly dominates a solution b if solution « is strictly better than solution b
in all the objectives. Now if we again refer back to the previous figure (Figure 1), we may
find that solution 5 does not strongly dominate solution 1, as it is not stzrictly better than
solutton 1 in terms of objective function f}, though it weakly dominates solution 1. Thus
we may write that if a solution « strongly dominates another solution b, then it also holds
weak domination relation, but not vice versa. The definition of strong dominance may be

used to define a weakly nondominated set.

Weakly nondominated set

Among the set of solutions P, the weakly nondomnated set of solutions P’ are those that
are not strongly dominated by any other member of the sct P. The above definition



suggests that a weakly nondominated set found from a set of P solutions contains all
members of the nondominated ser obtained by using the definition of nondomirated set

from the same set P.

2.0 Rank

The rank of a solution x, in a population Q is said to be r; if the solution is dominated by
exactly r, number of solutions in the population. The nondominated solutions are of rank

ZCTO,

2.7 Conclusions ©

The concepts discussed in this chapter are the very basic ideas that are used throughout
this work. To follow the flow of any work on MOOP, these definitions are essential as all
the works on MOOP evolves around these basic ideas. The following chapter discusses
some existing MOOP solving algorithms. All of them require the concepts discussed in

this chapter.



Chapter 3

Simulated Annealing

. 3.1 Introduction

The tool that has been used in this work for solving MOOP is simulated annealing. Many
researchers have done work in the area of multiobjective optimization, using evolutionary
algorithms. Though simulated annealing has a strong theoretical background and also
been in the literature for a longer time than evolutionary algorithms, it has been rarely
used 1n the study of MOOP. We have made an attempt in this direction by proposing an
algorithm using simulated annealing as its underlying tool. The basic concepts of
simulated annealing have been discussed in this chapter and also the reasons behind the
selection of this particular tool, in spite of evolutionary algorithm, have been explained.
In Section 3.2, we introduce the basic principles of simulated annealing. Then in Section
3.3 a pseudo code of simulated annealing has been provided. Section 3.4 explains about
the reasons behind selecting simulated annealing in solving MOOP.

3.2 Basic Principles of Simulated Annealing

Evolutionary algorithms are stochastic search methods that mimic the metaphor of
natural brological evolution [37]. Evolutionary algorithms operate on a population of
potential solutions applying the principle of survival of the fittest to produce better and
better approximations to a solution. At each generation, a new set of approximation is
created by the process of selecting individuals according to their level of fitness in the
problem domain and breeding them together using operators borrowed from natural
genetics. This process leads to the evolution of populations of individuals that are better
suited to their environment than the individuals that they were created from. just as in
natural adaptation. Evolutionary algorithms model natural processes, such as selection.
recombination, mutation. migration, locality and neighborhood. Evolutionary algorithms
work on populations of individuals instead of single solutions. In this way the search is

performed in a paraliel manner.

9



The structure an evolutionary algorithm is shown in the following figure.

- Are
optimization
criterta met?

Generate inttial Evaluate objective Best

population function

individuals

3 f

A= +

START

SR oY [ | RESULT

Generate new v
population

il

Selection

; Recombination

'

Mutation l

....................................................................................

FIGURE 2: Structure of an Evolutionary Algorithm

The EA is started with an initial population set. Then it is evaluated according the
objectives of the problem. If the optimization criteria are already met by this set of
population, then we select the best individuals. Otherwise new population is generated by
using different operators like selection, recombination or mutation.

Simulated Annealing (SA) is another technique for finding good solutions to a wide
variety of combinatorial optimization problems. It mimics the principles of the annealing
procedure, which is a physical process where a crystal 1s cooled down from the liquid to
the solid phase. If the cooling is done slowly enough, the energy state of the crvstal at the
end will be very close 10 its minimum value, Simulation of this cooling may be done with
the Metropolis algorithm. Simulated Annealing generates sequences of configurations in
the following way: given a current configuration C; with energy E;, the next configuration
C, with energy E; is generated by applying a small perturbation in C,. If (E; - E,) is less
than or equal to zero, then C, is accepted as the current configuration. Otherwise. it is
accepted with a probability exp (- (k, — E/kgT), where T and k; represent the
temperature and Boltzmann's constant respectively. If the lowering of temperature is
done slowly enough, the crvstal reaches thermal equilibrium at each temperature,

The SA process may be viewed as a graph with an energy E assigned to cach node. Here.
the nodes are called states. the arcs represent moves from one state to a neighboring state

O



and the energy is equivalent to cost. The algorithm starts from a random nitial
configuration at high temperature. It then proceeds by generating new candidate states
and accepting/rejecting them according to a probabihity, which is a function of the current
temperature and energy difference. The temperature is gradually reduced to a minimum
value, while the system settles down to a stable low energy state [38].

The correspondence between the physical aspect of SA and an optimization problem has
been nicely defined in [39]. The parameters of the search space are encoded in strings
(usually binary) and these represent the different states: low energy states correspond to
near optimal solutions; the energy corresponds to objective function, and the temperature
1s a controlling parameter of the system. The Important tasks are to establish a way of
representing and generating different configurations (or states) of the problem and an
annealing schedule. The primary objective of SA is to find the global minima of a cost
function that characterizes large and complex systems. The main motivating idea behind
this powerful tool ts while optimizing a very large and complex system, i.e., a system
with many degrees of freedom, instead of always going downhill, try to go downhill most
of the time [27]. The major difficulty in implementation of the algorithm is that there is
no obvious analogy for the temperature T with respect to a free parameter in the
combinatorial problem. Furthermore, avoidance of entrapment 1n local minima
(quenching) is dependent on the "annealing schedule”. The annealing schedule is
determined by the choice of the initial temperature, number of iterations to be performed
at each temperature, and the rate of temperature decrement at each step.

3.3 Algorithm of SA

The most general algorithm of simulated annealing may be written as shown below: [39]
l. Begin

2 Generate the initial string randomly = ¢

3 I = Tipax

4 Let E(q,T) be the ussociated energy

5. while (T > T,,,)

¢ Jori=1tok

7 Muwiate (flip) a random position in q to vield s
8

Let E(s,T) be the associated energy
I

9. Set ¢ € s with probabiliry |+ o EGTrEG T T

10, end for

I 1. I'=rT

12. end while

13. Decode the string q to provide the solution of the problem.
14. End

In this annealing process, a new state is chosen with a probability
]

Pgs™ | 4 o Flae Pis i F
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The parameters of the scarch space are encoded in the form of = bit string of a fixed
length. The objective value associated with the string 1s computed and mapped to its
energy. The string with the minimum energy value provides the solution to the problem.
The mitial string (say q) of Os and 1s is generated randomly and its energyv value is
computed. Keeping the initial temperature high (say T = T'max), @ neighbor of the string
(say s) 1s generated by randomly flipping one bit. The energy of the new string is
computed and 1t 1s accepted in favor of q with a probability p.s, mentioned earlier. This
process 1s repeated a number of times (say k) keeping the temperature constant. Then the
temperature 1s decreased using the equation T = rT, where 0 < r < I, and the k loops, as
earher, are executed. This process is continued till a2 minimum temperature (say Tpin) is
attained. The temperature-reducing schedule may be chosen different from the one
mentioned above. Various cooling schedules are available that can be used with a

simulated annealing optimization.

Simulated Annealing has been successfully applied in various domains [40]. The domains
include computer design [41] [42], Image restoration and segmentation [43][44],
combinatorial problems such as traveling salesman problem [45] and artificial
intelligence [46]. It is, however, not always trivial to map an optimization problem into
-~ the simulated annealing framework. The difficulties come from constructing an objective
function that encapsulates the essential properties of the problem and that can be
efficiently evaluated, determining a concise description of the parameter configurations
and an efficient method for generating configurations and selecting an effective and

efficient annealing schedule.

3.4 MOOP and SA

As MOOPs have many solutions, evolutionary algorithm (EA) has been widelv used [2]
for complex MOOPs instead of Simulated Annealing (SA). Up to now there are few, if
any, alternative to EA-based multiobjective optimization. But we need to modifv them to
surte our purpose. When we consider the case of finding a set of nondominated solutions
rather than a single-point solution. MultiObjective Evolutionary Algorithms (MOEA)
have to perform a multimodal search that samples the Pareto-optimal front uniformly,
which cannot be done by a simple elitist EA that tends to converge towards a single
point. To overcome this problem, several methods have been proposed. The success of
EA approaches in multiobjective optimizations is mainly based on the population concept
with the ability of finding multiple optima simultaneously, which matches the idea of

MOOQOPs.

However SA, which reports good performance in single-objective optimization problems,
has been seldom used for multiobjective problems. The main reason is that SA usually
finds one solution instead of a set of solutions and this is a critical handicap in MOOP,
although SA has some favorable characteristics for multimodal search. The powerfulness
of SA stems from its good selection technique and annealing scheme. Another reason
why SA performs well is annealing, that is, the gradual temperature reduction technique.
As the temperature and the cost difference mainly determine the amount of mutation in
generating the next scarching point, SA can do local fine-tuning towards the end of
scarch to give finer results. However the disadvantage of SA is the long anncaling time.

| 2



There are some algorithms to take care of this issue like Fast Simulated Annealing (FSA),
Very Fast Simulated Re-annealing (VFSR), New Simulated Annealing (NSA) etc.

[30){31](32].

- But there has been little research into using the SA technique for multiobjective
optimization. The first and most significant problem is that SA uses only one search
agent. As solving multiobjective problem generally requires finding all the solutions at
the same time, some researchers have thought of using multiple search agents at the same

time, though SA was originally designed to use only one single search agent.

3.5 Conclusions

SA algorithm has been hardly used for multiobjective optimization because of these
initial ideas. This is known to be a critical weakness of SA as it betrays the philosophy of
multiobjective optimization — searching for all the Pareto solutions instead of only one
solutron. As the result of this weakness, SA has remained as one of the improper or not

favorable algorithms for multiobjective optimization.

In our work, attempt has been made to use this powerful tool (i.e., Simulated Annealing)
n solving MOOPs. Among the works studied in course of this dissertation,
multiobjective simulated annealing [5] is an important one, as it is one of those very few
algorithms that use simulated annealing in solving MOOP. But our proposed algorithm
uses concepts of clustering and archive, which are not there in [5]. However, some
. previous works exists that have explored these concepts. The relevant works are

discussed in the following chapter.
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Chapter 4

Some Existing MultiObjective
Optimization Techniques

4.1 Introduction

In the process of working out our algorithm. we studied most of the mcent relevant works
in the field of MOOP. It is not possible to discuss all of them in this report. We provide
briet descriptions of the three works that were most motivating in nature and encouraged
us to think in our way. They are Strength Pareto Evolutionary Approach [4],
Multiobjective simulated annealing [5] and Pareto Archived Evolution Strategy [10].
Section 4.2 deals with Strength Pareto Evolutionary Approach. Multiobjective simulated
annealing is discussed in the next section. Section 4.4 explores Pareto Archived

Evolution Strategy. The discussion on these present researches helps identify the
motivation behind the present work.

4.2 Strength Pareto Evolutionary Approach (SPEA)

We first study the Strength Pareto Evolutionary Approach (SPEA), proposed in [4]. It is
similar to other multiobjective evolutionary approaches in the following respects:

* Uses the concept of Pareto dominance in order to assign scalar fitness value to
individuals.

* Performs clustering to reduce the number of nondominated solutions stored without
destroying the characteristics of the trade — off front.

e Stores the nondominated solutions found so far externall y.

- But it is unique in the following respects

¢ It combines the above 3 techniques in a single algorithm

» The fitness of an individual is determined only from the solutions stored in the external
nondominated set.

* All solutions in the external set participate in the selection Drocess.

* A new niching technique is provided in order to preserve diversity. This method is
Pareto based and does not require any distance parameter like the niche radius for
sharing.

Algorithm of SPEA:

The algorithm of SPEA deals with a population. The detailed pseudo code of SPEA has

been given below.
I.Generate an initial population P and create an empty external nondominated set P°.

2.Copy nondominated members of P to P
3.Remove solutions within P* which are covered by any other member of P
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4.1f the of externally stored nondominated solutions exceed a given maximum N’, prune

P” by'means of clustering.
S.Calculate the fitness of each individuals in P and P’
6. Select the individuals in P+P’ (multiset union). until the mating pool is filled. In this
. study binary tournament selection with replagement is used.
7.Apply problem specific crossover and mutation operators as usual.
8.1f the maximum number of generations is reached, then stop, else g0 to step 2.

Fitness Assignment Procedure

@
The idea behind the Fitness Assignment in SPEA is a novel one. It is a two-stage process.

Frrst, the individuals in the external nondominated set P are ranked. Afterwards. the
individuals in the population P are evaluated. The steps are:

Step 1:Each solution ieP’ is assigned a real value s; in [0, 1), called strength; s, is
proportional to the number of population members j in P for which i covers ). Let n
denote the number of individuals in P that are covered by 1 and let us assume N to be the
size of P. Then s, is defined as s; = n / (N + 1). The fitness f; of i is equal to its strength:
fi = 5.

Step 2:The fitness of an individual j in P is calculated by summing he strengths of all
external non-dominated solutions i in P’ that cover j. One is added to the total in order to
guarantee that members of P° have better fitness than members of P,

Here we have to keep in mind that fitness is to be minimized, i.e., small fitness values

correspond to high reproduction probabilities.
fi=1+ Z.su where {; € [1.N)
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FIGURE 3: First example of fitness assignment by SPEA
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FIGURE 4: Second example of fitness assignment by SPEA

In Figure 3, we find that individuals located near the Pareto front achieve better fitness
values than the remaining members. Figure 4 provides an example of the fact that
individuals having many neighbors in their niche are penalized due to the high strength
value and the associated nondominated point. Thus this algorithm more or less reflects
the idea of preferring individuals near the Pareto-optimal front and distribufing them at
the same time along the trade-off surface.

Reducing the Pareto Set by Clustering

In certain problems, the Pareto-optimal set can be extremely large or even contain an
infinite number of solutions. However, from the decision maker’s point of view,
presenting all nondominated solutions found is useless when their number exceeds
reasonable bounds. A method that has been applied to this problem successfully and
studied extensively in the same context is cluster analysis [33]{34].

The basic problem that is handled in clustering analysis is that of dividing the given data
set tnto K clusters, where the value of K may be known or unknown, in such a manner
that the divisions provides the natural clusters in the data set. We note that for a given
data set, there may exist several meamngtul clusterings. Clustering is very much an
experiment oriented art because the performance of an algorithm depends mainly on 1)
type of data being analyzed, 2) chosen measures of similarity and 3) method of
identifying clusters in the data. In this work. Average Linkage method has been chosen.
In our algorithm, we took the concept of clustering from this work. However, we used

Single Linkage clustering technique.
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4.3 MultiObjective Simulated Annealing (MOSA)

In [5). Nam. D and Park. C.H [5] proposed this algorithm, where a possible way to use
simulated annealing schemes in solving MOOP has been discussed. MOSA uses the
domination concept and the annealing scheme for efficient search. The main obstacle for
SA in multiobjective optimization is its inability to find multiple solutions. However SA
can do the same work by repeating the trials as it converges to the global optima with a
uniform probability distribution in the single objective optimization. When there are two
global optima, it is proved that SA can find each optimum with probability 0.5 [29].
When this fact is also true in multiobjective optimization, SA has aftvantages over EAs
because it does not need large memory to keep the population; nor does it use additional
algonithms to spread the solution over the Pareto frontier. Additionally MOSA can find a
small group of Pareto solutions in a short time with the demand of urgent simulation and
then find more solutions by repeating the trials for detailed information about the Pareto

frontier.

Algorithm of MOSA:

The general SA algorithm involves basic three steps. First, the objective function
corresponding to the energy function need to be identified. Second, we need to select a
proper annealing scheme consisting of decreasing temperature with increasing of
iterations. Third, a method of generating a neighbor near the current search position is
needed. In single objective optimization problems, the transition probability scheme is
generally selected by the Metropolis and logistic algorithm [28], [29]). However the
situation is different in MOOP. Choosing a proper transition probability is difficult in this
case. The algorithm proposed by the authors in [5] to solve this MOOP is outlined below:

S = §y
I'=T,
repeat
Generate a neighbor s” = N (s)
if ¢ (s”) dominates ¢ (s)
Move to s’

else if ¢ (s) dommates ¢ (s")
Move to s’ with transition probability

else if ¢ (s) and c¢ (s’) do not dominate each other
Move to s’
end if
T = annealing (T)
end repeat (until the termination status is satisfied)

Here s represents the current search position and T is the temperature parameter, which is
gradually decreased as time goes on. A new search position s’ is generated by the N(s)
function, its cost is evaluated and compared with the previous cost. When it is determined
to be a good solution by the domination test, the new state is accepted. Even when the
new position is not proper (meaning the new statc is dominated by the current state), it is
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accepted with some acceptance probability. When there is no superiority between the
current state and the next state, ‘the new state is accepted instead of the current one
because moving in the non-dominated situation help increase the spread performance and
evade the local optima. In their paper they followed geometric cooling as follows:

Ty = o*.T, where O<a<] js the cooling rate. Regarding transition probability, general
transttion rules such as the Metropolis or logistic method cannot be applied directly to the
multiobjective problems as they support only a scalar cost criterion for the multiobjective
cost function. The transition probability from state i to state ] Is,

l.e(i, j) = min(ck(j) - cx(i))
~2-¢e(f, ) = max(ex(j) - ex(i))
3.¢(i, j) = Z (ak(ci(J) — ci(i)))
4.c(i, j) = ai)

5.¢(i, j) = 2(e)) - euti))

D
0.c(i, j) = fixed value

When the new state is at the same level as the current state, there can exist two schemes —
move to the new state or stay in the current state. It can be easily understood that the
move scheme is better than the stay scheme as the search will be contmnued into the
middie part of the frontier. move freely between non-dominated states like a random walk
when the temperature is low and eventually will be distributed uniformly over the Pareto

frontier as time goes on.
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4.4 Pareto Archived Evolution Strategy (PAES)

Knowles J. D. and Corne D. W have introduced a simple evolution scheme for MOOPs,
called PAES. The algorithm in its simplest form is a (1+1) evolution strategy employing
local search but using a reference archive of previously found solutions in order to
identify the approximate dominance ranking of the current and candidate solution
vectors. PAES was initially developed as a multiobjective local search for finding
solutions to the off-line routing problem, which is an important problem in the area of

telecommunications routing optimization.

A%gorithm of PAES:
The (1+1)-PAES algorithm is outlined below-

I. Generate initial random solution ¢ and add it to the archive
2. Mutate ¢ to produce m and evaluate m

3 if (c dominates m)  discard m

4 else if (m dominates c)

5. replace ¢ with m and add m to the archive

6 else if (m is dominated by any member of the archive) discard m
7 else apply test (c, m, archive) to determine which becomes the new

| current solution and whether to add m to the archive
8. until a termination criterion has been reached, return to line 2

PAES is comprised of basic three parts: the candidate solution generator, the candidate
solution acceptance function and the nondominated-solutions (NDS) archive. The
candidate solution generator is akin to simple random mutation hillclimbing; it maintains
a single current solution and at each iteration, produces a single new candidate via
random mutation. Since the aim of multiobjective search is to find a spread of
nondominated solutions, PAES needs to provide an NDS list to explicitly maintain a
limited number of these, as and when they are found by the hillclimber, The design of the
acceptance function is obvious in the case of the mutant dominating the current solution
or vice versa but is troublesome in the nondomnated case. In their approach, they have
used a comparison set to help decide between the mutant and the current solution in the
latter case. The NDS archive provides a natural and convenient source from which to
obtain comparison sets. Pseudocode indicating the procedure for determining whether to
accept or reject the mutant solution and for dectding whether it is archived or not is given

below.

if the archive 1s not full
add m to the archive
if (m is in a less crowded region of the archive than ¢)

1

2
3

4. accept m as the new current solution
5 else maintain c as the current solution

6
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7. if (m1s1n aless crowded region of the archive than x for some member x
on the archive)

8. add m 1o the archive, and remove a member of the archive from the most
crowded region

9. if (m is in a less crowded region of the archive than C)

10. accept m as the new current solution

I1. else maintain ¢ as the current solution

12. else

13, if (m is in a less crowded region of the archive than C)

14, accept m as the new current solution

15. else maintaza ¢ as the current solution

However, it has been acknowledged by the authors of PAES that the idea of marntaining
a list of nondominated solution is not new. Parks and Miller [35] recently described a

MOGA that also maintains an archive of nondominated solutions.

4.5 Conclusions

Our work has been influenced by all of these three Works to some extent or the other. The
concept of using simulated annealing in our work was influenced by [5]. The concept of
clustering was used in [4] also. The work on PAES {10] provided a good algorithm to
tompare our algorithm with. Also it used the concept of archive in MOOP. The following
chapter introduces the new proposed algorithm. We recognize the influence of these
algorithms on our way of thinking. However, the novelty of the algorithm would ajso be

evident from the discussion provided in the following chapter.
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Chapter 5
——— e

The proposed Elitist Multiobjective
Simulated Annealing

5.1 Introduction

In our approach, as already mentioned, we have used SA to solve MOOP. This was a
- challenge as not much work has been done yet in this direction. Only a few works [5] are
available in the literature, which have solved MOOP using simulated annealing. In this

principles of the Multiobjective Simulated Annealing. The proposed algorithm uses
single linkage clustering as the clustering tool. Section 5.3 is devoted to this clustering
technique. The main algorithm behind selection is explained in Section 5.4 and Section

3.5 concludes the discussion.
5.2 Basic Principles of Elitist Multiobjective Simulated A nnealing (EMOSA)

This algorithm is elitist in nature. Whenever we get a solution that is nondominated, we
Keep the solution, thus following the principle of elitism. We have used an archive in our
algorithm to store the nondominated solutions found so far. it is specified by two limits —
one 1s the hard limit and the other Is the soft limit. We g0 on selecting new points
according to our algorithm. When the number of points exceeds the soft limit clustering
s done to reduce the number of ponts to match the hard limit. Note that we have used
two limits, while PAES works with a single limit. We have done this way, to make the
clustering effective. We have adopted single linkage clustering technique for our work.
- Below we briefly describe the principles of single linkage clustering.

2.3 Single Linkage Cl ustering

Single linkage clustering is an example of agglomerative clustering technique. In general
agelomerative clustering technique, if there are s points, then / clusters are assumed to be
present at level 0. The number of clusters at the i level ig (t-1) for 1=0.1.2. (=1
Ultimately there would be one cluster at the (t-1)™ level. If the number of clusters K is
known, then the process will be stopped when K clusters result in. Single linkage
clustering is a kind of this agglomerative clustering technique. Here the distance between
any two clusters is given by the value of the length of the shortest link between the two

clusters [48].



T'he mechanism of single linkage clustering is explained by the following figure (Figure
5).
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FIGURE 5: Example of Single Linkage Clustering

Here the darker points constitute one cluster, say cluster A and the other points constitute
another cluster, cluster B. The shortest distance between them gives the distance between
these two clusters. Thus the distance between clusters A and B is same as the distance
between X, and Xp. At each stage. the pair of clusters for which this distance is
minimum, are merged. The distance is shown in the figure.

5.4 Algorithm of Elitist MOSA

We first do hill-climbing to get some initial solutions. They are generated randomly. The
solutions, which are not dominated by any other solutions, are stored in the archive. Next
one of the points in the archive is randomly selected and perturbed. The perturbation is
done by changing a randomly chosen bit of the solution string, i.e., one position of the
string is chosen randomly and if the value of the string at that position is one it is changed
to zero and vice versa. Then the new perturbed string is evaluated and compared with the
original string, from which we got this string. Depending upon their dominance relation
we decide on our future course of action. For every new point, we actually check the
domination status with respect to all other individuals in the archive as well as the current

point.



We have used the concept of coverage in the present work. It is defined in the tollowing

way.
153 P
A B

D C £
FIGURE 6: Example of coverage

The coverage is defined by the area covered by the point in the objective space. So in
the figure above, the area of the rectangle ABCD gives the coverage of the point P for
2 two objective problem, when both fi and f; are to be maximized.

All the possible cases are discussed below one by one and also the course of action
associated with each of them.

I. The current point dominates new point, but no other point dominates the new point.
In this case, we find the difference in coverage of the new point and the current point.
ACOV = covyg — COVyey.

The new point is selected as the current point with the probability inversely
proportional to the difference in coverage. The situation would be as shown in Figure

7; the new point and the current point are shown. Also shown are the points in the
archive.

ts. t

{maximize)

> f, (maximize)

FIGURE 7: Elitist MOSA
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2. The new point is dominated by not only the current point, but also by k other
points in the archive as shown in Figure 8. In this case. we find the difference in
coverage of each such point from that of the new point and take the sum of it.

A.
Acov = Z (COV/ ~ COV ) + (COViurrent - COVnew)

J'=I

The probability of selecting the new point as the current point is taken to be
Inversely proportional to this Acov value.

fa {maximize)
7

-— — f, (maximize)
FIGURE 8: Elitist MOSA

3. New point is not dominated by the current point, but it is dominated by Kk points in
the archive where k greater than or equal to 1. This situation is shown in F igure 9.

In that case we find the sum of the Acov values with respect to all those k points,
The probability of selection of the new point as the current point is made to be
inversely proportional to this sum S.

Acov = 2{COVyrchive — COVpew)

> {maximize)
A

current

new

> (maximize)

FIGURE 9: Elitist MOSA
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4. New point is not dominated by either the current point, or by any other point in
the archive. In that case the new point is on the same front as the archive as shown
in Figure 10. So we should select the new point as the current point and add to the
archive. Here we have to keep in mind that if the number of points in the archjve
exceeds the soft bound, then we perform clustering to reduce the number of points
to the hard limit,

f, (maximize)

A

—* £ (maximize)

FIGURE 10: Elitist MOSA
In our case, we considered single linkage clustering, which is explained latter.

5. New point dominates the current point but k points in the archive dominate this
new pont. This situation (shown in Figure 11) would arise if the current point
was not a member of the archive. We calculate the difference of coverage
between the new point and the k points, and select the point from the archive as
the current point, which corresponds to the minimum difference. This selection is

done with probability of selection proportional to the Acov.

4 (maximize)

* f, (maximize)

FIGURE 11: Elitist MOSA
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6. New point dominates the current point and it is non-dominating with respect to
the points in the archive. In this case, we should select the new point and add it to
the archive keeping in mind that if the number of points in the archive becomes
more than the soft bound, we have to perform clustering.

7. New point dominates the current point and also k other points (see Figure 12) in
the archive. Now this new point clearly is better than the current point as well as
the k other points of the archive. So apart from selecting the new point as the
current point, we also remove the k dominated points of the archive.

fT(maximize)

—'- — — ¢ (maximize)

FIGURE 12: Elitist MOSA

In the next page, we provide a flowchart of the proposed EMOSA algorithm.
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3.5 Conclusions

In this chapter we have proposed a new eljtist multiobjective simulated annealing
algorithm. Analogous to PAES, an archive is maintained that contains the non-dominated
solutions. As in SPEA, clustering is performed to reduce the size of the archive whenever
it becomes overfull. The proposed algorithm is tested on several benchmark problems,
- and the results are compared with some existing point based search techniques in Chapter
7. As already mentioned, measuring the quality of solutions provided by an MQO
algonthm is itself a problem. In the next chapter, we review some such existing
measures. We also propose a modified measure in this regard.

28



Chapter 6

Measures of Comparison

0.1 Introduction

As discussed earlier, Measure is one of the areas that have recently got high focus in the
researches on multiobjective optimization problem areas. No untversally accepted
standard exist till date for measuring the quality of tke solution set produced by an
algorithm. Though there are a wide variety of such measures in the literature. This
chapter discusses some such measures. Also a new way has been proposed in this
~chapter, which tries to quantify the effectiveness of an algorithm in solving MOOP in a

better way.

6.2 Basic Purpose of Measure

As suggested in [19], in multiobjective optimization problem, there are two primary
functionalities that an MOO strategy must achieve regarding the obtained solution set.

I.- Converge as close to the true pareto optimal front as possible;

2. Maintain as diverse a solution set as possible.
It is clear, that the first condition ensures that the obtained solutions are near optimal and
the second one ensures that a wide range of trade-off solutions is obtained.
Thus for a comparison based on the attainment of each of the two functionalities of
multiobjective optimization, it may be possible to define two performance metrics, one
for measuring each functionality exclusively, even for more than two objectives. In [19}
the metrics have been classified into three classes: those evaluating closeness to the
Pareto-Optimal front. those evaluating diversity among non-dominated solutions and
those which try to achieve both. We may think of maximizing the number of points
obtained to be another functionality. Attempt has been made in this direction to cover this
criterion also, i.e., preferring an algorithm, which produces more points.

6.3 Some Existing Quality Measures

As explained earlier, two kinds of measures exist in the literature. We first discuss some
of those well-known metrics, which evaluate closeness to the Pareto-Optimal front. These
metrics give a measure of the closeness of a nondominated set, also known as
approximation set, obtained by an algorithm from a known Pareto front. We consider a
set Q of N solutions and a known set of pareto optimal points P".

| Error Ratio: Veldhuizen proposed this measure [15]. It counts the number of

solutions of Q that are not members of the pareto optimal set P’
o H

E{:‘;

FR ==
O
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Here e, = 1 if i¢ P and e; is zero otherwise. But this metric has some inherent
problems. As pointed out by Knowles & Come in [12], say an algorithm returns two
points, one of which is on the Pareto front and the other one away from the front. In
that case, the error ratio is 0.5. But if an algorithm retums 99 points evenly distributed
Just away from the front and one on the front, then the error ratio is 0.99, thus
violating the intuitive belief that the second one is a better solution. Also we can get
the value only if the Pareto front is known a priori.

2. Set Coverage Metric: This metric was proposed by Zitzler {20]. It calculates the
proportion of solutions in an approximation set B which are weakly dominated by
another approximation set A, denoted by C(4,B).

C(A,B)=]{bEB|ElaeA:a£b}| ©
| Bl -
This metric can also be used to get an idea of the relative spread of solutions between the
two sets A and B. The metric value C(4,B) = | means all members of B are weakly
dominated by A. If it is zero, then it signifies that no member of B is weakly dominated
by A. It is not necessarily true that C(4,B) is equal to I-C(B,A), i.e., we need to calculate
both of them. But if two sets are of different cardinality and/or the distributions of the
sets are non-uniform, then it gives unreliable results. It cannot determine the degree of
outperformance if one set completely outperforms the other [12].

3. Generational Distance: This measure was also proposed by Veldhuizen [15].

Instead of finding whether a solution of Q belongs to the set P or not, it finds an

average distance of the solutions of Q from P" as follows:
1]

(de)l"ﬂ
GD = =
1O

For p = 2, the parameter d; is the Euclidean distance between the solution i € Q
and the nearest member of P .

P

, Af | o
d, = n}_iln 2 =00y

m=1

Here £, is the m" objective function value of the k™ member of P". Clearly
lower values of this metric represent better sets. GD measures general progress
towards P. But to calculate this metric, knowledge of Pareto front is required. So
when Pareto front is not known, this metric cannot be used. It estimates how far is our
current Pareto front from the true Pareto front of a problem using Euclidean distance
(measured 1n objective space) between each vector and the nearest member of the true

pareto front. The problem with this approach is that uniform spread is not considered
along the Pareto front.

Next we discuss some metrics, which evaluate diversity among non-dominated solutions.
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I. Spacing: Schott [21) proposed this metric, which is calculated with a relative
distance measure between consecutive solutions in the obtained nondominated

set, as follows:
3= _[~— > (di - d)’
1 Qi3

A _
where d; = mjin Zl fu—=Jfu| and dis the mean value of the above distance measure
keQnrkzi m=|

— 1%

d=)d. /|Q]|.

i=|
The distance measure®is the minimum value of the sum of the absolute difference in
objective function values between the i solution and any other solution in the obtained

When the solutions are near umformly spaced, the corresponding distance measure will
be small. Thus evidently an algorithm that finds an approximation set, having smaller
spacing value is the better one. But this metric does not take care of the extent of the

2. Spread: This metric was proposed in [22] to overcome the difficulty associated

with Spacing. This is defined as:
. 1%

id; +Z'd; _El
A=m=l i=}
M _
2. di+10|d
m=|

Here d; can be any distance measure between neighboring solutions and 4 is the mean
value of these distance measures. The parameter d,,° is the distance between the extreme
solutions of the pareto optimal front and the nondominated solution set corresponding to
m™ objective function. Though it addresses the problem associated with spacing, still it
does not make any comparisons regarding the number of solutions obtained by an

In other words, it does not give any preference to an algorithm which produces more
points than another having distribution and width of points same as that of the latter one.
To take care of this effect also, we can define a new measure, called Combined Measure,

(CM) in the following way.
_ [QI +minm Z(dﬂ _(Jar:'r’r)2
) Z(dﬂ—c‘fj)z+1

CM

This metric produces higher values for better solution sets. Here we consider only those
points, which are on the true pareto front, indicated by the suffix 7. In the denominator,
we find the uniformity of the points using the standard deviation of different d;, values,
which are computed in a way similar to that in spacing, except for the fact that we
consider only the truc points here. One is added in the denominator to take care of the

ideal situation when Vi d, =
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The first term in the numerator computes the number of true points obtained and the
second term computes the sum of distances of all the points from one of the extreme
pomts. The higher the value of the second term, farther the points are away from one of
the end points. But this may have the effect of preferring a set having a concentrated set
of points at the central region, which is taken care of by the denominator. Thus all of the
requirements of an MOOP are captured in this single measure.

3. Maximum spread: Zitzler [20] introduced this measure also. It measures the
length of the diagonal of the hyperbox formed by the extreme function values
observed in the non-dominated set. It is given as

(M o !

Dﬂg(n}gmi -min £, )’

i=l e

For a two objective problem, this metric refers to the Euclidean distance between
the two extreme solutions in the objective space.

4. Chi-square-like deviation measure: This was proposed in [19]), [23]; a
neighborhood parameter e is used to count the number of solutions, within each
chosen Pareto optimal solution. The distance calculation can be made in either the

objective space or in the decision variable space.

Also some measures exists to take into consideration both of these tasks:
I. Hypervolume: It caiculates the volume covered by members of Q for problems
where all objectives are to be minimized. Mathematically, for each solution i e Q,
a hypercube v, is constructed with a reference point W and the solution i as the
diagonal corners of the hypercube [15], [24]. Therefore a union of all hypercubes

is found and its Hypervolume (HV) is calculated.
o

HV = volume(|_Jv,)

i=|

An algorithm is considered more worthy if it gives a larger value of
Hypervolume.

2. Weighted Metric: This metric is formed by combining one of the convergence
metrics and one of the diversity measuring metric together {19] as follows. W =
w; GD + w, A, with w; + w; = |, being two weight values. Here GD is the
generational distance measure for evaluating the converging ability and A is a
metric that measures the diversity-preserving ability of an algorithm.

So basically we have metrics, which measure distance between the Pareto front and the
front resulting from one run, or the distribution of the non-dominated solutions along the
front or the diversity of the computed solutions. But when the Pareto front is unknown,
then we cannot use the first two metrics. Again the third approach alone is not adequate.
In order to overcome these problems, concepts of Pareto Like Front (PLF) have been
proposed in [8], which is built up with solutions resuiting from simulations with different
sets of parameters. This approach was an attempt to use the distance from each single
front to the PLF. In another approach introduced in the same paper [8], distance of
individual fronts was not measured from Pareto front, but from a single point. The point
coordinates may correspond to the best value in each objective found in the results of all



simulations, which is called “floating optimal point” (FOP). It may be “meta optimal
point” (MOP) also, whose coordinates are pre-established by the decision maker, based
on his/her preferences and according to the results of the optimization problem. When the
pareto front and the optimal point are unknown, FOP appears to be an attractive way to
deal with the need for ranking populations, as FOP is easy to find in each simulation. The
MOP on the other hand requires some expertise on the part of the decision maker. In case
of MOP, we usually find an approximation of the Pareto optimal front, which is denoted
as approximation set [9]. So the main issue is how to evaluate the approximation set.

6.4 Unary, Binary and Attainment Surface Based Measures

Alternatively the measures may be classified into 3 categpries [9] - unary, binary and
attainment surface based measures. In case of unary measures, a number is assigned to
~ each approximation set, which reflects a certain quality aspect, and usuaily a combination
of them is used [25]){22]. In case of binary quality measures, a number is assigned to pairs
of approximation sets. In contrast to unary measures, there are very few binary measures
found in the literature. Zitzler and Thiele proposed one of them in [26]. Attainment
surface is conceptually bit different {26]. If a boundary is drawn in the Objective Space
that separates those points, which are dominated from those that are not, then this

boundary is called Attainment Surface.

But the discussion on Measure is going to be in a different way nowadays. Giving a new
dimension to the whole issue, the authors in [9] have shown the following points, which
are going to be very important in further studies of designing quality metrics.

1. There exists, no unary quality measure that is able to indicate whether an
approximation is better than the other.

2. The above statement holds if we consider a finite combination of unary measures.

3. Unary quality measures being able to detect that approximation A is better than
approximation B exists, but their use in general is restricted.

4. Binary quality measures overcome the limitations of unary measures and if
properly designed, are capable of indicating whether A is better than B.
Sometimes combinations of unary measures are used. But the authors [9] claim
that although an approximation set A may be evaluated better than an
approximation set B with respect to all of the indicators, B can actually be
superior to A with respect to dominance relations. This holds especially for
various diversity measures and also for some of the distance indicators proposed

in the literature.

4

In their work they have given the sketch of two measures. Following the direction, we
Introduce one quality measure, as follows. Suppose we are handling a two objective
minimization problem. We construct the smallest hyper rectangie that completely covers
the approximation set. If the rectangles of the two approximation sets are not intersecting,
- then we can easily decide which one is better as shown in the following figures. |
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FIGURE 16: Measure (case 111)

In case I, we find that the hyper rectangles are not Intersecting. As we are talking of
minimization problem. it is easy to find that the approximation set A is better than B.
Mathematically. if the top right corner point of one rectangle dominates the same of the

- other, AND. the lower left corner point of the previous rectangle dominates that of the ... .

other, then the later one corresponds to a better approximation set in case of minimization
problem. We can extend this concept for cases where more than two objectives are dealt
with. But if one of the two conditions fails, then we cannot give a definite answer on



which one dominates the other, as shown in Figure 15 and Figure 16. So if ry dominates
ra AND Iy dominates 14. then approximation set A is better in a minimization problem.
However in [7], Deb has argued that 1t may be possible to compare two or more
approximation sets functionally, as is often followed in understanding behaviors of
complex systems, although it may seem to be mathematically incorrect from the
discussions in [9]. In the same work [7], concept of running metric has been brought into
the arena of MOOP. This conceépt had its inspiration from their use in single-objective
EAs, where such generation-wise performance exists from early days, showing how the
average or best fitness or some other performance metric is varying with generation. So it
IS not surprising that if appropriate performance measures of MOOP solving strategies’
populations are also recorded and analyzed, important inferences can be made about their
working, like how an MOO strate y arrives at the final solution. The main reason of their
absence in MOOP literature is ﬁa cardinality of the necessary performance metrics to
properly evaluate an MOOP solving strategy and the complexities involved in computing
them. Two running metrics have been introduced in [7]. The first metric is a distance
~measure of a population from a reference set and is used to measure the convergence
ability of an MOO strategy. The second metric uses a local template based evaluation
technmque to estimate the diversity of one set compared to a reference set.

0.5 Entropy Based Measures

In [14] an entropy-based metric is presented that can be used for assessing the quality of a
solution set as obtained from multiobjective optimization techniques. This metric
quantifies the goodness of a set of solutions in terms of distribution quality of solutions

the diversity of solution points. The new metric, hereafter referred to as the entropy of a
solution set, is based on the notion of information-theoretic entropy and encapsulates into
a single scalar quantity different aspects of the distribution quality such as uniformity of
distribution, coverage (i.c., portion of the Pareto frontier covered by the observed solution
set), number of solution points and clustering. The basic idea behind this metric is that
each solution point provides some information about its neighborhood in the feasible
space that can be modeled as a function, called an influence function. Let us assume a
stochastic process with # possible outcomes where the probability of the i"™ outcome is Di.
The probability distribution of this process can be shown as:

| P=[plapt:'“1pl"'"’pl]

zp;‘ =1 p; 20

The Shannon's entropy measures the flatness of P, 1.e., if the values of the entries in the
vector are approximately the same then the entropy 1s high, but if the values are vVery
different (uneven probability distribution), the corresponding entropy is low. A desirable
solution set must have a ‘flat’ density surface within the feasible domain. To quantify this
flatness, one may take advantage of the formal similarities between this problem and the
Shannon's entropy, which also measures the flatness of a distribution. Thus here entropy
is used to measure the flatness of the information distribution provided by a set of
solution points, and hence it is desirable to be maximized (i.e., that corresponds to a -
uniform distribution of solution points over the feasible domain).
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6.6 Conclusions

This discussion leads us to the conclusion that till now there does not exist any single
universally accepted measure, thus having a huge scope of future work in this area. More
concerted effort is required to evolve better measures that would be able to properly
judge how nice an algorithm works in solving an MOOP. Moreover. extensive
experimental results are required to establish the newly defined measures.
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Chapter 7
—_
Test Problems and Performance
Issues

7.1 Introduction

The Elitist MOSA algorithm, proposed in this work, has been compared with two
existing algorithms; first one is the Multiobjective Simulated Annealing (MOSA),
proposed by Nam. D and Park. C.H [5] and the second one is Pareto Archived Evolution
Strategy (PAES), proposed by Knowles J. D. and Corne D. W. The reason behind the
choice of MOSA is that it also uses the concept of simulated annealing in solving MOOP.
PAES, on the other hand, has a lot of similarity, in the way of thinking with Elitist
MOSA. For this reason, it was also compared with the proposed algorithm.

7.2 Choice of MOSA and PAES for comparison

As already discussed, Multiobjective Simulated Annealing algorithm is one of the very
few algorithms that use simulated annealing in solving MOOP. Our proposed algorithm
also works in the same direction. In other words, it also uses simulated annealing in
solving MOOP. We have used four variants of MOSA, as proposed in [5]. They differ in
the way the transition probability from one state to another js calculated. They are
indicated as MOSA(avg), MOSA(max), MOSA(min), MOSA(self) to indicate the
difierent cost criterions in calculating transition probability as discussed previously.

PAES, though independently worked out, works in certain aspects in a manner similar to
our algorithm, though having some major differences. One of the commonalities of these
two algorithms is the use of archive in storing the solution set. However, this concept is
not unique. Previously work was done in this direction. PAES, as well as our algorithm,
first does hill-climbing to get an initial solution set. And later, while new points are
generated from the current point, they use some criterion to decide whether to select the

both of these two algorithms have been discussed previously. Clearly our proposed
algorithm handles the cases in a more detailed fashion. For this reason, it also works in a
much better manner than PAES in most of the problems, as evident from the tfollowing

discussions.

To compare these three algorithms, we have used three existing metrics and one new
metric proposed by us, i.c.. Combined Measure (CM). The first measure is the Error
Ratio, which finds the ratio of the points that are not on the pareto tront to the total
number of points. Second metric is Spacing, which measures the uniformity in spacing of
the obtained points. The third one s Spread. which measures not only the uniformity, but
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it also takes care of the extent of the spread of solutions. Detailed discussions are
provided in Chapter 3.

Four problems have been solved using these three algorithms. They are discussed and
also performance in solving them is analyzed below. The parameters that have been used
in solving the following problems are as follows: maximum temperature is 50. minimum
temperature ts 0.1, and temperature 1s educed geometrically with coefficient of cooling as
0.85. We have performed 100 iterations at each temperature. The archive has a hard limit
of 10 and soft limit of 20. In case of PAES, archive has a size of 10 and 2000 iterations
are performed to make them equal with EMOSA and MOSA. The results reported in the
following tables correspond to the average values obtained over 10 simulations of each of

the algorithms.

7.3 Results

Problem |
The first problem that we handled is Schaffer’s problem [19]. Though it is simple, it has

~ been the most studied single-variable test problem.

It 1s as follows:
Minimize fi(x) = x°
SCHI1:

Minimize f5(x) = (x - 2)°
A <x < A4

This problem has Pareto-optimal solutions x~ [0,2] and the Pareto set is a convex set:

f2'=(\/f'|—-2)2 in the range 0 < f’. < 4,
The tigure below shows the Pareto optimal front for this problem. Different values of the
bound-parameter A are used in different studies. Values as low as A = 10 to values as

high as A = 10° have been used.

‘|

{5

F

{

{] 2 4 fl

FIGURE 17: Pareto optimal front of Test problem |
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Let there be N, N > 2. MOO strategies applied to a problem. Let n =R [,i=12,...N
be the number of rank one solutions obtained from each MOO strategies. Next union of

" {R;‘}. Thereafter a ranking procedure is

'
—
—

all these solution is computed as R’ = U
applied on R and the new rank one solutions, R, are obtained. Let n;, be the number of
rank one solutions which are present in R, , 1€,

n; =|{y |y € Rlandy e R’} |

Then the purity measure for the i MOO strategy, P, 1s defined as

P = D= 1,2, ...N.
H:'

It may be noted that the purity value lie between [0, 1], where a value nearer 1 indicates
better performance. The purity values for the six different algorithms are provided below.

TABLE 5: Purity Measures for TSP

ALGORITHM PURITY
EMOSA 0.533
PAES 0.25
MOSAavg 0.075
MOSAmax 0.033
MOSAmin 0.1
MOSAself 0.225

Here -from Table 5, we can notice that the probability of getting a rank zero solution is
maximum for EMOSA and it is followed by PAES. All the variants of MOSA has a

relatively lower probability of getting the same.
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/.4 Minimal Deceptive Problems (MDP)

This is a different kind of problem that poses serious difficulty to any algorithm that
intends to solve MOQP. In this problem, the Basin Of Attraction (BOA) of the best
solution is very small whereas the second best solution or some other sub-optimal
solution has a bigger BOA. This property deceives the algorithm to converge towards the
non-optimal solution. Thus we do not get the correct solution, but some sub-optimal
solution.

We can design a Minimal Deceptive Problem as explained below:

L-(L-1)I’'sorQ I’s _
Pareto optimal

front

(L-2) I’s
LI’'sor(L-1)1's

FIGURE 21: Minimal Deceptive Problem

In this problem, we handle a string of length L. The string is assumed to be binary coded.
The entire problem rotates on the number of ones and number of zeros 1n the aforesaid
string. We consider a string to be the best one when all of its positions are filled with
Ones, or at most one position is not filled with ones, i.e., a string with at least (L-1) 1°s.
The second best strings are those that have (L-(L-1)) I’s or no 1’s, as shown in Figure
21. The worst string consists of (L. - 2) 1’s. The following observations can be made from
the above situation. First of all. all the fronts are distinct ones, without any intersections.
Secondly, and most importantly, the best set of strings has a very small basin of
attraction. Also the nearest string from the best string becomes the worst string. Thus this
problem turns to be a minimal deceptive problem. To make the fitness values reflect the
number of ones and zeros in the string in the abovementioned manner, we make use of
weights corresponding to each position of the string. For the best strings, the weight value
corresponding to position / is equal to wy, = (i + [)*L where the positional values range
from 0 to (L - 1). The fitness values are calculated in the following manner:

= Z w, *string[i] and f, = Z w, * (1 string[i]), for string containing L 1°s
or(L-1)1"s.

For any other string. the weight value is w,, - w,y — ny, where n; is the total number of
ones In the string. For these non best strings. the fitness values are calculated in the

following manner;

44



/= Z w, *(1—stringli]) and f, = ZW,-U *(string[i])

Note that for this problem both f and f> must be maximized.

Thus in case of the best strings, the objective function value f, is equal to the sum of
weight values of those positions, where the string has ones. The objective function value
f; 1s the sum of the weight values of the positions, where the string has zeros.

For any other string, this assignment is just the opposite one. Note that the pareto optimal
strings are those that contain L 1’s or (L'~ 1) 1’s whereas the second best front consists of
strings having L 0’s or (L — 1) O’s. In fact, excluding the pareto optimal strings, in
general, both the objective functions increase as the number of 0’s increases in the string.
This indicates that the BOA for the second best strings is significantly larger as compared
to that of pareto optimal strings.

&

We solved this problem using SPEA, MOSA and our proposed Elitist MOSA and the
result obtained is presented below.

We have made a count of the number of points in the obtained solution set, which are
best strings and also of those points that are second best strings. The count is provided

below.
The result obtained from PAES is as shown in Table 6:

TABLE 6: Result of PAES on MDP

o L Run 1 Run2 | Run3 un4 | RunS$
# Best string 0 0 | 0 0 0
Best strings 1 2 0 2 0

The resuit obtained from EMOSA is as shown in Table 7:
TABLE 7: Result of EMOSA on MDP

_ Run 1 Run 2 Run 3 Run 4 j Run 5
| # Best strings 1 0 0 1
# 2™ Best strings 2 2 | 1 3

In case of MOSA, all the vaniants failed to get Best string ever, and in only one case
tested (MOSAmin), it achieved one 2™ Best string in one run. These results are the
reflection of the robustness of the aigorithms. PAES, though performed better than

MOSA, failed to achieve comparable result with respect to EMOSA.
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Chapter 8

Conclusions, Discussion and Scope
of Future Work

There have been many researches using evolutionary algorithms to solve MOOP. Many
efficient algorithms exist in this area. But as simulated annealing uses only one search
agent, it has seldom been used for solving MOOP, though it is a very powerful searching
algorithm. Attempt has been made Q this dissertation to make use of simulated annealing
for performing multiobjective optimization. The output of any multiobjective
optimization algorithm should be a set of nondominated solutions. Since simulated
annealing, by its nature, deals with only a single candidate solution at a time, the concept
of archive has been used for storing all the nondominated solutions that are obtained
during the SA run. Moreover clustering has been used to spread out the solutions over the

nondominated front as tar as possible.

For the purpose of comparison, two existing algorithms have been used, both of which
essentially use single point search. These two techniques are PAES, which is an (1+1)
evolutionary strategy based search, and MOSA, which is based on standard simulated
annealing with different cost criteria. Experimental results are provided for five
multiobjective optimization problems. The EMOSA algorithm, proposed in this
dissertation, is found to significantly outperform the other two methods.

Comparing solution sets obtained from different algorithms i1s itself a problem in
multiobjective optimization. In this dissertation, we have first done a review of some of
the existing measures and then a new measure has been proposed. But as more and more
algorithms are developed in multiobjective optimization, some standard needs to be
evolved regarding this issue. Otherwise it would be impossible to effectively compare one
algorithm with another. The authors in [9] have introduced a completely new 1dea in this
regard as already discussed. They state that there exists no unary quality measure that i1s
able to indicate whether an approximation set is better than the other, even if we consider
a finite combination of some unary measures. Most of the existing measures belong to
three categories: those evaluating closeness to the Pareto-Optimal front, those evaluating
diversity among non-dominated solutions and those which try to achieve both. Thus they
do not follow this new idea [9]. Efforts should be made in this front to devise new
measure(s) that would be capable of indicating whether an approximation set 1s better
than another approximation set. Using most of the existing measures, although an
approximation set A may be evaluated better than an approximation s¢t B with respect to
all of the indicators, B can actually be superior to A with respect to dominance relations.
Work should be done in such a fashion that this kind of conflict does not arise.

Another interesting’ way of evaluating algorithms might be to observe ‘the
intergenerational behavior. Thus we may be able to find the way in which different
algorithms converge. If-we knew how i1s the population behaving and what issues are
making 1t difficult to keep nondominated soluttons, we could devise techniques in which
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the progress towards the global pareto front could be considerably faster than wnh the
current approaches.

It 1s also Important to define stopping criteria for a multiobjective optimization technique.
because it is not obvious to know when the population has reached a point from which no
further improvement can be reached. Currently, the main approaches used to stop GA
based MOOP have been to either use a fixed number of generations, or to monitor the
population at certain intervals and interpret visually the results to determine when to halt
the evolution process. Further works are needed to investigate this area and effectively
define some concrete stopping criteria both for GA based as well as SA based MOOP

solving algorithms.

. One big hmitation with most of the problems used in the literature is that they are
generally two-objective optimization problems. Two objectives make the objective space
two dimensional, thereby making it easier to demonstrate the working of an algorithm.
However, since most algorithms lack a rigorous mathematical proof of convergence and a
proof of maximum diversity in the obtained solutions, the scalability issue must be kept
in mind while developing a new algorithm solving MOOP. An algorithm should not have
a serious limitation in handling more than two objectives. This can only be tested with
- proper test problems, having more than two objectives. Designing such test problems is

another interesting area of future studies.

Another related point to be considered is the size of the random initial population
required in solving problems having more than two objectives. An algorithm always
works better with a bigger initial population size. But we need to find avenues to
minimize this size. But an interesting topic for future research would be to check whether

this size affects the final front achieved.

Any study involving development of algorithm is not complete unless they are applied to
real world problem. In our case we applied our algorithm on multiobjective traveling
salesman problem. But they can be applied to harder engineering problems also. Already
several researchers have applied their MOOP solving algorithm in such diverse areas as
VLSI circuit design, broadband microwave absorber design, marine vehicle design, gas
turbine engine design to radio network optimization, medical image reconstruction and
cancer chemotherapy. Some of the possible applications in the area of mechanical
engineering have been explored in [19] by Deb. They include truss design. gear train
design, spring design and low-thrust spacecraft trajectory optimization among others.
Also several new application areas are now coming up, having a lot of scope of applying
the theory of optimization, like bioinformatics. This would be a new challenge for future
- researchers to handle this new kind of data, having huge dimension, as well as extending
the current MOOP solving techniques into these domains. The number of such
applications of multiobjective optimization techniques to real-world problems is bound to
increase over the years, and a probable trend in research could be to reformulate many
problems that are currently considered to be single objective problems. This will
constitute a more realistic approach to the solution of problems that frequently arise in
areas such as engineering; becausc such problems are normally reduced to a single
objective and the remaining objectives are treated as constraints instead of handling all
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(conflicting) objectives simultaneously, thus sacrificing the multiobjective flavour of the
problems. |

In real world, often we may be interested not in the complete solution set, rather a
restricted Pareto optimal solution set, which is a subset of the complete solution set. For
example, we can think of a prospective buyer of a car who is sure of emphasizing on cost
more than comfort. Then the search should try to find a preferred set of Pareto optimal
solutions with more solutions near the minimum cost solution. But we have 1o always
keep in mind that we should not aim to get a single solution, because in that case we
would not be in a position to present the customer any choice and mathematically, that
would actually convert the problem to a single objective one [19]. The advantages of this
kind of restricted search would be in two ways: first of all the computational tim%would
get reduced as the search space gets restricted and secondly more trade-off solutions can
be obtained in the desired region of interest, thus providing the user a wide range of
choice. This may constitute another prospective area of future research in multiobjective
optimization problems.
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