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: Abstract

Visual cryptography is a secrei sharing scheme in which the secret is an image. The image
could be a page of printed text, a photograph, a picture, etc. A visual cryptography scheme
enables an image to be split into a number of shares that are printed on transparencies, so
that when certain subsets of these transparencies are stacked together, one can see the original
image. By examining other subsets of transparencies, one obtains no information about the
secret image.

In this thesis, we review three classes of visual cryptographyv schemes— those that are
applicable to black/white, grey-level, and color images. We also present a new (2,7n) visual
cryptography scheme for color images. In such a scheme, the dealer provides a transparency
to each one of n users; any two of them can see the image by stacking their transparencies, but

no one of them can gain any information about it. Finally, we present some apen problems
In color visual cryptography. '
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Chapter 1
Visual Cryptography: An Introduction

The fundamental objective of cryptography is to enable secure communication over an Insecure
channel. A person A wants to send B a secret message over a communication channel that
may be tapped by an opponent . The basic problem is enable such communication without
the opponent discovering what the message is.

The solution to this problem is to encrypt the secret message (also known as the plaintext)
using a predetermined key and then transmit the resulting ciphertezrt over the channel. On
receiving the ciphertext, B, who knows the encryption key can recover the plaintext; the
line-tapper C, on the other hand, cannot determine what the plaintext was.

In contrast to this, is 8 model that deals with sharing a secret among a set of people
with the objective of protecting its privacy. This model consists of a person ), known as
the dealer, and a set P of participants. We assume that D ¢ P. When D wants to share a
secret among the pa.rl:lmpants in P, he gives each participant some partial informpation called
a share. The shares should be distributed secretly, so no participant knows thei share given
to another participant. At a later time, a subset X C P of participants will pool their shares
In an attempt to recover the secret. The method used to share the secret is called a secret
sharing scheme.

Visual cryptography is a recent secret sharing scheme introduced by Naor and Shamir in
1994 (11]. The setup of a visual cryptography scheme consists of a set P of particippants, where
some subsets of participants are defined to be qualified whereas other subsets are defined to
be forbidden. A secret image S/ is shared among the participants such that |

1. each participant receives exactly one share
2. only qualified subsets of participants can “visually” recover the secret. image, and
3. mo forbidden subset of participants can reconstruct the secret image.

Each share consists of what appears to be a random collection of pixels printed on a trans-
parency and a “visual” recover for a set X C P counsists of stacking the transparencies dis-
tributed among the participants in X. What makes visual cryptography different: from other
cryptography schemes is that the secret Image is reconstructed directly by the human visual
system and no computations are involved during reconstruction. Because of its stmplicity it
can be used even by people with no knowledge of cryptography.

1



2 CHAPTER 1. VISUAL CRYPTOGRAPHY: AN INTRODUCTION

Naor and Shamir analvzed k out of n visual cryptography schemes. In such a scheme. any
subset of k or more participants is a qualified subset and the remalning subsets are forbidden.
Therefore, the secret image is visible if and only if any set of k or more transparencies are
stacked together. One possible application of these schemes is the following. The 2 out of
2 visual cryptography scheme can be thought of as a private key cryptosystem. We encode
the secret image into two randomly looking transparencies and send one of them by mail or
fax. This constitutes the ciphertext whereas the other tramsparency serves as a secret key.
The original image is revealed by stacking the transparencies together. This system is similar
to the one-time pad as each page of ciphertext is decoded using a different key with the
difference being that no computations are involved, the decoding being done by the human
visual system.

The secret images dealt with by Naor and Shamir consisted of a collection of black and
white pixels. While these images are sufficient to represent data such as printed text. they
cannot be used for grey-scale and color images. In order to apply visual cryptography schemes
- to such images one would have to generalize the existing schemes for black and white images.
Visual cryptography schemes for grey-scale unages have been proposed in [5] and color images
m {7, 8, 9, 12]. We will look at these schemes later. Generalizations in other directions have
also been considered.

1. In one generalization of visual cryptography known as extended visual cryptography. the
shares given to participants do not look like a random bunch of pixels, but like innocent
looking images such as that of a house, an animal, a tree etc. A solution to this problem
isgiven in [1]- £ . . : g s . i |

2. In another generalization, more than one secret image is shared among a set of partici-
pants. In such a scheme, stacking different sets of transparencies reveal different secret
images. A method for doing this can be found in [6]. "

In this thesis, we propose a 2 out of n visual cryptography scheme for color images. Qur
scheme is more efficient than existing 2 out of n schemes for color images for a number of
reasons that we will explain later. At this point, we will just mention that existing (2,n)
schemes (and also (k,n) schemes) suffer from the defect that they are unfeasible to implement
if either the number of colors or the number of participants is large; the quality of the recovered
image also deteriorates as these numbers increase. Qur scheme alleviates this problem to an
extent. |

We have organized this thesis as follows. Chapter 2 discusses visual cryptography schemes
that are applicable to black and white images. It also discusses a number of heoretical results
on the quality of the recovered image. Chapter 3 discusses existing schemes for grey level and
color images. In Chapter 4, we propose our 2 out of n scheme. Finally, in Chapter 5 we
discuss some open problems in the area of color visual cryptography. |



Chapter 2

Black and White VCS

The model that we describe here is taken nearly verbatim from Blundo, De Santis, and
Stinson [4]. Let P = {1,2,...,n) be a set of elements called participants, and let 2% denote
the set of all subsets of P. Let I'guat € 2% and Ty C 27, 'where L'guat NI pory, = . We refer
to members of I'guy as qualified sets and we call members of T g,y as forbidden sets. The pair
(T ouat, I'rors) is called an access structure for P. | S

essential if there exists a set X C P such that X ¢ Toua but XU {5} ['gua- We also say
that i is strongly essential if X < Feomand X U {i} €T Qual- A participant i is nonessential
if there does not exists a set X such that X ¢ [guy but X U {i} € Topu. If a participant
15 nonessential then we can construct a visual cryptography scheme giving him /Rer nothing
as his/her share. In fact, a nonessential participant need not participate “actii«%ly" in the
reconstruction of the image, since the Information he/she has is not needed by any subset

of P in order to recover the shared image. Therefore, we assume that all partifpipants are
essential.
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We assume that the secret image consists of a collection of black and white pixels. each
pixel being encrypted separately. To understand the encryption process consider the case
where the secret image consists of just a single black or white pixel. On encryption, this pixel
appears in the n shares distributed to the participants. However, in each share the pixel is
subdivided into m subpizels, each of which is either black or white. It is important to note
that the shares are printed on transparencies, and that a “white” subpixel is actually an area
where nothing is printed, and therefore left transparent. We assume that the subpixels are
sufficiently small and close enough so that the eye averages them to some shade of grey. We
can represent this with an n X m boolean matrix S[i, 4], where S[i, j] = 1 if and only if the jth
subpixel in the ith share is black. When the shares are stacked together, the perceived grey
level is proportional to the number of 1's in the boolean OR of the m—vectors representing
the shares of each participant. When the secret image consists of more than one pixel, we
encrypt each pixel separately. The shares then consist of a collection of blocks of m subpixels,
each block of m subpixels representing a single pixel of the original secret image. .

In order that the recovered image is clearly discernible, it is imnportant that the grey level of
a black pixel be darker than that of a white pixel. Informally, the difference in the grey levels
of the two pixel types is called contrast. We want the contrast to be as large as possible. Three
variables control the perception oi black and white regions in the recovered image: a threshoid

value, a relative difference, and the number of subpixels (also known as pizel ezpanmon) 110].
We use:

e ! to denote the threshold value; .
e a to denote the relative difference;
e m to denote the pixel expansion.

The threshold value is a numeric value that represents a grey level that is perceived by the
human eye as the color black. The value a - m is the contrast, which we want to be as
large as possible. We require that « - m > 1 to ensure that black and white areas will be
distinguishable.

We give the following definition of a visual cryptography scheme for a general access
structure. The phrasing is taken directly from Atienese, Blundo, De Santis, and Stinson [2].
We use OR V to denote the boolean operation OR of a set of vectors mth result V. The
Hamming weight w(V') is the number of 1's in the boolean vector V. |

Definition 2.1 Let (I'gua. I'rorv) be an access structure on a set P of n participants. Two
collections (multisets) of n x m boolean matrices Cy and C) constitute a wisual cryptogra-
phy scheme (I" guas, I gors, m)— VCS if there exist values a(m) and {tx} xepw satisfying the
following conditions:

1. For any M € Cy and any X = {4,43,...,%y} € [oua, the OR V of rows iy,1s,...,1%
satisfies

w(V) <tx — a(m)-m;

whereas, for any M € C; it results that w(V) > tx.
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2. For any X = {i1,%2,...,%p} € D', the two collections of p X m matrices D, (t &
{0,1}), obtained by restricting each n X m matrix in C; (t € {0,1}) to rows i3,1,, ..., 1,
are indistinguishable in the sense that they contain the same matrices with the same
frequencies.

Each pixel of the original image will be encrypted into n pixels, each of which consist of
m subpixels. To share a white (resp. black) pixel, the dealer randomly chooses one of the
matrices in Cy (resp. C,), and distributes row ¢ to participant . Thus the chosen matrix
defines the m subpixels in each of the n transparencies. Note that in the definition above
we allow a matrix to appéa.r more than once in Cy (C;). Finally, note that the size of the
collections Cy and C; need not be the same.

The first property in the definition above is related to the contrast of the image. It says
that when a qualified set of participants stack their transparencies, the grey level of a black

pixel in the recovered image is greater than or equal to some predefined threshold value and
that the difference in the grey levels of a black and white pixel is at least a(m) - m. The

second property is related to security, since it implies that even by inspecting all their shares
a forbidden set of participants cannot gain any information about whether the shared pixel
was white or black.

2.1.1 Basis Matrices

Instead of wOrking with the collections (g and C;, it is convenient (in terms of niemory re-
quirements) to consider only two n x m boolean matrices, S° and S* called basis matrices
which satisfy the following definition.

Definition 2.2 Let (FM,FFO,;) be an access structure on a set P of n partjcipaﬂts. A
(I Quats I'rors, m)— VCS with relative difference a(m) and a set of thresholds {tx}xerq. is
realized using the n x m basis matrices S° and S' if the following two conditions hold:

L If X ={t1,%2,...,1p} € ['Qua, then the OR V of the rows i), 1y, ...,i, of S° satisfies
w(V) <tx — a(m)-m;
whereas, for S it results that w(V) > tx.

2. If X = {i1,42,...,%} € I pors, the two p x m matrices obtained by restricting S® and S!
to rows 1,1y, ...,1, are equal up to a column permutation.

‘“The collections €y and C, are obtained by permuting the columns of the corresponding basis
matrix (S? for Cy and S! for C1) in all possible ways. Note that, in this case, the sizes of the
collections C, and C; are the same.

2.1.2 Share Distribution Algorithm

Now that we will be working with the basis matrices S° and S, we need to modify the
encryption process slightly as described below.
For each pikel P, do the following:
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1. Generate a random permutation = of the set {1,2,...,m}.

2. If P is a black pﬁel,‘then apply 7 to the columns of SY; else apply 7 to the columns of
S'. Call the resulting matrix T

3. For 1 <i < n, row i of T comprises the m subpixels of F in the ith share.

2.2 Threshold Schemes

A (k.n)~—threshold structure is any access structure (I' gyuar, I’ Fort ) I Which
lo={BCP:|Bl=k}

and

Fpm:{BEP:IBlﬂk-l}.

In any (k,n)—threshold VCS, the image is visible if any k of the n participants stack their
transparencies, but totally invisible if fewer than k transparencies are stacked together or
analyzed by any other method. In a strong (k,n)—threshold VCS, the image remains visible
if more than k participants stack their transparencies.

We now examine some constructions of threshold VCS proposed by Naor and Shamir [11]
and Blundo, De Santis and Stinson [4].

2.2.1 (2,n)—threshold VCS

The 2 out of n visual secret sharing problem can be solved by using the following n x n
matrices as basis matrices [11].

1 00 ... 0

1 00 ... 0
o= .

1 0 0 . 0

(1 00 ... O

0 1 0 . 0
St=1 . _

10 00 ... 1

SY is a boolean matrix whose first column comprises of 1’s and whose remaining entries are
O's. S is simply the identity matrix of dimension n. :
When we encrypt a white pixel, we apply a random permutation to the oolumns of 5% to
obtain matrix T. We then distribute row i of T to participant . To encrypt a black pixel. we
apply the permutation to S'. A single share of a black or white pixel consists of a randomly
placed black subpixel and (rn— 1) white subpixels. Two shares of a white pixel have a combined
Hamming weight of 1, whereas any two shares of a black pixel have a combined Hamming



Figure 2.1: The shares of a black pixel

weight of 2. which lﬂoks darker. The visual difference between the two cases becomes clearer
as we stack additional transparencies. '

To exemplify this discussion, let us take a concrete example of a (2,4) VCS. The basis
matrices S? and S! in this case are given by:

1000
1000
$=1100 0
100 0
100 0
. o100
S=10010
00 0 1

A black pixel can be shared in any one of the six ways snown in Figure 2.1. A white pixel can
be shared in four possible ways as shown in Figure 2.2. |

If one examines just a single share then it is impossible to determine whether it represents
a share of a black or a white pixel since single shares, whether black or white. look alike.
It two shares of a black pixel are combined together, we obtain two black and two white
subpixels. Combining the shares of a white pixel yields only one black and three white
subpixels. Therefore, on stacking two shares, a black pixel will look darker than a white pixel.

It is intuitively clear that as the value of n increases, it will become progressively difficult
to discriminate a black from a white pixel in the recovered image. This is because. as n
increases, the grey level produced by 1 black and (n — 1) white subpixels is approximately
equal to that produced by 2 black and (n —2) white subpixels. This can be also seen from the
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Share 1  Share 2 Shl + Sh2?  Sharel  Share2  Shl + Sh2
inn FH .- ‘"’EH i .

Figure 2.2: The shares of a white pixel

fact that the relative difference a is 1/n. The relative difference measures the difference in
contrast between black and white pixels. As n increases, this quantity goes to 0. Therefore,
this construction is viable only if n is small. -

2.2.2 A (2,n)—threshold VCS with optimal contrast

We now present a (2, n)—threshold VCS due to Blundo, De Santis, and Stinson [{4] in which
the relative difference is optimal.
The n X m basis matrices S° and 5* are constructed as follcrws The columns of S! consist

of all binary n—vectors of weight [n/2|. Hence, m = ( In/2] ) and any row in S! has weight
equal to ( L‘”* /2] -1 ) 59 is constructed from n identical row vectors of length m, and of

weight ( In/2] -1 ) Before we prove that these matrices indeed satisfy the definition of
basis matrices let us record some of the properties of S° and S*.

Property 1. S® and S! have m = ( [n72 | ) columns, and any row in either matrix has

. n—1
weight ( n/2] -1 )
Proof: Follows directly from the dehnition.
_
Property 2. Let X = {i,%3,....14} be a set of any ¢ > 2 distinct rows. Then w(S%)

= ( Lf; 2]'_1_ I ), where w(S%) represents the Hamming weight of the OR of the rows

1—1:'52:* : wiq UfSU
Proof: Follows directly from the definition of S°.
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N
Property 3. For ¢ > n — |n/2] = [n/2), we have that w(S%) = m. |
Proof: Since the number of 1’s in any column of S? is [n/2], the submatrix S} formed by

restricting S* to a set X of ¢ > [n/2] rows will have at least one 1 in each of its columns.
The Hamming weight of the OR of the rows of S % must therefore be m.

Property 4. For2 < ¢ < [n/2],

w(Sx) = ( 2 ) - ( 2] ) |

Proof: w(S%), in this case, is m minus the number of all zero columns in the submatrix S%.
The number of such columns is equal to the number of columns of S' in which all the |n/ 2|
I's are restricted to the-n — g rows of submatrix Sh2,..n}—x- This number is

B ( E;;ztj )
H

We now show that S° and S? are indeed basis matrices. Property 2 of definition 2.2 is
obviously satisfied. To prove Property 1, we compute the difference w(Sx) — w(S%) (X is a
set of ¢ rows i1, 1s,... ,z,,) From Properties (3) and (4) above and the identity

(£)=(:)+("+)
where 1 < k < n, we obtain that.
( fﬂ;zj )— ( [‘n'/'g‘j) if_2£qg [n/2]

( [‘n';?j ) if [n/2] <q <n

As can be seen, the quantity w(S%) —w(S%) does not depend on the actuyal set X but only
on its size. Let 8(g) = w(S}) — w(S%). The quantity 3(q) is nondecreasing and is minimum
at ¢ = 2. Define a{m) = 3(2)/m. Hence,

e (G) - ()
- ( L'n}t?]-g-l )

w(Sx) ~ w(S%) =
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Since m = " t
T ng2) )

( 1”72] ?‘1 ) (n/2){n/2]

()

Let us define o*(n) = J-"f{ (21{ L"l’;z]. Note that we can express a*(n) in the following manner:

a{m) =

if n 1s even

K[
* — dn(n—1)
CF () { -‘li(l if n is even

in

For any set X of at least two participants if we set fx = w(8L) and a(m) = a*(n). then
Property 2 of definition 2.2 is satisfied.

‘Since B(q) is nondecreasing, it is obvious that by stacking more than two transparencies,
the image recovered becomes more discernible. When we stack |n/2] < g < n transparencies

we have that
B(q) = ( {;;25 ) -

Since m = ( I_nr/l2_] ), the relative difference in this case is equal to

B(q) _ _F.l_}= : if nn is even
i 2 % + -2-1,;- if n is odd
We summarize the above discussion in the following theorem.

Theorem 2.1 For anyn > 2, there exists a strong (2, n)—threshold VCS with pixel expansion

m = ( [1:;21 ) and a{m) = a*(n).

Example 2.1 Let n = 4. Then, the two basis matrices are:

Sﬂz Slz

I R = I

0
1
1
0

- OO O

1
0
1
0

—_ o = O
OO
bkt ek
O
— CD =
O = =

oo oS

_ | i
Blundo, De Santis, and Stinson have proved that this scheme achieves an optimal relative
difference (see Theorem 4.2 in [4]). We state this theorem without proot.

Theorem 2.2 Let n > 2. In any (2. ﬁ}—th,reshold VCS with pixel expansion m, it holds thatj
a(m) < a*(n).
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We end this subsection with another theorem by Blundo. De Santis. and Stinson 4] that
establishes lower bounds on the pixel expansion m, as a function of 7 (see Theorem 4.9 in

4)).

Theorem 2.3 Suppose there exists a (2,n)—threshold VCS with pixel expansion m and (op-
timal) relative difference a(m) = a*(n). Then

2n— 2 ifn is even
m>{{ n ifn=3 mod14
2n ifn=1mod4

2.2.3 (k,k)—threshold VCS

The k out of £ VCS proposed by Naor and Shamir is optimal with respect to pixel expansion
m and relative difference a. The construction is as follows:

Consider a ground set W = {1,2,...,k} of k elements and let M1, Mo, ..., Moe-1 be a list
of all subsets of W of even cardinality and let oy, 05, ... ,O9x-1 be a list of all subsets of W
of odd cardinality. Each list defines the following k x 2*! boolean matrices S° and S!. For

that these two matrices indeed satisfy the definition of basis matrices for & out of £ schemes.
We provide a proof of this fact below. The first part of this proof, which deals with contrast,

1s reproduced verbatim from [11]. The second part deals with security where we have put
forward our own argument. -

Lemma 2.1 The above scheme is a k out of k scheme with parameters m = 2*~! and o —
1/2%-1,
Proof: In order to show contrast, note that in the matrix S, there is one column that is all 0,
the one indexed by the empty set. On the other hand, in S* there is no column that is all 0.
Therefore, in any permutation of S? the OR of the k rows yields only 2%-1 _ 1 ones, whereas
in any permutation of S the OR of the k rows yields 257! ones.

To prove security, consider the matrices 79 and T'. obtained by deleting the ith row from
5% and S'. We need to show that 7% and 7™ are identical up to a column permutation. First
note that both T° and T are (k — 1) x 25~ matrices. We claim that the columns of 79 (7
describe the set of all subsets of ¥ — {1,...,i~1,i+1,..., k}. Recall that the columns of S°
. describe all subsets of {1,2,...,k} of even cardinality. Since T? is obtained by deleting the
ith row of S% each subset of Y of even cardinality is represented by $ome column in 79, Let
X CY be a set of odd cardinality. Then X U {i} is of even cardinality and is represented by
& unique column ¢ in S$°. This column ¢ then represents the set X in the matrix 70 Hence,
every subset of Y is represented by some column in 79 Since T° has 25~ columns and the
cardinality of the power set of Y is also 25=1 we have actually shown that every subset of ¥
18 re;iresented‘by a unique column in 79, 7

We can repeat this argument for S! also. This proves that both 7° and 7" have the same

structure and one can be obtained from the other by a column permutation.

- _ .
Naor and Shamir go on to prove the optimality of this scheme (see Theorem 4.3 in [11]).
We state this theorem without proof.

Theorem 2.4 In any k out of k scheme o < 1/2% 1 and m > k-1,
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2.2.4 (k,n)—threshold VCS

The following construction is due to Blundo, De Santis. and Stinson {4] and it makes use of
an wutial matrir which is defined as follows:

Definition 2.3 Let n,l, k be integers such that k[n. An initial matrix IM(n,l, k) is ann x [
matrix whose entries are elements of the ground set A = {a,,qs,...,ax}, in which the set of
columns is equal to the set of vectors in which each element of A appears n/k times.

The number of columns, {, of an initial matrix IM(n,l, k) is equal to the number of distinct
permutations of the word:

ay...qy ... Gy... Q& ... Qk...Q%
N, e’ ) e

n/k times  na/k tlImes  n/k tlmes

that is,

nl

[ = —
{(n/k}!}
Given an initial matrix /M (n,l, k) we can construct a (k,n)—threshold VCS as fol-

lows: The n x (I - 25-1) basis matrices $° and S! are constructed by replacing the symbols
a, az, . . ., g, respectively with the 1st, ..., kth rows of the corresponding basis matrices of the
(k, k)—threshold VCS described in the last subsection {Subsection 2.2.3). The next theorem,
which has been quoted from Blundo, De Santis, and Stinson [4], proves that the scheme just
described is a (k, n)—threshold VCS. We omit the proof.

Theorem 2.5 Let n and k be integers such that 2 < k < n and kin. Then the scheme
described above is a strong (k,n)—threshold VCS with

(n/k)*

Y. ok-1
(£)2

The previous theorem provides a construction for (k,n)—threshold VCS when k|n. To
realize a (k,n)—threshold VCS for any values of k and n we can construct, using the above
technique, a (k, ng)—threshold VCS, where ng > n and k|ng, and then consider only the first
n rows of the basis matrices of this scheme. The resulting scheme has the same parameters as
the (k,ng)—threshold VCS. The next theorem states the existence of (k, n)—threshold VCS
for any valhaes of k and n. |

!
__ " k~1

.2
{(n/k)}*

and a(m)=

Theorem 3.6 Let k and n be integers such that 2 < k < n. Then there exists a strong
(k.n)—threshold VCS with

To! _ (nu/k)k
2= k-?"‘laﬂda(m)— -
{(ﬂg/k)!} ( T;;D ) . 9k—1

m

where ng = [Z] - k.
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We end this subsection with a result due to Blundo, De Santis, and Stinson 4] that places
bounds on the relative difference and the pixel expansion in any (k, n)—threshold scheme
realized using basis matrices (see Theorem 6.3 and Corollary 6.6 in [4))

Theorem 2.7 For any (k, n)—threshold VCS realized using basis matrices, the relative dif-

ference o(m) satisfies
1
a:('rn.) < ?— T €

where

o 2“{n—ik+1) ifn—k is even
ot i — k is odd

T'he pixel expansion m satisfies

m = 282, log(n — k£ + 2).

2.3 VCS for_ General Access Structures

We now present a construction for general access structures based on the cumulative army

method [2]. Let I’ = (T'gyq, T rors ) be a strong access structure on the set of participants P =
{1,2,...,n}. Recall that in a strong access structure - -

* I'gua is monotone increasing
® [, is monotone decreasing
* Iguat Ul gua = 27
Let Zys denote the collection of the maximal forbidden sets of T
Zm ={B €Ty : BU{i} € T gua for all i € P - B}

Note that any set X € I'g,, is a subset of some B € Zum- A cumulative map (8, T) for I guat
is a finite set T along with a mapping 5 : P — 27 such that for Q C P we have that,

U B(@) =T if Q €T qua
i€Q

We can construct a cumulative map (5, T) for any "o,y by using the collection of maximal

forbidden sets Z,; = {F1,Fy, ..., F)} as follows. Let T = {T1,T5,...,T,} and for any i € P
define

Bl)={T;:i¢ F;,1 <j <t}

Then if X € T,y we must have Uiex B() = T. For if T; & Uicx 3(3) for some 1 < ] <t
then X C Fj. Since I is a strong access structure, this means that F; € I gyy contradicting

the fact that F; € Tporp. X € Ty, then X C T; for some 1 < 7 < ¢t and so Uiex 3(i)
cannot be the whole of T
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i

Irom the cumulative mapping for I"guat defined above, we can obtain a cumulative array
for I guar, as follows. A cumulative array is a /P x |T| boolean matrix, denoted by C.4. such
that CA(z,7) = 1iff i ¢ F;.

Example 2.2 Let P = {1,2,3,4}. [y = {{1,2},{2,3},{3,4}}, Z» = {{1,4},{1.3}. {2.4}},
and let F; = {1,4}, F; = {1,3}, and F; = {2,4}. Therefore, |T'| = 3. The cumulative array
for I'gua is the following: '

CA=

ek (D Rk (Y
D D
]

| | T
D (D

- N
Using the cumulative array we can realize a visual cryptography scheme for any strong
access structure. For this, we need to consider the {k, k)—threshold VCS of Section 2.2.3.
Let Zy be the set of maximal forbidden sets and let ¢ = |Zum|. Let CA be the cumulative
array for I‘w obtained using the cumulative map. Let S® and §' be the basis matrices
for a (t,t)—threshold VCS. The basis matrices S® and S! for a VCS for the access structure
(T Quat, I'rors) is constructed as follows. For any fixed row i of CA, let 7y, ... , Jp be the integers
7 such that CA(%,7) = 1. The i-th row of S° (S? resp.) consists of the QR of the rows
Jir--+,7p Of So (§1 resp.). An example will illustrate the technique.

Example 2.3 Let P = {1,2,3,4}, Ty = {{1,2}, {2, 3}, {3.,4}_}, Zy = {{1,4},{1,3},{2,4}},
and let F} = {1,4}, F;, = {1,3}, and F; = {2,4}. Hence, |T] = 3. Let S° and §?! be

_ 001171 ~ 110 0]

S9=10101 S=1|10 1 0

| 0110} 1 00 1
Thﬁbasismatrimsﬂand81inaVCSrealizi.ngthestmngaccessstructurewithbasisl"ga.re:

’ 00110 1001°

{0111 1110

5= 0 1 11 5 = 1 1 0 1

010 1 1 01 0

The second row of S is the OR of the rows 1 and 2 of §°, that 1s,
10,1,1,1] = [0,1, 1,0} OR [0,1,0,1],

and the third row of S° isﬂthe OR of rows 1 and 3 of 5°. Tye first and fourth rows of S? are
equal to rows 3 and 2 of S°, respectively, and similarly for 5.
H

The next theorem summarizes the above discussion (see Theorem 4.2 in {2]).

Theorem 2.8 Let I’ = (T Quai- | Fort) be a strong access structure on the set of participants

P =1{1,2, ...,n}, and let Z); be the family of the maximal forbidden sets in I'pory. Then
there exists a (PM: Fpm.b,m)-'\f’CS with m = 2'4m!-1 gnd lx = m for any X € FQM;.



Chapter 3

Grey Level and Color VCS

3.1 Grey Level VCS

In this section we present constructions for grey-level visual cryptography schemes due to
Blundo, De Santis, and Naor 15]. A survey of exdsting results on grey-level visual cryptography

schemes is provided by MacPherson (10]. The material in this section is based on these
references.

3.1.1 The Model

We begin by defining what we mean by a visual cryptography scheme with g grey levels.

Definition 3.1 Let (T @uats T rors) be an access structure on n participants and let ¢ > 2
be an integer. The g collections of n x m boolean matrices Co,C1y...,Cyy form a visual
cryptography scheme with g grey levels and pixel expansion m if there exist values Qg, - . ., g2
and sets { X, t; x } Xelguu for0<i < g—2 satistying the following conditions: -

L Any X ={j,,...,5,} € I guat can recover the shared 1mage by combining their shares.
Formally, for i = 0,...,g — 2 for any M € C; and any N € C;,, the OR V of rows
;- ., Jp satisfies:

w(Vay) <t;x ~a;-m and w(Vy) 2t x

2. Any X = {j1,...,5,} € Trs has no information on the shared image. Formally, the
g collections of p x m matrices D;, 0 £1< g-1, obtained bv restricting each n x m

matrix in C; to rows j,. .., Jp are indistinguishable in the sense that they contain the
same matrices with the same frequencies.

Note that for each pair of adjacent grey levels i and i + 1, 0 < i < g — 2, we have a set
of thresholds {tx} and a relative difference. The first property ensures that the participants
will be able to distinguish the g grey levels. The quantity a; - m is known as the contrast for
grey level i (0 < ¢ < g — 2). We require that a;-m 2> 1,0 < i< g— 2to ensure that the
participants can distinguish all the grey levels.

The second property ensures the security of the scheme. Even by inspecting all their

shares. a forbidden set of participants cannot gain any information on the secret image.
We rewrite the above definition in terms of basis matrices.

15
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Definition 3.2 Let (I'g.o. k) be an access structure on n participants and let ¢ > 2
be an integer. The g n x m boolean matrices Go. G, .. .. G4y form a visual cryptographyv
scheme with g grey levels and pixel expansion m if there exist values ag. . . . . (g0 and sets

(X .t x }xergu for 0 < i< g — 2 satisfying the following conditions:

L IfX = {ji,...,5p} € Toua then for 0 < i < g ~ 2, the OR V of rows j,,....7, of G;
satisfies w(V) < t; x — a; - m; whereas for G,.; we have that w(V) >t x.

E )

them to rows 4, .. .. Jp are equal up to a column permutation.

"

2. If X ={ji,..., 55} € Ty then the g pxm matrices G, . . .. G, obtained by restricting

The collections of matrices C; in Definition 3.1 may be obtained by generating all column
permutations of the basis matrices G;. .

Blundo, De Santis, and Stinson [5] also prove the following result that establishes the
optimal pixei expansion for any (k,k) threshold scheme. In what follows, a (k,n)—GVCS
with pixel expansion m and g grey levels is denoted by (k,n,m, g)—GVCS.

Lemma 3.1 In any (k. k.m, g)—GVCS with relative differences ag; - . ., Qg_g, We have
min{ag, ..., a2} < 1/(g — 2) - 2~

and
m > (g—1)-2~1

3.1.2 An optimal (&, k) threshold construction

We can use the optimal (k, k)—VCS from Naor and Shamir [11] to create a GVCS with pixel
expansion m = (g — 1) - 2871, For each grey level 4, we assume that a pixel with grey level
1 1 a union of ¢ black subpixels and g — i —~ 1 white subpixels. We begin with an optimal
(k, k})—VCS which has the basis matrices Sy and .S; and pixel expansion m' = 25~1. The basis
matrices (¢ are simply the concatenation of g — 7 — 1 copies of Sy and 7 copies of .

Gi=5y0...05085/0...05,
\—_-...v._f '\-_-..v,._/
g—1—1 i

We define the set of threshold values {t; x} tobe t; x = (g — 1) -m’ — g + i + 1 and relative

differences o; = 1/m. Since we are concatenating ¢ — 1 matrices, the pixel eXpansion is
m = (g —1)- 2!, which is optimal.

Theorem 3.1 The construction described above is a (k, k. g, m)—GVCS with pixel expansion
m = (g—1)-2*! with the set of thresholds t; = m—g-+1+2 and relative difference a; = 1/m.

Proof: For 0 <7< g— 1. the weight of the OR V of all k rows of (; is

w{lV) = {(g—i—1)-(m'-1)~i-m
= (g—-1)-m'—g+1-+1
m—g-+1+1

1
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Since for 0 < § < g — 2. Lix=m—g+1+2 and @; - m = 1, we have that
x~—oi-m=m-—g+i+1

Therefore, we have w(V) < tix — a; -m as required. If we compute the OR V of all k rows
on the matrix G;;,, we have

w(V):m—g+(i+l)+l:m—g+’i+2

Therefore, w(V') > ¢, x, and Property 1 of Definition 3.2 is satisfied.

To prove Property 2, we consider each adjacent pair of basis matrices GG for0< i<
9 —2 Let X C P, where |[X| < k. Then G. contains g —t — 1 copies of Sy and i copies
of 5. and G4, contains g — i — 2 copies of Sp and ¢ + 1 copies of S;. Since each contains
g — 1 — 2 copies of Sy and ¢ copies of S;, these columns are clearly equal for any choice of
participants X. The remaining columns of G; are equal to S; and those of G4 are equal to
51. But Sy[X] = $;[X] up to a column permutation, and therefore Gi[X] = G,,[X] up to
a column permutation. Since this is true for any ) < 2 < g~ 2, we have that all G;|X] are
equal up to a column permutation for 0 <t < g— 1. This proves Property 2, and therefore,
the construction is a valid GVCS.

3.1.3 A (k,n) threshold construction

The (k, n)——th:eshﬂl&ﬁt;:aﬁstrﬁ_btion described hﬁremakes use of starﬁngmaivm which we
define below. . - | | |

— e -
[ . I -
, T .

Definition 3.3 A startiﬁg_ m&trix SM(n,l, k) is an n x | matrix wbosé eﬁtn'aj_ ar,e elements

of the ground set G = {a,.. ., ai }, with the property that for any subset X = LG, ... i} of
k rows, the submatrix SM[X | has at least one column whose entries are all distmet.

Given a starting matrix SM (n,1, k), we can construct a (k, n)—threshold GVCS as follows:
the n x (I (g —1)-2%~1) basis matrices G, .. . ,Gg-1 are constructed by replacing the symbols
dj,.-.,a8x with the 1st, ... k-th rows of the corresponding basis matrices of the optimal
(k, k)—~GVCS, respectively described in the last section.

Theorem 3.2 Given a starting matrix SM{n 1 k). there exist basis matrices for a (k,n,q, m)
—threshold GVCS with pixel expansion m = I-{g —1)-2%-1

Proof: Let G%, ..., G _, be the basis matrices of an optimal (k, k)—~GVCS and let SM(n, I, k)
be a starting matrix whose entries are elements of a ground set {a, ..., ar}. Let Gy, ..., Go-1
be n x (I-(g— 1)-2%!) matrices constructed by replacing the symbols {ai,...,ax} with the

Ist, .... k-th rows of G§, .. ., G;_,, respectively. |

To prove Property 1 of Definition 3.2, we consider the basic block B; ; which is the n x
((9—1) -25=1) matrix obtained by expanding column 7 of the starting matrix using G*. Choose
any adjacent pair of basic blocks B; ;. Bit1; (from adjacent matrices G; and Gi+1)- Consider
any d > k rows of the basic blocks. There are two cases: Either these d rows include aj]
the rows of G¥ (G* | resp.), where a row may appear more than once; or the d rows contain
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at most (kK — 1) distinet rows. In the first case, the OR of the rows has weight ¢; — 1 (¢;
resp.): in the second case, the OR of the rows has the same weight in both basic blocks. Since
the first situation will be true for at least one j for any choice of d > k rows, Propertv 1 of
Definition 3.2 is satisfied.

To prove Property 2, we need to show that for any X C {1,...,n} with |X| < k. we have
that Gl X] = ... = G¢_;[X] up to a column permutation. This is true since By; = ... =
By_1; up to a column permutation for all 1 < j < 1. '

3.2 Color VCS

Until recently, most of the research on visual cryptography concentrated on black and white
visual cryptography schemes. Lately, there have heen eome papere on grey-level visual cryp-
tography schemes, but research on color schemes has been very limited with only a few papers
available on the subject (see {7, 8, 9]). Color visual cryptography is inherently more compli-
cated than black and white visual cryptography for a number of reasons.

Firstly, the rules of color combination, which are so simple for black and white images, are
considerably more complex for color images. Secondly, if one tries to construct basis matrices
for a color visual cryptography scheme keeping the security property intact, then one finds
that the pixel expansion necessarily becomes very large. This situation is compounded by the
fact that in the recovered i image, only a small proportion of the subpixels retain the color of
the original shared pixel. Together these two effects serve to diminish the brightness of the
recovered image. This is not' a problem in black and white or grey-level visual cryptography
schemes, but it becomes painfully obvious when the image is colored. Hence although (k,n)
schemes have been proposed for color images, none of them are efficient in terms of producing
a clean reconstructed ; image,

In this section, we review color VCS proposed in [7] The model proposed in this paper
(and also in (8, 9]) are based on a finite lattice (see the next section for a definition of a
finite lattice). But first, we introduce a parameter called the color ratio which we will use to
measure the brightness of the recovered image in a color VCS.

Definition 3.4 Let us assume that we have a (k,n)—threshold VCS for color imagﬁ' with

the color set C = {c1,...,cx}. The color ratio of this VCS is the set {R.}%, where for
1<i<K,

'[2

the number of subpixels that have the color G

A,

T'his ratio 1s evaluated for a pixel of color ¢; in the reconstructed image.

the pixel expansion m

In comparing two color VCS with the same color set C, we could use the minimum value of the
set {R,, }i%, as a benchmark in deciding which scheme is better. We will denote min; <;<x { R, }
by R. Note that R denotes the lower bound on the color ratio of any color ¢; that the scheme
SUpPOTLS.

We next describe the rules of color combination. There are two ways to interpret and
produce color. We may add together light sources, each of which produces light with its own
distribution of frequencies. This method of producing color is called additive color and is how
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Additive Colors Subtractive Colors

Red Cvan

Green Yelow

Blue Magenta

Red + Green = Yellow Cvan + Yellow = Green

Red + Blue = Magenta Cvan + Magenta = Blye

Green + Blue = Cyan Yellow + Magenta = Red

Red + Green + Blue = White Cyvan + Yellow + Magenta = Black

Figure 3.1: Table showing additive and subtractive colors

color is produced by a CRT. for example. In the additive case, there are three primary colors-
red, green, and blue. The combination of these colors produces the colors shown in the first
column of the table in F igure 3.1.

The second way to produce color is to start with a source of white light (which contains all
the visible frequencies), and then remove colors by filters. This method of producing colors,
called subtractive color, is the way colors are produced by natural phenomena. For example.
grass 1s green because it absorbs other frequencies but reflects frequencies in the green range.
In subtractive systems, the complimentary colors of Cyan, magenta, and yellow are considered
to be primaries and the rules of color combination are as in the second column of the table in

Figure 3.1. In visual cryptography, color is produced by the subtractive process and so, from
Now on, our primary colors will be cyan, magenta, and yellow.

3.2.1 Lattice-based (k,n)—VCS

We begin with a few definitions. A partial ordering of a set L is a binary relation < on L
which satisfies the following properties for all aj, @2, and a5 in L:

l. a; < gy (reflexive).
2. Ifa; < ay and a, < a,, then @) < a3 (transitive).
3. If a; < ay and ay < a;, then a1 = a9 (anti—syﬂmetric).

A set L equipped with such a relation is called a partially ordered set (or a poset).

If A 1s a subset of a poset L, then an upper bound for A is an element b € L such that
a<blorallac A A least upper bound (L.u.b) of A is an upper bound by of A such that
bo < b for every other upper bound b of A. The notions of a lower bound and greatest lower
bound (g.1.b) may be defined similarly. -

A poset (L, <) is called a lattice if for all a,b € L, the set {a,b} has both a lL.ub and a
g.lL.b. A poset (L, <) is called an upper semi-lattice if for all a,b € L the set {a, b} has a Lu.b.

If (L. <) is an upper semi-lattice then the join (denoted by J)of L is a binary operation on
L defined as follows: For T,y €L,

T Uy = least upper bound of {z,y}.
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An upper semi-lattice is said to be bounded if it contains the least element 0 and the greatest
clement 1 such that

r J0=1x and z U1l =1

for all z € L. It is easy to see thatif L 15 a bounded upper semi-lattice and m an integer > 1.

then the m-th Cartesian product L™ is also a bounded upper semi-lattice if the join i, of
L™ i1s defined as

(Z1... . Tm) Um (V1,2 Ym) = (21 U Y1, o T U Umm)-

(0....,0) and 1,....1,

— —
m COPI€S m COPIes
respectively.

We associate the elements of a bounded upper semi-lattice L, with a set of colors. The
physical operation of mixing two colors ¢),¢2 € L, in the sense of taking two transparencies
of colors ¢; and ¢, and stacking them on top of one another, corresponds to finding the least
upper bound of {c;, c2}. We use a bounded semi-lattice since 1n practice, if we mix any color
with black (1) we get black; mixing any color with white (0) gives us back our original color.
A bounded upper semi-lattice takes into account these two situations.

We are now ready to define a lattice-based (k,n)—VCS. Let L be a bounded upper semi-
lattice of colors and let m > 2 be an integer. Define C = {¢1,...,cx} € L to be the set of
colors that the secret image contains. This subset need not be a sublattice of L. Let P bea
set of n participants. We can view an element of (L™)" as an n X m matrix S whose entnes
are elements of L. For 1 < p < nand A = {4,...,ip} C P define S[A] to be the p x m
matrix obtained by restricting S to rows i;,...,%,. For such a p and A define the mapping
h:{L™)* - L™ as

h(S{A]) = 5i, Um 81, Um - - - Um S5,
where 3, denotes the i;-th row of matrix 5 and LI, denotes the join of L™ defined previ-
ously. Note that h describes the physical operation of stacking the shares of the i;th, ... {pth
participants.

A lattice-based visual cryptography scheme for an access structure I' is defined as follows:

Definition 3.5 Let I' = (I"gual, [ rors) be an access structure on a set P of participants. Let
L be a bounded upper semi-lattice of colors and C = {c, - -- cx} a subset of L. Let A
‘1 < i < K) denote a collection of n x m matrices with elements from L. The set {X. }E,
is called a lattice-based visual cryptography scheme for the access structure I' with colors C
and pixel expansion m if the following two properties hold:

1. Foreach1 < i< K. if A € Iy and S € X,.., then h(S[A]) € L™ contains only 1s and
at least one ¢;. Iy, is a minimum qualified set of I Quat-

2. If A €T . then the sets X, A] (1 <1< K) are indistinguishable in the sense that
thev contain the same elements with the same frequencies. Ac, |A] is defined as

X, (Al = {S§[A]: § € A, }.

%, refers to the maximal forbidden sets of I fors-
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To encrypt a secret image into n shares we do the following: for each pxel P (of color,
say, ¢;) in the secret image we choose an 5 € &, at random. The rows of S describe the
shares distributed to the n participants. We repeat this step until all the pixels in the secret

In order to construct a lattice-based (n, n)—VCS for the color set C ={c,... ,Cx}, it is
necessary to choose a finite lattice L such that C C L, and the collections of n X m matrices
{X.. }fil appropriately. At this pomt, we will introduce the finjte lattice L.y, shown in
Figure 3.2. L., has the following colors as its elements: 0 (white), Y (yellow), M (magenta),
C (cyan), R (red), G (green), B (blue), and 1 (black). The Hasse diagram shows that Y. M
= R. YUC = G, MUC = B, and RUC = GUM = BUY = 1. In this section, we will use Lo

A simple (2,2)' construction

Let Lyce denote the sublattice of L., composed of the elements {0,Y.C, G,1}. We let
L=Lycg. m=4and ¢ = {Y,C,G}. The elements of ;- Xc, and X can be abtained by
permuting the columns of the basis matrices Sy, Se, and S, respectively, given below:

S_'YUIC" 5_'0011/"
Y__UYCIJ’ C“_OCY1_’
. _ Y C10;
G'_C Y o1
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When we stack two shares together. only two out of a toral of four subpixels have the color
of the original shared pixel: the remaining two are black. The color ratios fiy, Re-. and Rg
are therefore each equal to 2/4 = 1/2.

If welet L = Legjor, C = {0.Y.C. M, R, G, B,1}, and m = &. the sets A, (¢; £ C) can
be realized by considering all possible column permutations of the basis matrices S, defined
below:

S_’DYMClll‘l'
T o1 1 1Y MC 1
g [y omMC 1111
¥ 7oy 1 1 MC11:
S _[M 0 CcY 111 1]
M~1lo M1 1CY 11
S_'COYM1111"
©~]lJoCc1 1Y MI11
S_'YM001111'
RTIMY 11C011
S_'CYM()llll“
T |y C11MO011}
S_'MCY01111'
71 M1 1Y 011}
S_‘YM001111
T |11 1 1Y MCO

In this case, if we stack two shares of a pixel of color ¢ (¢; € {Y.M,C,R,G, B}), only two
subpixels out of a total of 8 have the color of the original shared pixel. The color ratios R.'s
(c; € {Y,M,C, R, G, B}) are therefore each equal to 2/8 = 1/4. Clearly, Rp=1/8and R, = 1.

A simple (n,n) construction

The construction we now describe uses the basis matrices of the (n,n)—threshold scheme
proposed by Naor and Shamir [11]. See Chapter 2 Section 2.2.3 for an explanation of this
scheme. We will illustrate the technique used to construct the basis matrices of the (n,n)
lattice-based scheme with an exampile.

Let n = 3. Then the basis matrices Sp and S; of Naor and Shamir’s (n,n) scheme are:
001 1 1100
So=101 0 1 S;=11 010
011 0] 1 00 1
Define S3(z) and S;(z) by

r r 1 1 1 1 7|

Solr)=1x 1 = 1 Silzx)=|+r 1
1 1 x| r z 1 |
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51 I is obtained by replacing (s by z’s; S1(x: is obtained in a similar fashion but by deleting
the all I column. Let 7 — Lyce and C = {Y.C G}. The basis matrices Sy, Se, and S¢ are
as defined below: '

Sy = S{](Y} > 51 (C) Q Sl(G)

S(j - S{](C) > S}(Y) Q SI(G)

SG = S{](G) 0 51 (C) O 51 (Y)
Here o denotes concatenation of matrices.

If n is even, the all 1 column appears in So and in forming So(z) we would have to drop

this column from So and then replace 0's by r's. When C| = K, the Pixel expansion of the
scheme is:

K-27-1_.1. if n is even
m =
K-2'— (K —-1), ifnisodd

T'he color ratio R = 1/m.

3.2.3 A (k,n) construction

We now present a lattice-based (k,7)~VCS due to Koga and Yamamoto 7). This construction
Uses two matrices A(z) and D(z) which play the same role as Sy(z) and Si(zx), respectively,
where Sp(z) and S)(z) are the matrices introduced in last section. [f the color set C = {Y C},
then the basis matrices Sy and S are defined as:

Sy = A(Y)oD(C)
Sc = A(C)GD(Y)
A(z) and D(z) are designed so that the Lu.b of any k rows of A(z) consists of only r’s

and 1’s while that of D(z) consists of only 1's. Any collection of (k — 1) rows of A(Y)o D(C)
and A(C) o D(Y) are identical in the sense that one can be obtained from the other by a

Séquence of column transpositions. If the color set is ¢ = {c1,-..,cx}, the basis matrices S,
(c: € {e, ,Ck }) are defined as follows:
Se; = A(c;) 0 D(cy)o... 0 Dieir) o D(cyyy)o... 0 D{cg)
Before we describe the construction, let us set 4p our notation. For j =1, 2. , n, define

z 0 0
Affgig(ﬂ:) == 0 z 0
0 0 T |
‘T r 010 1
11"[3,1(:1?) = 0 1 ¢ z 1 0
* 1 0 1 O.I'.’.I?d
r 1 17
A’[g?g(l’) = I r 1
1 lr_‘
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Clearly. My - ;(x) has | columns where

1!

(n—-7)1 - 1)

()

If M is a matrix and a > 1 an integer, A1® denotes the matrix obtained by concatenating
M with itself o times.

| =

i

M= McMo.. oM.
d ,

a times

We state without proof how A(z) and D{z) can be defined under various situations. In
each case, we assume the color set to be C = {Y,C}.

The (n,n) case

For n odd,
A(I) = Mﬂ,n—l(I) o AIﬂ,ﬂ-E(I) 0...0 Mﬂ,ﬂ(:ﬂ}w
D(I = Mﬂjn_g(l’) o ;‘fﬂ,ﬂ_li(.’l’f) ...0 Mﬂ,l(I)'
For n even,
A(z) = Mppi(x)o My s(x)o...0 My(x),
D(z) = Mpp-o(z)o My ,u-a(x)o...0 Mpo(z).

The number of columns in A(zx) is

(1)es(3)e5) -

The number of columns in D(z) is

(1) +o(2)ws(2) o

To count the number of columns in A(z) and D{x) we need a few identities involving
binomial coefhcients. First note that

n—1 | n
o) =T )

Expanding n - (1 + 5)"~! by the binomial theorem and using the above identity we obtain:

n— 1 o ’”—1\‘;)1. n—1 n—1
(et (e (00 )

n—1 0 f'ﬂ_lw‘h i n—1 1i—1
1( . )b 52( . Jb ....+n( . )b

n(l+b)"

I
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If we let b = 1. we obtain the identity:

(1)52(3) (2] on

On the other hand if we Jet b= —1. we obtain the 1dentity:
(§)+3(§)+m :z(;)*4(g)+”i
= p.on-2 . -
Now it is easy to see that:
L. The. number of columns in A(z) (D(z)) is n - 272 4pd that in A(z) o D(z)isn-om-1,
2. The Lu.b of n rows of A(z) o D(z) contains n 2's

3. The color ratio of this scheme is R=n/n-2"1_1/9n-1

The (n ~1,n) case

For n odd,
A2) = Monslz) o ME,_((z)o.. 0 M),
D(z) = MEL__:;(J!) o Mﬂqs(z) °...0 M} (x).
For n even,

A = Mans(@) o MB,_(z)o o plng)
D(z) = M2 _s@)o M _(z)o.. o M7 3(z).

The number of columns of A(z) o D(z) is n(n — 1)2"2 while the Lu.b of any set of (n—1)
TOws contains (n — 1) z’s. The color ratio R is therefore 1 fn. 272 |

The (2.n) case
In this case,

A(z)
D(z)

-

ﬂ'fn.l (.I)
M :fnﬁ - (x)

|

I

A(r) and D(z) each have n(n—1) columns. The Lu.b of two arbitrary rows contains two x’s.
The color ratio R is 1/n(n ~1).
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The (4. n) case

For 3 < k < n—2, Koga and Yamamoto have shown the existence of a sequence of integers
{a;}2 ) which can be used to define A(z) and D(z) in the manner shown below:

Alz) = M2 (2)o M (x) 0. .. 0 MPE 1 (z),
| Diz) = Mnk z) o M ,f;f‘t_g;(I‘) --tGA nolT)-

Here we have assumed k to be even. For k even, there is a similar construction.
V\ hat Koga and Yamamoto have been unable to show is the positiveness of the sequence
{a;}*_,. However, they note that it is not necessary for each o; to be positive. For if A(r)

mcludes M 2 k] J(z) with a, < 0, one should remove M, ; l2; (:1:) from A(z) and concatenate it
with D(z). If a; = 0, M.} 2 (:c) need not be concatenated w1th A(z) in the first place. The
same operation should be applied to D(z) if it includes M, 1 2 r J(I) with a; < 0.



Chapter 4

A New (2,n)—Threshold VCS for Color
Images

In this chapter, we propose a (2,n)— threshold VCS for color images. Our scheme has the
tollowing advantages:

this with the color ratio 2/k - n(n ~ 1), which is what the scheme proposed by K

(I7}) achieves. The scheme proposed by Koga in 2001, (19]), achieves a color ratio of
1/k-27-2. (m),

3. The pixel expansion of our scheme is reasonably good. If the secret image consists of
colors cyan, yellow and green, then the pixel expansion is 4m where

mz(tn?ﬂ)'

In case, the secret IImage is composed of the colors red, green, blue, cyan, magenta and
green. the pixel expansion is §m. Compare this with the pixel expansion given in 9],
which for these same two color sets 18 3-2""!.nland 6.2%1. pI respectively. It can be
easily seen that:

3-2" . nl s 4m and 6-2"‘1-n!>6m.

[n what follows, we describe our scheme for the color sets ) = {Y,C,G} and ¢, = {Y.C. )1

R.G.B}. We also show how our scheme can be extended to Support an arbitrary number of
colors.
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4.1 The construction with three base colors

[ et us assume that the secret image 18 composed of the three colors Cvan (C). Yellow (Y} and
Green (G). We will first construct a (2.2)—VCS with the color set C = {C,Y.G}. The basis
matrices So, Sy. Sg of this scheme are given below:

S_'CDY1'
¢~ l0C 1Y,
S [y o cC 1’
Y7 10Y 1 C|
S_'CYlU”
¢~ ly ¢ 01

To generalize this scheme to a (2,n)—color VCS (n > 3), we consider the basis matrix S* of
the (2,n)—VCS for black and white images described in [4]. S! is an n X m Boolean matrix
which is realized by considering all binary n—vectors of weight |n/2|, where

" ( Ln%J)

We will use the basis matrices of the (2,2) scheme as templates in the construction of the
basis matrices of the (2,n) scheme. From here on, we will denote the basis matrix S of the
(2,2) scheme by Xa. Therefore, Sc, Sy, S¢ defined above will be denoted as X¢, Xy, and
X respectively. S¢, Sy and S, the basis matrices for the (2,n) scheme, are constructed as
follows: Sc is an n X 4m matrix obtained by replacing the 0’s in S! by the first row of X¢
2nd the 1’s in S! by the second row of X¢. Sy and S are constructed in a similar fashion.
One can verify that the #th rows (1 <2 < n) of the matrices Sc, Sy and Sc thus obtained
are identical up to a column permutation, thereby satisfying the secunty requirement of basis

matrices.

Example 4.1 Let us construct a (2,3)—VCS with the color set ¢ ={Y,C,G}. S, in this
case. is a 3 x (2) matrix whose columns are obtained by permuting a binary vector consisting
of 13/2] 1's and 3 — [3/2] 0’s. The matrix S is shown below.

1 0 0°
=10 10
00 1
Since
C 0 Y 1
Ae = 1o cCc1 Y
[y o Cc1
Ay = g v 1 C
CY 10
XG'_LYCD‘.L
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we have
0 C 1 Vv C 0 Y1 C o v 1
Sc = C 0 Y1 0 ¢ i Y C 0 YV 1
! C 0 Y1 CQ v 1 0 ¢ 1 Vv )
0 YV 1 C YO0 C1 v ¢ C 1
Sy = Y 0 C1 0 VY 1 CY Q0 C 1
i Y 0 C 1 Vv o C1 0 Y 1 C )
'Y C 01 C'Y 10 C v 1 g ]
Sp = CY 10VY C 0o 1 C Y 10
C Y 10 C Vv i 0Y C 0 1 )

Note that S¢ is constructed vy replacing the 0's of S} by the first row of X and the 1’s by
the second row of Xs. Sy is constructed by replacing the 0's of S by the first row of Xy and
the 1's by the second row of Xy. Sg is constructed in a similar fashion. Here R = 5/12,
RY = 5/12 and R(‘; -“'—‘4/12

4.1.1 Share distribution algorithm

We use the following algorithm to encode the secret image.
For each pixel P in the secret image do the following:

l. Generate a random permutation 7 of the set {1,2,...,4m}.

2. If P has color ¢; (¢; € {Y,C G}), apply 7 to the columns of OS¢ Call the resulting
matrix 7.

3. For 1 < 7 < n, row 7 of T,., describes the color distribution among the 4m subpixels of
the jth share.

If n =2, we apply the column permutations to the matrices X of the (2,2) scheme.
We next show that the color ratio attained by this encryption scheme is bounded below

Lemma 4.1 For any distinct i, = 1,2, . .. ,n let S'{z, i} denote the 2 x m matrix obtained

by restricting S? to rows i and 7. Then the submatrix S {1, 7} bas an equal number of patterns
of the forms |

= - r—

0 1]
p | amd|

-l

and this number is equal to m - a{m). Also the total number of patterns of the forms

-U“ r-lﬁ
o |8od|

o8 - - —l

s given by m —2.m - a{m). Here o(m) is given by

oy ) YA+1/4(n~1), ifn is eveq
a{m) = { 1/4 -+ 1/4n. ifn is odd
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Proof: Thne fact that for any distinct 4,5 = 1.2,....n the submatrix §'{i. j} has an equal
number of patterns of the forms
0 1
d
1% 0

and that this number is equal to m-a{m) has been proved by Blundo, De Santis, and Stinson
in 4. Since S* has a total of m columns, the total number of patterns of the forms
0 and 1

..U.. -1-

1s given by m — 2 -m - a(m).
|

Note. From here on whenever we use the term a(m), we wiii use it as defined above in
Lemma 4.1. To see how a(m) is obtained, consult reference [4].

Lemma 4.2 For each cyan (or yellow) pixel in the original image, the total rumber of cyvan
(or yellow) colored subpixels in a superimposed image is given by m[1 + 2 - a{m)}. For each
green pixel in the original image, the total number of green colored subpixels in & superimposed
image 1s given by 4m - a{m).

Proof: Recall that we defined Xg as follows:

- C 0Y 1
A= 001}’]'

First note that each of the patterns :
11’101

contributes two C’s in S-. Each of the patterns
0] 1
0’11

contributes one C in S¢. So for each cyan colored pixel in the secret image, the total number
of cvan colored subpixels in a superimposed image is given by (using Lemma 4.1)

2m - a(m) +2m - a(m) + m — 2m - a(m)
which simplifies to
m(l + 2 a(m)]

One can verify that this result also holds for a yellow pixel.
Next we will work this out for a green pixel. Recall that we defined X as follows

X =

" CY
Y C
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Note tzat each of the patterns

contribiites two G's in Sg. The patterns

0 B
U_and_l_

contribute no G's in S¢;. Thus for each green pixel in the original image, the total number of
green colored subpixels in a superimposed Image is given by (using Lemma 4.1)

2m-a(m)+2m-cr(m)+0—+—0=4m-r:r(m).

Now we come to the main theorem.

Theorem 4.1 For any n > 3, there exists a (2,n)—color VCS with base colors Cyan (C},
Yellow(Y), and Green (G) with pixel expansion 4m and color ratios

R, = 3/8+1/8(n~1), ifn iseven
] 3/8+1/8n, if n is odd

p,— ) 3/8+1/8(n-1), ifnis even
¥ 71 3/8+1/8n, ifn is odd

RG’"; 1/44+1/4(n—1), ifni is even
| 1/4+ 1/4n, if n is odd

For n =2, the color ratio of the (2, n)—color VCS is 1/2 and the pixel expansion is 4.

Proof: That for n = 2, the color ratio is 1 /2 and the pixel expansion is 4 can be seen by
éxamining the basis matrices of the (2,2) scheme.

Therefore, consider the case when n > 3. The number of columns in S, , ¢; € {C.Y.G} s
4m. By using Lemma 4.2, the color ratio R¢ is given by

Re=[m-(2-a(m)+1)]/4m = 1/4 + a(m)/2

From 1. we know that a(m) is given by,

_J Y/4+1/4(n—1), if nis even
a{m) = { 1/4 +1/4n, if n is odd

Therefcre. R can be written as: -

3/8+1/8(n~1), ifnis even

RC:{ 3/8+1/8n. if n is odd
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I?y- can be derived in a similar fashion. One can verify that Ky is given by:

P — 3/8+1/8(n—1}, if niseven
YT 3/8+1/8n. if n is odd

Again by Lemma 4.2, Rs is given by

1/4+1/4(n~1), if nis even

B
Remark

Note that each share contains the three base colors C, Y, and G together with the colors
white (0) and black (1). If the encoded pixel is cyan colored, then on superimposing any
two shares, the resulting reconstructed pixel has subpixels of colors cyan, yeliow, black, and
- white. Here the color yellow is an unwanted color since it hinders the human visual system
from discerning the true color of the pixel. We will call such unwanted colors nuisance colors.
Suppose that the true color of a pixel is ¢;, and on superimposing two arbitrary shares, we
find some subpixels with the color ¢; (c; # black, white). Then c; is a nuisance coior for ¢;
and any subpixel with color ¢; in a pixel for ¢; will be denoted by N . In this case, vellow is
a nuisance color for cyan and we denote yeliow colored subpixels in a cyan pixel by Ng. For a
vellow colored pixel, the nuisance color is cyan and we denote those subpixdls by N&. Finally,
a green colored pixel has the nuisance colors cyan and yellow and we deaote those colored
subpixels by N& and N{ respectively.

We now count the number of N;, subpixels in a supalmpmd image for a pixel of color
¢c;. where ¢; € {C,Y,G} and t € {C Y'}. Note that in the (2,2) color VCS with color set
{C,Y,G} there are no nuisance colors. Let the pixel in the original image be a cyan colored
one. When shares of the i-th and 5-th partici are superimposed, the nuisance color vellow

0 ]
appears due to the patterns

9 and ! i in S'{i, j}. Each of these patterns contributes

one Y in the superimposed image. that the total mumber of such patterns is given by
m — 2 -m - a(m). Hence the total number of yellow colored subpixels Ng is given by

—9.m. — ) '
m—2-m:-am) {m[l—-L if n is odd

Note that this number is less than m/2. One can show that N < m/2. For each green pixel
in the original image, the number of cyan and yellow colored subpixels are each less than
m /2. Hence their sum is less than m. Although, the reconstructed image has nuisance colors,
thev do not affect the quality of the reconstructed image significantly. Nuisance colors do not

produce any diminution of brightness. as the overwhelming majority of black subpixels do in
the schemes described in [7] and [9).

4.2 The construction with six base colors

Let us now assume that the secret image is made up of the six colors Red (R). Green (G).
Blue (B). Cyan (C). Yellow (Y), and Magenta (M). To comstruct our (2.n)—color VCS for
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this color set. we first construct the basis matrices of the corresponding (2.2) scheme. These
are shown below.

o _ (Y 0 C M1 1
T oY1 1 oM
yv. - 1 C 0 MY 1 1°
“ T loCc1 1 MY
. _ M O0YC1 1°
T oMy ¢
Y. = | Y M C 110
UMY 1 Ccot
v. - |YCOM 1 10]
Y1 Moy
Xo — | M CY 110
ST | M1Y 01

I\Tu{:ﬂ:et]:u'::utC*i—Y=G,C—l—M=Ba.‘.lle+M=]?{.The:l::n‘.-lsis1:|:u:1.i:1'i::ncS,;,i (c: €
{Y,C,M,R,G, B}) is obtained by replacing the 0’s of the n x ( ]_n?? | ) matrix S by the
first row of X, and the 1’s of S! by the second row of Xe;- S¢; defined in this manner is an
n x 6m matrix, where m = ( [nr;? | ) Note that the ith rows of the matrices Sg, S, Sg,

Sc¢, Sy, and Sy thus obtained are identical up to a column permutation.

Theorem 4.2 For any n > 3, there exists a (2,n)~color VCS with base colors Red (R),
Green (G), Blue (B), Cyan (C), Yellow (Y), and Magenta (M) with pixel expansion 6m and

color ratios

R — 1/4+1/12(n — 1), ifn is even
T 1/4+1/12n, if n is odd
Ry — 1/4+1/12(n — 1), ifn is even
] 1/4+1/12n, if n is odd
u [ 1/4+1/12(n—1), ifn is even
M=V 1/4+ 1/10n. if n is odd
R 1/6 +1/6(n—1), ifn iseven
7Y 1/6 + 1/6n. if n is odd
R = 1/6 +1/6(n 1), ifn iseven
] 1/6 +1/6n. if n is odd
p._{ 1/6+1/6(n—1), ifniseven
571 1/6 +1/6n. if n is odd

- Itn =2 then the pixel expansion is 6 and the color ratio of the scheme is I /3.
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Proof: The proof is similar to the proof of Theorem 4.1.

4.3 Extension to an arbitrary number of colors

Our scheme can be generalized to an arbitrary number of colors. If the secret image has the
colors C = {c1,¢2, ..., ¢} such that no two colors ¢; .and ¢; € C can be combined to produce
a taird color ¢x € C, then for each color ¢; € C we define matrix X, as follows :

X =-Ci 0 ¢ ... G-y Gyp --. ¢ 1 ... 1 1 ... 1
& 00 g 1 .. 1 1 ... 1 ¢a ... Gy G ... G
The color ratio can be shown to be |
1 a{m)
2%k

This lower bound is independent of the number of shares and depends only on the number of

colors in the secret image. In case colors can be combined, we will get a better lower bound
for the color ratio.
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Conclusions and Open Problems

For grey-level VCS, we presented ap optimal (k,k) scheme. We also showed how 1S
can be generalized to a (k,n) scheme using starting matrices. For color VCS, we reviewed
constructions of (2,n), (k, k), and (k, n) lattice-based schemes.

Finally, we presented our (2, n) scheme for color umages. For the color set G ={Y,C,G},
our scheme achieves a color ratio that 1S lower bounded by 1 /4; for the second color set

obtain is also much higher than those obtained in the schemes proposed in {7} and [9]. The
pixel expansion is quite good, and is certainly better than the one in [9]. We have also shown
that our scheme can be extended to Support an arbitrary number of colors and that the pixed
expansion of our scheme does not. depend on the number of shares but only on the number of
base colors. An open problem is to extend this scheme to a (k, n)}—threshold scheme.

An important open problem in color visual cryptography is the following: What is the
optunal lower bound on the pixel expansion of a (k,n)—threshold scheme (a scheme for a

general access structure) for color images with base colors {c1,...,¢y }? What are the optimal
upper bounds on the color ratios { R}, for such a scheme? |

If we specialize to the case k£ = n, we know from {11] that the pixel €xpansion is at leasg
2"!. None of the existing (n, n) color schemes achieve this pixel expansion. The best known
result (see (7)) has a pixel expansion of J . n. 2772, where J denotes the number of base colers

In the secret image. We do not know whether this is indeed the optimal pixel expansion of sn
(n, n) scheme with J colors.

For k£ = 2, Blundp, De Santis, and Stinson 4] have established lower bounds on the pix=i
€Xpansion, as a function of n, for black and white VCS with optimal relative difference. T+
lower bounds obtained by them are all linear in n. No exasting (2, n)—threshold VCS for coi-r
images achieves a pixel expansion that is linear in n. The pixel expansion of the (2,n) schere
described in (7] is J - n - (n — 1), which is quadratic in n. Again. it is not known if thic
optimal.

35
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-

For an arbitrary (k, n)—threshold scheme realized using basis matrices Blundo, De Santis,
and Stinson [4] have shown that the lower bound on the pixel expansion is 25~2-log(n — k + 2).
Existing (k, n)—threshold color schemes have a much larger pixel expansion. For example. (9]
gives a (k. n) scheme where m = J - 2""2. n!,

In addition to providing lower bounds for the pixel expansion. we need to upper bound
the color ratios. The color ratios determine the brightness of the reconstructed image and
the upper bounds will give us an idea as to what the best possible reconstructed image will
look like. Finally, having obtained lower and upper bounds. we would also want a method of
constructing visual cryptography schemes that achieve these optimal bounds.
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