DNA Computing using Self-Assembly :
Implementing Finite Field Arithmetic

A dissertation submitted in partial fullilliment,
of the requirements of M.Tech.(Computer Science)
degree of Indian Statistical Institute, Kolkata

by

Shantanu Das

under the supervision of

Prof. Rana DBarua

Indinn Statistical Institute
Kolkata-700 108.

L7 July 2003

Indian Statistical Institutoe

203, Barrackpore Trunk Road,

Kolkata-730 108.

Certificate of Approval

T'his is to certify that this thesis titled “DNA Computing using Self-Assembly : Im-
plementing Finite Fiéld Arithmetic ” subhuitted by Saantanu Das towards partial

fulfillment of requirements for the degree of M. Tech in Computer Science at Indian Statis-
tical Institute, Kolkata embodics the work done under Iny supervision.

-

mﬂm /B“m

Professor Rana Barua,
Division of Theoretical Stalistics & Mathematics,
Indian Statistical Institite,
[Colkata-700 108K,

Acknowledgements

I take this opportunity in thanking Professor Rana Barua for his gaidance throughout
the dissertation period. Without his constant enconragement and support this work would
not hiave been possible.

[express iy deep gratitude to all iy teachers in the course. I am grateful to Prof.
Tom Head of Binghamton University for taking the trouble of sending me the papers that
| requested. These were.of infinite help during my work.

Finally, my classmates and friends have been very helpful and supportive during the

course of this work. I wonld specially like to thank Avishek Adhikari, Bireswar Das and M.
Prem Laxman Das for their help and support.,

Shantanu Das

Abstract,

DNA computing is the new and emerging interdisciplinary lield of study, where the Ltools
of bio-technology are applied to problems in computing. lu recent years, there has been
a lot of research in this area and several methods have been proposed for solving various
computational problems (specially the NP complete problems), using DNA. There has also
heen a few attemnpts to implement the basic operations in computing viz - the arithmetic
and logical operations, using DNA computing. We look at the problem of implementing
the finite field arithmetic operations using DNA computing. Finite field arithmetic has
applications in the area of cryptology and coding theory and these operations are the basic
operations in many coding/encryption algorithins. We propose two different DNA methods
for implementing finite field arithmetic and discuss the merits and demerits of each. The
first method is based on the traditionally used bio-chemical operations while the second
method employs the process of self-asseinbly of DNA tiles. By using DNA computing ior
tinite field arithmetic, we hope to parallely execute multiple such opcrations at a very low
Ccost.

Contents

1 Introduction

2 Operations on DINA

2.1 Structureof DNA 00
2.2 Theoperations,
2.2.1 Synthesizing a DNA strand
2.2.2 Annealing of DNA strands
223 Melting
224 lagating00,
2.2.5 Extraction 0000
2.2.6 Amplifying with PCR 0.
2.2.7 Gel Electrophoresis . . 0 . 0 0L e e e e e e e e e,
2.2.8 Cutting using restriction enzymes :
2.2.9 Sequencing of DNA strands
3 Methods and Models of DNA Computation |
3.1 Adleman’s Experimnent
3.2 Splicing Systemso
3.3 Sticker Model
3.4 Boolean Circuit Model
3.5 Whiplash PCR
4 Algorithmic Self Assembly
4.1 Wang Tiles
4.2 DNATiles. 0 0 L
4.3 Blocked Cellular Automata(BCAY
4.4 haplementing BCA nsing DNA Sell Assembly 0 000 o000 o0,
5 Finite Field Arithmetic |
0.1 Finite helds o . . 0 0 0,
5.2 Binary Arithmetic using DNA
0.3 Finite Field Addition 0oL,
0.4 PFiaite Field Mualtiplieation . . 0 0 0. o oo
5.9 Analysis of the method 0 0 o

6 Finite Ficld Arithmetic using Self-Assembly
6.1 DNATX Tiles,
6.2 Finite Field Arithmetic L,
6.2.1 Finite Field Multiplication00,

s Y v T s T o2 T e T e

T N

-
- W

-] <

12
12
12

14

16
10
17
18
18
19

0.22 AnFxample 000 2(}
6.2.5 Vinite Field Addivion ., 000000000 27
6.3 Implementation Issues 27
6.4 Analysis of themethod . ., 0 0 0 J()

7 Conclusion 31

Chapter 1

Introduction

In the quest for smaller and faster computers, people have started exploring al-
ternative means of computing other than the standard electronic computers. Some of the
unconventional methods of computing that have received much attention in recent years
are quantuln computing and biomolecular computing or DNA computing. DNA comput-
ing deals with the theoretical study as well as the practical iimplementation of methods of
computing by manipulation of natural or artificial DNA molecules. ,

DNA (DeoxyriboNucleic Acid) is the carrier of genetic inforination in living or-
ganisms. DNA molecules consist of scquences of units called nucleotides. There are iour
nucleotide bases that are present in DNA named Adenine, Guanine, Cytosine and Thymine
abbreviated as A,G,C, and T respcctively. The particular sequence of AT,G and C,
that is present in a DNA molecule determines its information content, Thus DNA can
be used to store information, by encoding the information using the four lettor alphabet
¥ ={A G,C,T} (As we all know, just two letters say, 0 and 1, are enough to encode any
inforiation).

In a broad sense, computing can be thought of as the conversion of a input string
to an output string over some alphabet £. In that sense, DNA computation would involve
converting the DNA encoding of a given input string into the ONA sequence encoding the
corresponding output string. ‘This conversion can be done using the bio-chemical reactions
that can manipulate DNA molecules. Indeed, with the advancement of bio-molecular tech-
nology in last few decades, we have in our hand, a multitude of tools and techniques that can
be used to operate on DNA molecules and inanipulate them eccording to our redquirements.
[t is even possible to create a DNA molecule having any particular nucleotide sequence.
These bio-chemical tools (which are explained i Chapter 2), make DNA computing a real-
ity.

The possibility of computing nsing DNA was first. realized by Lo Adlemnn, who
in 1994, demonstrated the teasibility of DNA computing by a small experiment that he
conducted in the laboratory (sce [Adl94]). He was actually able to solve an instance of
the Hamiltonian Path Problemi(HPP), which is known to be an Ni?-complele problem, by
performing some bio-chemical reactions on a set of test-tubes containing DNA molecules.
The Hamiltonian Path Problem is - given a directed graph, one has to find a path(i.c. &
sequence of adjacent edges) that starts at a vertex and ends at another vertex, passing
through every other vertex exactly once. Adleman choose a small graph of seven vertices
and encoded it using some DNA molecules, He then, conducted a secries of biochemical
reactions on these DNA molecules, at the end of which he was able o obtain a DNA strand

encoding a Humiltondan path throngh the graph. The suceess obtalned by Adleman in Ls
expoeritment, prompled many othory to study e cotnputationnl capabilition of DNA. Soon
after Adleman published his result, R.Lipton came up with 2 generalized model for solving
any problem using DNA and he gave a solution to the well-known NP complete problem
called BAT(Satisiinbility problem) using his method [Liph8]). With these two resulis, it was

realized that not only is computing using DNA possible, but it has the potential of solving

many problems which cannot be solved by the standard electronjc computers. ‘This gave
birth to the field of DNA computing.

There are many advantages of DNA computing. The principal ones are its « . »a-
bility of providing high information density and allowing parallelisin in computing at a low
cost.

In the next chapter, we explain the basic bio-chemical operations that are used
to manipulate DNA molecules. In chapter three, we review some of proposed methods
of DNA computation and study the various theoretical models for DNA compiuting. The
Algorithmic Self- Assembly method that was proposed by Winfree is studied in more detail,
in chapter four. We then look at the problem of computing finite field arithunetic and discuss
two DNA methods for implementing these, in chapters five and six. Finally we conclude
by looking at the advantages and limitations of the proposed mmethods and discussing the
future prospects of DNA computing.

Chapter 2

Operations on DNA

In order to nnderstand the DNA computing inethods presented in this thesis, the reader
needs to know about the strncture of DNA and the various bio-chiemical operations that
can be used to manipulate the DNA structures. We briefly describe below the primary
operations that can be performed on DNA structuares, in the laboratory. But first let us
have a look at the structure of DNA molecules.

2.1 Structure of DNA

Naturally occurring DNA (that is found in almost all living beings), has a double helical
shape. A double helix of DNA is made up of two single strands of DNA, each of which is a
chain of nucleotides. The nucleotides are the basic building blocks of DNA. A nucleotide is
an organic structure with three basic parts: a phosphate group, a b-carbon sugar group and
a nitrogenous side group. 'The tive carbon atoms are labeled 17 through 5. 'The nitrogenous
group called the base comes in four different varieties that are naumed Adenine, Guanine,
Thymine and Cytosine abbreviated as A, G, T, and C respectively. The nucleotide itself is
identified by the base it contains and is labeled by the same letter as its basc.

A
T
Base
(i
C
]]
21‘

(3

Figure 2.1: Structure of a nucleotide

A single strand of DNA is a chain of nucleotides, with the sugar group ol one nucleotide
bound to the phosphate group of the next nmucleotide and so on. Thus, there is a chain of
alternating sugar and phosphate groups, which forms the backbone of a DNA strand, with
a free phosphate group on one end and a free sugar group on the other end. The end with
the free phosphate group is called the 5 end (because the phosphate group is connected

to the carbon atomn labeled 5’) and the other ond is callod the 3 ond (bocauso it contains
a free hydroxyl(OH) group connected to thé 3’ carbon atom). So, the two ends of a DNA

single strand are distinct - this gives a polarity to the DNA strand. We can represent a
DNA single strand iIn the form 5’GAATCCGTY , meaning that starting from the 5’ ond the
nucleotides contained in the strand are G, AATLCC G, and T in that order, (A short
single strand of DNA with upto 20 nucleotides is often called an otigonucleotide).

O s

-
r

Y

s _‘____--""" Hydmgl:r'l bﬂﬂdl
"
't

5° e !

RUgAr group

Figure 2.2: Structure of DNA

As stated earlier, the naturally occurring DNA is in the form of a double helix
with two strands twisted around each-other. If we could un-twist the double helix DNA
(hypothetically speaking), we would get the structure shown in Figure 2.2, with two sin-
gle strands running antiparallely and the corresponding nucleotides Joined with each-other
through hydrogen bonds. Each nucleotide in a DNA has a complement with which it can

bind (through hydrogen bonds). A and T are complementary, and G and C are comple-
mentary (l.c. A can only bind with T and ¢ can only bind with C). Thus corresponding to
a single strand 5’GAATCCGTY, we have a commplementary strand 3'CI'TAGGCAS and
the two can join to form a double helix DNA. In each double helix DNA molecule, the two
constituent strands have to be complementary to each other. This is called Watson-Crick
complementarity.

We use the notation
| GAATCCGT

to represent the double stranded DNA molecule whose upper strand is 'GAATCCGT3
and the lower strand is the complementary strand ICTTAGGCAS .

1 GAATCCGT
would represent the upper strand of the complex and
| GAATCCGT

would represent the lower strand. (Note that | GAATCCGT represents 3 CTTACCCAY
and not ¥GAATCCGTY.) These notations have been borrowed rom {BDS96].

2.2 The oporations

2.2.1 Synthesizing a DNA strand

A DNA strand having the desired nucleotide sequence can ba aynthesized by a laboratory
procedure. In standard solid-phase DNA synthesis, a desired DNA molecule is built up
nucleotide by nucleotide on a support particle in sequential coupling steps. For example,
the first nucleotide (monoiner), say A, is bound to a glass support. A solution containing
C is poured in, and the A reacts with the C to form a two-nucleotide (2-mer) chain AC.
After washing the excess C solution away, one could have the C from the chain AC coupled
with T to form a 3-mer chain (still attached to the surface) and so on. Note that, nowadays
DNA strands having specific nucicotide sequences can be bought straight from the market.
So, it is not necessary to execute this step in the laboratory.

2.2.2 Annealing of DNA strands

Two complementary DNA single strands can be made to anneal or bind together to form a
double strand, by just mixing together the two strands and cooling the solution.. At a low
temp, the hydrogen bonds between the nucleotides form, and wo got tho double holix DNA

structure from its constituent strands. ’

Sometimes two strands which are almost complementary but not perfectlyl coin-
plementary (i.e. some of the nucleotides are not complémentary) can also anneal together
to form an irregular double helix with the unmatched portions looping out. This is a source
of possible error during the annealing operation.

2.2.3 Melting

This is the opposite of the annealing operation where a solution containing a DNA double
strand is heated to break it apart into the constituent single strainds. Heating breaks up
the weak hydrogen bonds that bind together the two single strands, thus, allowing them to
separate. This operation is always error-free.

2.2.4 Ligating

The enzyme Ligase joins together two DNA strands end to end or ligates thiein. When a
partially double stranded molecule having a single-stranded overhanging end (called sticky
end), attaches with another such molecule having the complementary sticky end, then the
ends of the strands adjacent to each other can be joined using Ligase. This is the ligating
operation. \

2.2.5 ‘Extraction

DNA single strands containing a particular pattern (nucleotide sequence) as a substring
" can be extracted out of a heterogeneous pool of DNA strands using the affinity purification
operation. To do this, the nucleotide sequence complementary to the particular pattern
sequence is created (synthesized) and these are attached to magnetic beads. Then the
solution is passed over the beads. Those strands which contain the particular pattern
sequence get annealed to the complementary strands that are attached to beads and thus

these can bo separatod out, using a magnotie fiold. ‘I'his oporation doos not, nlwnys succeoed in
extracting all tho strands contnining the particular pattern and also sometimes a imporfectly
matching sequence may get extracted. Thus, this operation is not error-frec.

2.2.6 Amplifying with PCR

The Polymerase Chain Reaction(PCR), uses the DNA polymerase cuzyme to replicate DNA.
The replication reaction requires a guiding DNA single strand called the template and a
shorter strand called the primer, that is annealed to it. Upder these conditions, the DNA
polymerase catalyses DNA synthesis by successively adding nucleotides to one end of the
primer. The primer is thus extended in one direction until the desired strand that starts
with the primer and is, complomentary to the teinplate I8 obtained, For amplifying (i.c.
making several copies of) a DNA molecule, it is first melied jnto the constituent single
strands which act as the templates. These are anncaled to the primers and then the primer
is extended by DNA polymerase. This cycle is repeated many times, each time doubling
the number of target DNA molecules, to get an exponential growth in the number of such
molecules.

2.2.7 Gel Electrophoresis ,

The gel electrophoresis method is used to separate DNA strands based on their length. The
size-wise separation of DNA strands is done by placing them at the top of a wet gel and
to which an electric field is applied, drawing them to the bottom.- Larger molecules travel
more slowly through the gel. After a period, the molecules spread out into distinet bands
according to size. This operation is very sensitive and is mostly error-free.

2.2.8 Cutting using restriction enzymes

DNA double strands can be cut at specific sites using restriction enzymes called restriction
endonucleases. There are a lot of such cnzymes, each of which recognizes a particular
short DNA sequence called restriction site. On applying such a restriction enzyme, any
double-stranded DNA that contains the specific restriction .'te within its sequence is cut
by the enzyme at that site. For example, the enzyme Ecolll recognizes the restriction site
| GAATTC and the result of cutting by EcoRI is shown in the Figure below.

"AATTCNNNNN ¥

. y GNNNNN
NNNNNNGQAATTCNNNNN EcoRl 3

TNNNNNNcrraipNNNNN ;-

NNNNNNG

yNNNNNNCTTAA .,

" Figure 2.3: Cutting of a DNA strand with the EcoRl restriction cnzyme

Another restriction enzyme that we shall be using 18 Munl and it recognizes the

site | CAATTG.

3.2.9 Sequencing of DNA strands

Sequencing is the process of reading out the DNA scquence, nucleotide by nucleotide. This
is generally done with the help of PCR and gel electrophoresis, in the following way. For
detection of tho positions of A's in the target strand, a blocking agent is used that prevents
the templates from being extended beyond A's during PCR. As n result of this inodified
PCR, a population of subsequences is obtained, each corresponding to a different occur-
rence of A in the original strand. Separating them by length using gel electrophoresis will
give away the positions where A occurs in the strand. The process can then be repeated
for each of C', G and T, to yield the sequence of the strand. Recent methods use four
different fluorescent dyes, one for each base, which allows all four bases to be processed

simultaneously.

Chapter 3

Methods and Models of DNA
Computation

In this chapter, we briefly look at some of the DNA computation metliods and models
proposed by various authors till now. In the next chapter, we shall explore the algorithmic
self-assembly method as proposed by Winfree [Wing8|, in detail. |

f

3.1 Adleman’s Experiment

Adleman in 1994, tried to solve an instance of the Hamiltonian path problem{I1PP) using
DNA. A directed graph G with two designated vertices Vi, and Vst 18 8aid to have a
Hamiltonian path if and only if there exists a sequence of adges ey, ey, .0y, (each adjacont
to its previous one), that begins at Vj,, and ends at V,,,; and enters every other vertex exactly
once. Adleman choose a small graph of seven nodes with vertex-1(vq) and vertex-7(v7’ as
the start and the end node respectively, and he obtained a Hamiltonian path from v to vy
by executing the following algorithmic steps :

1. Generate random paths through the graph.
. Keep only those paths that begin with v; and end with v,.

. From these selected paths, keep those that contain n vertices (here n = 7).

= W B

. From the paths selected above, keep those that enter cach of the other vertices (i.c.
Vg, U3, U4, Us, and vg) at least once.

5. If any path remains, answer 'YES’, otherwise answer 'NQO’.

~'To implement step-1, every vertex of the graph was encoded by a unique 20-
nucleotide sequence and every edge was encoded by a sequence consisting of the com plements
of - the second-half of the sequence encoding the source vertex and first half of the scquence
encoding the target vertex. The sequences representing the various vertices and edges were
synthesized and mixed together, so that they annealed to form the varions paths througly
the graph. To implement step-2, the result of step-1 was amplified by PCR, using the
sequences for v) and vy as primers, so that only molecules that encoded paths starting at vy
- and ending at v; were amplified. 1o implement step-3, the gel electrophoresis method was
-~ used to'separate the molecules by length and keep only those which have the right length

for representing patha of 7 vertices. To implement stop-4, n sories of aflinity purification
operations were exccuted, one for each of the vertices vy through vg. The result of each
stage was used as input to the next stage, so that the final result contained only those
strands encoding paths passing through each of these vortices, Finally, in stop 5, tho rosult
of step 4 was ampilified and sequenced to detect the presence of a IHamiltonian path. As a

result of the sequencing, Adleman was able to verify that the remaining DNA molecule was
indeed an oncoding of a Hamiltonian path starting at v nnd ending nt vy,

3.2 Splicing Systems

Splicing systems were first introduced by Tom Head in his seminal paper [Hea87) in 1987,
much before the arrival of DNA computing, as we know it. Head proposed a theoretical
model based on DNA recombination, which consists of the two operations of cutting DNA
strands with restriction enzymes and joining them back with Ligase. The mathematical
abstraction corressponding to DNA recombination is called the splicing operation and is
defined as follows. If R and S are two strings over some alphabet T, then the splicing
operation on them consists of cutting the strings at specific locations(restriction sites) and
concatenating the resulting prefix of R with the suffix of S and similarly, concatenating the
prefix of § with the suffix of R. Thus we get two new strings from the two older ones. Head
studied the language generation capabilities of the splicing operation. There has been a lot
of research on splicing systems in recent years and it has been shown that it can emulate the
working of & Turing Machine. This can be intuitively understood by viewing the splicing
operation as conversion of an input string (representing a particular configuration of the
Turing Machine) to an output string (representing the next configuration) based on some
fixed rules. Thus, being Turing equivalent, splicing systems are computationally universal.
Though there has been a lot of research on splicing systems, there hasn’t been any practical
itnplementation of the systemn for solving a problem.

3.3 Sticker Model

~This model of DNA computation was introduced by Roweis et al.[RWDB+96]. In the sticker
- model, a binary string is represented by a DNA strand called the memory strand, containing

%spemﬁc nucleotide sequences for each of the bit positions and a set of short strands called
sﬁckers which have the sequences complementary to the above sequences. A bit is set to 1,

{f the corresponding bit position in the memory strand has the matching sticker sticking to

it, The bit contains 0 otherwise. The computation is done by using the following operations
on sets of such binary strands :

1. Combine: Two sets of binary strands can be combined by mixing together the con-
tents of the two test-tubes containing thein

2. Separation based on a bit value: A given set of binary strands can be separated
into two new sets - one containing all those original strands where a particular bit is
on and the other containing those strands where that bit is ofl.

J. Setting a bit: Setting the value of a particular bit to ', in all the binary strands of
a set. This can be done by adding copies of the sticker sequence for that particular

bit.

4. Resotting a bit: Renet the vislue of n pvrtievlsr bit to O, Tncoall Che Bbluaey plade of o
get. T'his can be done by extracting out the stickers ¢ ressponding to that particular

bit.

Adleman et al.[ARR96) have shown how the sticker modol can be used to break
the DES(Data Encryption Standard) encryption algorithm

3.4 Boolean Circuit Model

Boolean circuits are an important Turing equivalent model of parallol computation. An
n-input bounded fan-In Boolean cireuit may be viewed as directod acyclic graph, with n
input nodes having in-degree zero and the other nodes (called gate nodes) having in-degree
at most two. Some of the gate nodes have out-degree zero and are designated as output
nodes. Each gate is associated with a boolean function from the set of functions €, called
the circuit basis. The Boolcan circuit has two measures - its size denotes the number of
gates present, and its depth denotes the length of the longest path from an input node
to an output node. Ogihara and Ray [OR96] proposed a model of DNA computation for
simulation of a Boolean circuit. In their model, each gate i is represented by a unique string
or DNA sequence, 0;. The basic structure operated upon is a tube, U, which contains strings
representing the output of each gate at a particular depth., The presence of the string o; in
U denotes that the ith gate evaluates to 1, otherwise the output of the ith gate is 0. The
initial tube contains strings representing those input nodes having value 1. For each level
starting from 0 to k (where k is the depth of the circuit), the gates present at that level are
evaluated parallely, as follows. If the gate is an OR gate and any of the strings representing
the inputs to the gate are present in U, then the string representing that gate node is added
to U. If the gate is an AND gate and both the strings representing the two inputs to the
gate are present in U, then the string representing the gate node is added to U, After all
the levels have been processed, the strings present in U would represent those output nodes
having value 1. Thus, this method simulates a Boolean circuit in O(k) bio-steps, where k
18 the depth of the circuit.

3.5 Whiplash PCR

Hagiya et al.[HAK+97) came up with a novel method of computing where each DNA
molecule acts as a computing machine. The problem is entirely encoded in a DNA se-
quence and using a series of intra-molecular reactions, the solution is obtained within the
same molecule. The process employs a modified form of PCR, where the primer and the
template are part of the same strand. The primer forms one cad of the strand (the hoad)
and it anneals with its compleientary sequence present somewhere in the middle of the
strand, to a form a hairpin kind of structure. The primer is then extended by polymerase
enzyme upto a certain point where the reaction is terminated by a stopper sequence in the
template. On heating, the hairpin stretches out into a single strand again, but now the
DNA strand contains a new head, which acts as the primer during the next cycle. Thus
the method proceeds in a scrics of thermal cycles (the solution is periodically cooled and
heated), during which the strand keeps growing fromm one end. The process begins with a
strand of the following form

2/
b' — stopper - newn -~ oldy — ... - stopper — neuy, - old,, — head - 3

During each cycle the head anneals to the sequence old; (for potne i) and the comploment
of newy I8 synthosizod at the end of the strand. The anthors have shown that using these
operations, it is possible to evaluate a u-formula (i.e. a boolean formula where each variable
i8 used once only). The authors have also tried to implement the method in tho Inhoratory
winl they have successfully oxecutoed uplo two successlve steps of tho algorithin.

This method of computing has been termed Whiplash PCR because the movements
of the DNA strand during the procedure resemble the lash of a whip. The Whiplash PCR is
a more efficient method of computation than earlier methods and it opeus up the possibility
of doing "one-pot” computation. But it is not known how the method scales up to large
problems. With the increase in problem-size, the length of the DNA strand would have to
be larger and this may lead to major complications.

Chapter 4

Algorithmic Self Assembly

The self assembly process utilizes the property that DNA strands having Watson-Crick
complementary nucleotide sequences, tend to join or anneal with one-another when they
come in contact. When Adleman {Ad194] solved the Hamiltonian Path problem using DNA,
he used this annealing property of DNA to create strands of DNA representing various paths
through a graph. He created some specially chosen DNA oligonucleotides representing the
vertices and edges of the graph, and mixed them together su-h that they joined with one-
another to form all possible paths in the graph. Thus, the oligonucleotides self-assembled
to form the paths through the graph. Winfree realized that this process of self-assembly
has the power to compute. His idea was to create two-dimensional(2-D) DNA structures
which could attach with one-another through complementary DNA strands sticking out of
them, to assemble into complex super-structures, and in the process do the computation.

This idea was based on the mathematical concept of Wang tiles.

4.1 Wang Tiles

Wang tiles are equal-sized square tiles whose edges are colored by different colors. These
were introduced by Hao Wang [Wan61] in 1961, in connection with the tiling problem,
which can be stated as follows. Given an infinite supply of a finite number of tile types,
is it possible to tile up an infinite plane, subject to the constraint that any two adjacent
tiles should have same colored edges facing each-other. It was later shown that the tiling
problemn was undecidable [Ber66], contrary to what Wang had conjectured. It was also
shown that it is possible to construct a set of Wang tiles for emulating the working of any
Turing Machine. Thus, Wang tiles have the power to compute. This is illustrated by the
example in Figure 4.1 (taken from [Win00]), where a set of seven tiles are used to implement
a binary counter. >

4.2 DNA Tiles

Wintree's idea was to construct biological tiles made of DNA with unpaired strands sticking
out such that only tiles with matching sticky ends (i.e the unpaired single strands sticking
out} can attach with one-another. This would emulate the condition on Wang tiles that only
tiles with matching edges can be placed adjacent to each-other. T hus, once the appropriate
DNA tiles are constructed, under proper conditions, the tiles would self-assemble and do

e
5 i
H SR HA e, Rt
xxh.mcsﬂcﬁss}%”wﬂfﬂ

S e e
o
o
S, .r-.r
L
S s
H P i 3
IR Soiierninam nns it B R e BRI S Y i
R R S e R R R : ST
AR T ARG H i S A T el o i o Sttt
S S T e SE o
Shii e A i i I G i :
RS oo e e i = - Hey P A e R A e H 5 L L
o A PSR pLE EESE e e A e e S R e T
S T e T e T : T T S S I S A T e s RO e T L
- R L T - ." LR R S g s SR P¥] e T, e e o e L i Lo St Y A S R TR ..n..w........nﬂ.r...,.......,,.x LT
ot oG, L, ﬂ Eh .:.m...f,. UL T R e e] o Lt ..",.S.,..e.m,..r..,.p.ﬂ&.?..mmfé.me
- e
T
g Ha
Ay
R
R d
il Ay
S o
Rtﬂf...,......... S

EAr AL e
LRy
u....m. H e

g o,
Por a1
R
o
oy H -
SRR A L T
R N AR
A AR e A
P H
FA YA .

LR

5
ALTRRAR

i

L H
] AL
AT IR
TS SR
. ---.r-
I
R
[

e
I i
"....".n.".},....,..v. Rt .._,.m,................_r..u.. A L A A H 2
e e i Do T HER e
S e b
o A

L e e R
AR e Loy oA
R

R

g,
ss;..nm.?x.uumsﬁ..w.f{...m S
il U th ..,.."...,....". =
LA A L .r-.r.r- - " N
e T R L
A LR TR i SR
i :)
. - i H - P
S e R A e T e P s T S e s L
e e e R)
gy
K . " a . o
= a, -
s A e A
e A T YT
R
[H n,) sy e e e
S T
SR T A A
i H LN ..:,..,.............mw. LA s e SRt
i SR ...w.ﬁ.ﬂr
LH T SH T e
iyﬁ.m.,..]n... i R Ay
Y S A
e S T

i

.....,n.
e R

{x&m«ﬂﬁ:% X S .,,.n...m,.“.#f“............,.... FEHr.;...,.

- e Lo
Sy
T
SR
Rt ;
FES
"

S

)
L R A
e e
LT
L,
S
2
R Jmm.....v.n....,. SR
ety pot e L
EEhaHh e e A R,
T R f.,.,...m...sr .
....,...,......f..{..,. o e i,
R i PR
A i A
st pHE
]
e
AT A e
i
by
S N
P e e H L H
R R
B
EE)
Fi,
-““r.r
EEHEE R
Bk
......h..".".w...m:......
3 h
A
R [t H
G L Y
..I.,a,a{m....nﬁhm.?.w?{
LRI
T
-.r....n.S.r.r.V
...r..-.n..{r.:...{n}
4 fins
S
LR TH
i
Yo
IR i
anxa;m”ﬁﬁﬁﬂmmrﬁw 2
etr.....f...ﬁ,.“... riey
ol
o
i SR o
- i
.....nu.w.....,.._,........u... ¥
R i
E oy S e
iy
N
G G
i Th
..,..........H."....n.....ww R L ﬂ..?m.".ﬂ”..".,.
e et s
N
s
LR
S N
7 .",:.m..,....u.""m.,:.
STy
o b AT T
PR I R

Ho
o Er]
heH i ﬁ..:.:ﬂx..fu““”v.

RN
R
ST

o
2 T i
3N R PR
AT, e At H o2 i
e S s A IO E,
SR B
i
...ﬂﬂ...
iy -,
et N : o ;
S R ST e
PP S
i e A A i,
R ..h...."..,...,.... L A T R
2 AR ﬁﬁ%y T o S,
A_... AR .M..... o) o f.avxﬁ.?sfuw A

,,fﬁ,i..ﬁa.s.ﬁ.,.m
. Y
.Jﬁ”ﬂﬁ%% ﬁxﬁﬁ%%
: e
e ;ﬁrﬁy

; e i

4.3 Blocked Cellular Automata(BCA)

The Blocked Cellular Automata is a formal model of computation, where the informntion is
stored in an infinite one-dimensional tape(as in a Turing machine) with each cell containing
any one of the symbols from a finite set of symbols(the alphabet}. The computation occurs
in steps and in each step, the whole tape is translated into a new tape, according to s finite
set of rules called the rule table. The translation occurs locally and in parallel, such that
each pair of cells translates into a new pair of cells (siimultancously), according to one of the
rules from the rule table. The pairing of cells alternates from step to step. The rules are of
the form {(z,y) — (u,v)} where z,y,u,v € L, the alphabet. The rule table corresponds to
a program for the BCA. The output or answer provided by the BCA is the contents of the
final tape, at the time the computation ends. There are two conventions for determining the
end of the computation - one is when the tape stops changing, the computation is assumed
to be complete; the other approach takes the computation to be complete only when a
special symbol called the Halting Symbol is written for the first timo anywhere on the tape.

A BCA can simulate the operations of a Turing Machine, thus BCA are CoOmpu-
tationally universal. But, in a practical implementation of the BCA, the tapes cannot be
infinite. So we have to use a finite tape. The finite tape BCA can also be comnputationally
universal, depending on the boundary conditions, i.e. how the unpaired cells at the bound-
ary are handled. One possible solution is to directly copy the unpaired cell into the new tape
(this model is not computationally universal). Another apprcuch is to ignore the unpaired
cell at the boundary - this will lead to the tape getting smaller and smaller with each step
and the computation would not be able to proceed after a few steps. The solution to this
problem is to use a fixed pattern of symbols to pad the input froin each side, whenever the
tape gets too short. This model is computationally universal. There is another possible
approach which is also universal, that is to let the rule set decide the boundary condition;
thus depending on what symbol is in the boundary cell, it may ecither be ignored (making
the tape shrink) or a new cell may be added at the end (making the tape expand).

4.4 Implementing BCA using DNA Self Assembly

Winfree implemented the BCA by constructing special DNA structures for representing the
tape and the rule set of the BCA. The initial tape was represented by the DNA structure
shown in Figure 4.3(a) Here, the sticky ends at the top represent the symbols written on the
tape. Each symbol z in the alphabet is represented by a unique nucleotide sequence D(zx)
and the sticky end representing the symbol contains the same nucleotide sequence. FEach
rule {(z,y) — (u,v)} is represented by a DAE tile whose sticky ends on the lower helix are
D(z) and D(y) (the complementary sequences to D(z) and D(y)), while the sticky ends on
the upper helix are D(u) and D{(v). Such a rule tile would attach to the slot in the tape
structure where the sticky ends are D(z) and Dfy). When all the rule tile attach to the
specific locations, one step of the BCA would be completed and at that stage the top layer
consisting of the top parts of these tiles would represent the new tape (Figure 4.3(b)). In
this way each step of the BCA would be computed. |

The completion of the computation would be signaled by the special halting symbol

being written to the tape, which in this case would correspond to a special sticky end motif
_being incorporated into the lattice. Winfree suggests that this special motif be chosen as the
recognition site for a binding protein, which could subsequently catalyse a phosphorescent

C

L <D U ST, GHAN
...........

(b) |

Iigure 4.3: DNA Implementation of BCA : (a) The initial tape (b) T'he rule tiles join on
the initial tape structure to form the new tape for the next step

reaction, turning the solution blue. 'I'his would signal the end of the computation. At this
stage the top layer would contain the symbols representing the result of the computation.
To obtain this result, first Ligase is added to the solution to bind all the annealed segments
together. Thus there would now be a single strand passing through the top layer of the
assembly that contains the result. Once the solution is heated to break the hydrogen
bonds and scparate the strands, tho result strand can be extracted out using the affinity
purification method (see chapter 2). The result is obtained by sequencing this strand.

The above process shows how the DNA self-assembly process can be used to imple-
ment the blocked cellular automata. As stated carlier, the BCA can cinulate a,’l‘uring Ma-
chine and thus is computationally universal. This means that the algorithmic self-assembly
of DNA is also computationally universal. Thus, theoretically at least, any program that can
be run on an electronic computer or any other computing model, can also be implemented
using the algorithmic self-assembly of DNA.

Chapter 5

Finite Field Arithmetic

In the previous few chapters, we have looked at different methods of implementing compu-
tations using DNA. Most of the proposed methods try to implement the solutions to some
of the well-known problems in computing. But, in order to do general purpose comp:iirg
using DNA, we should have a system, where any algorithm or program can be executed.
For that purpose we have to implement the basic operations that any program or algorithm
Is made up of. These are the arithmetic and logical operations. ‘

‘There have many attempts at implementing the basic binary arithinetic and logical
operations, using DNA computing. See, for example [GFB96], [GI’Z97), [MLRS00] and
[BMO2]. But till date no attempts have been made to use DNA computing for finite field
arithmetic. Finite field arithmetic has applications in cryptography, coding theory and other
fields and it is of considerable interest to obtain a method for fast computation of finite
field multiplication, in particular. By using DNA computing for finite ficld computation, we
should be able to parallely execute multiple computations at a very low cost. In this chapter
we describe a method for implementing finite field arithmetic operations using DNA.

D.1 Finite fields

A finite field is a field with a finite number of elements. For each prime p and each natural
number n, there exists a unique finite field of p" elements denoted by GF(p"). The elements
of this field can be represented as polynomials in x, of degree less than n and having
coefficients from Z, = {1,2,..p — 1}. We shall be concerned only with finite fields of
the form GF(2™), whose elements can be represented as binary numbers by taking the
coefficients of 2" through z0 in their polynomial representation. The addition of two
such elements of GF(2") is equivalent to the bit-wise XORing ol the corresponding binary
numbers. The multiplication operation in GF(2%) is similar to polynomial multiplicat! n
except that if the result is of degree n or more, then we cut it down to less than n, by going
modulo a fixed irreducible polynomial R, of degree n, in GFylz] (i.c. having coeflicients

from Zz).

We shall try to give a DNA algorithm for computing finite field arithmetic, by

extending the method for computing the nsual binary arithmetic that was proposed by
Barua and Misra {BM02].

5.2 Binary Arithmetic using DNA

This was the method proposed by [BM02] for binary arithmetic. Here, each binary number
is represented by the set of integers denoting the positions where the bit value is 1. The
DNA representation of the number consists of a test-tube containing DNA double strands
of the form

ds; =1 So{GAATTGC?YGAATTC

for each integer i (i.e each position i having bit value 1)

For the binary number a = a,,...a2a;, the abstract representation is
,‘:[H] == {f . fly — 1}
The addition of two nmnbers a and b is computed recursively as

Xla] if X[b] = ¢
Add(X[a}, X{6}) = { X[t} i X[a] =
Add({Xa) ®» Xb)), (X|a) N X{b])+) otherwisc

where X ®Y = {z : r € XUYandx ¢ XNY}and Z+ = {z+1: 2z € Z} (and
Z+i={z+i:z€ Z}) |

The authors have sliown that this process alway. torminates and compitoes the
result of the addition of the two nmunbers. To implemnent the method, woe have to construct
test-tubes representing (X |a] ® X[b]) and (X{a] N X [b])+, given two test-tubes representing
X([a] and X[b], denoted by Tf{a] and T{b]. This is done by first melting double strands in
T[a] and T{b} and then, extracting the up strands from Tla] (using | Sy)and down strands
from T[b] (using T Sp). These extracted strands are mixed together and allowed to anneal.
As a result we get single strands from { X [a] ® X{b]) and double strands from (X[a] N X|[b]).
The single strands and double strands are separated into two test-tubes labeled T(a] and
T[b). The single strands in Tla] are converted to double strands using the PCR reaction
with Sp as the primer. Thus, T{a] now represents (X |a} @ X [b]). The double.strands in T[b]
are cut by the restriction enzyme Ecoltl to obtain double strands with a hangiug &’end of
the form

1 So(GAATTGCP)'G | AATT
(T'he restriction enzyme FcoRR] cuts at the site GAATTC) Now the up strands

1 AATTGC GAATTC

and the Ligase enzyme are added to obtain double strands of the form

\.

1 So(GAATTGC*) GAATT T GC*GAATIC
These strands are then polymerized to form strands of the form
| So(GAATTGCYGAAT TCCYGAATTC

'Thus the strands in the test-tube T[b] now represent (X [a] N X[b])+. This process can be
repeated untill one of T{a] or T'[b] becoines empty. At that time the process terminates and
we get the result of the addition.

[.et us see how we can extend this method for computing finite fcdd arithinetic,

5.3 Finite Field Addition

As stated earlier, we would be working on finite fields of the form GF(2") only. Let
a = Qn_1...a1ag9 &nd b = b, _;...b1by be two elements of GF(2"), then their addition can be
calculated by performing a bit-wise XOR. Thus if X{a] and X{[b] be the representation of
the two numbers, as above, then the result of the addition is given by (X|e]) ® X|[b}), which
can be calculated by the above procedure, in just two biochemical stops.

6.4 Finite Ficld Multiplication

The procedure for finite field multiplication would be a little more complicated. As be-
fore, let a = apn-1...a10¢ and b = b,_;...b1bg be the two r bHit numbers to be multiplied,
represented by X[a] and X|b] respectively.(where X|w] is defined as above) In polynomial
notation we can write the numbers as

a=an,_1+*x" ' +.. . +a;*z+ayand

b=b,_q* 1l 4+ by * x + bp.

et r=xP +r,_1*x" ' +...+ 1 *x + rg be the fixed irreducible polynoinial used for the
field operations. |

I

The result of multiplication of a and b, say c, is given by

c=(Gn_1*2" '+ . a4+ ag).(bﬂﬁl x4 4 by x4 bo)(modulo 1)

Here, (an_1*2™ 4+ ... Har*z+ag)(bp 1 *z" 1+ .+ byxz+b) = Ebi:i(aﬂ_l « "1 L
...+ a1 * T + ag) * ' which can be represented as

Y (Xla) +14)

bi=1

To compute the result ¢, we create test-tube Tjc] representing it, {rom the test-
tubes T{a] and T[b} representing a and b respectively, by the following procedure. Here, the
DNA representation of the numbers would be slightly different. We would use the double

atrand |
ds; =] SogCAATTGCY (GAATTGC?Y 1GAATTC

for each integer i, denoting the bit positions set to 1.(For position 0, we use | SegGAATTC
) We exccute the following steps to compute the multiplieat’ .,

1. The DNA strands in T[a) are duplicated to make n copies of T[a], labeled as T} to
Tn. To each of the test-tubes, the restriction enzyme FcoRl is added to form DNA
double strands of the form

1 So0CAATTGCYGAATTGC® Y™ '\G | AAT'T
with a hanging 5’ end.

2. For each double strand ds; in T[bj do the following :
Make n copies of the strand and add the restriction enzyme Munl to the strands to

form
1 AATT | GC(GAATTGC? Y 1GAATTC

(Noto : The restriction enzyme Munl cuts at tho silo CAATI'G) Those double
strands with hanging 5’end are added to one of the test-tubes from the above step.

On allowing the strands to anneal and then adding Ligase, we gef strands representing
X[a]+i in the test-tube.

3. After executing Step2 for each double strand in T[b], we would get test-tubes repre-
senting (X[a]+i), for each position i in b where bi i8 set to 1. We divide the test-tubes
in pairs and execute the @ operation on them. The test-tubos obtained as result are
again divided into pairs and the same operation is repeated. This process is continued
till we obtain a single test-tube 7j. This would be the DNA representation of

2 (X[a] + i)

bi=1

4. We construct the test-tubes Triy={ds;+j:r = 1} for 7 =0to s =n — 2. Now for
each i from 2n-2 to n, we try to extract the DNA strand ds; from the test-tube 7}.
If the strand ds; is found in To, we compute Ty @ Tri_n, and label the new test-tube
as Tp. At the end of this step, the strands present in 7} would represent the result of
the multiplication operation. Thus this would be the result Tlc].

5.5 Analysis of the method

[.et us see how many bio-steps are required to implement the above multiplication process.
If we assume that making n copies of a double strand takes {og(n) bio-operations (by
duplicating each time) then, Stepl takes log(n)+1 bio-steps and Step2 takes log(n)+2 bio-
steps. Stepd can take a maximum of 2*log(n) bio-steps, assuining each @ operation to be
of two bio-steps. Step4 can take a maximum of 3*(n-1) bio-steps by the same logic. So,
the multiplication of n-bit numbers by this method takes 0(n) bio-steps. Thus, the time

compiexity of the method is not good, considering the fact that each bio-step takes a large
amount of time to implement.

The advantage of the method is that the result test-tube, in case of both addition
and multiplication can be used in further computations, because it has the same repre-
sentation as the numbers that were used as input. If the result is to be reported, that

can also be done very easily by length-based separation of the result strands l}sing the gel
electrophoresis method.

Despite these advantages, this method of computing finite field multiplication is
quite time consuming and rather clumsy. Further, there are many chances of error, as the
process relies heavily on the extraction operation which is error-prone. Thus, we are forced
to look for a more elegant and efficient method of computing finite field arithinetic using
DNA. We will describe one such method based on self-assembly, in the next chapter.

Chapter 6

Finite Field Arithmetic using
Self- Assembly

One of the limitations of DNA computing is that each of the bio-step in a DNA algorithm
is manually executed in the laboratory, taking a lot of time. In DNA self-nsseinbly, most
of the computation is done by the automatic assembly of the DNA tiles and the only t:me
consuming operations are the initial step of creating the tiles and the final step of extractmg
and reading the result. Thus the self-assembly method is more efficient than the traditional
DNA computing techniques, that were used in the previous chapter to compute finite field
arithmetic operations. In this chapter, we show how the process of Algorithmic self-assembly
of DNA tiles can be used for computing the finite field arithmetic operations.

6.1 DNA TX Tiles

In chapter four, we had explained the algorithmic self-assembly process and introduced
the DNA double crossover(DX) tiles. Here we look at some more complicated DNA tiles
called Triple Crossover or TX tiles that contain three double helixes of DNA intertwined
with one-another. These tiles are more stable and rigid, and can have upto six sticky ends
through which they can attach with other tiles. We will look at three different types of TX
tiles, which we will be using :

e TAO tiles - These tiles have the structure shown in Figure 6.1(a). These tiles are
formed by the annealing of four DNA single strands(shown in dlﬂerent colors} and
they have four sticky ends at the four corners. Notice the strand (colored Green)
passing from the bottom left to the top right of the tile. When TAO tiles join together
diagonally (see Figure 6.1(b}), and we scal the joins by applying Ligase, we have a
single DNA strand passing through the assembly from bottom left to top right (shown
in bold). This property of the TAQ tiles is itnportant and will be made use of in our
procedure.

e TAE tiles - The structure of these tiles is as shown in Figure 6.2(a). Ilere we have
six DNA strands forming the tile and there are six stichy ends, three on the left and
three on the right. However if all the six sticky ends are not needed, then we can bend
some of these into loops so that they are not used as sticky ends.

(a) TAO tile 'Im

sjsé P\
RN D
2, |~
1% '\/10000
COCRKX S
X
(b)

Q
4

Figure 6.1: TAO tiles : (a) Structure of a single TAO tile (b) Three TAO tiles join diagonally
(c) A single DNA strand runs through the three tiles.

(c)

* Rotated TX tiles - The tile in Figure 6.2(b) has only two sticky ends. These two sticky
ends are so designed that when these attach with the sticky ends of two neighboring
TAE tiles, the tile gets rotated (by an angle close to 90°) relative to the plane of the
TAE tiles. This rotated tile can fit in the small gap left in the center when four TAE
tiles attach together. So, the TAE tiles and these rotated tiles can assemble to form
a closely packed two-dimensional lattice structure as shown in Figure 6.2(d). Notice
that when the rotated tile joins with two TAE tiles (Figure 6.2(c)), a single DNA
strand (shown in bold) passes through the middle of the three tiles.

These tiles can be constructed using a variety of possible nucleotide sequences. We can
use different sequences to denote different symbols or values. For example, we can have
one sequence denoting the value 0 and another sequence denoting the value 1. So tiles
constructed using different sequences can store different values or symbols. We can also use
the sticky ends of a tile to encode certain values or symbols. The tile that attaches to this
tile would have the complementary sticky end encoding the same value or symbol. In this
way, we can pass information from one tile to its adjoining tile.

6.2 Finite Field Arithmetic

Recall that the elements of the finite field GF(2") are represented as polynomials in x, of
degree less than n and having coefficients from Zy = {1,2}. An alternate representation is
In the form of a binary numbers obtained by taking the coefficients of z"~! through z° in
the polynomial representation. The addition of two such elements of GF(2") is equivalent
to the bit-wise XORing of the corresponding binary numbers. The multiplication operation
in GF(2") is similar to polynomial multiplication except that if the result is of degree n or
more, then we cut it down to less than n, by going modulo a fixed irreducible polynomial
R, of degree n, in GFy|z] (i.e. having coefficients from Zy). As the addition operation is
quite simple, we will first concentrate on the multiplication operation, which is the dificult

21

o

T Do Iy
e Ty
L

SR

R

.u..rr

-

Ly
ey

i

o

I

PR R
o e .
i i i

HEeH e
i ey ik et
R fﬁ..kf.m._...n.“.w_.q
A R
T .".....n.n,. H e S A AN
B R AR S
A

Leh

atrh

oY H

g

-
g ...n..,....r.....

G

i
R

;
ATy Pt
L S

.,,.ﬂ.m&ﬂ, J%Eﬁai«}

: b
. !
e
i R T e,
.Fﬁ.....aﬁxhum.,ﬂam.““.ﬁfﬁe TR A
L
S
i

v,

i
o

3

3
o

A A
-

AT

S
R
i
;

ey
i

RO,
S

where y = b, ..
S0, the i-th bit, Le. the coeflicient of 2! is glven by (bi_ | + y * ;).

Suppose we represent the number B as a string of DNA tiles, with each tile storing
one bit of 3. We can coustruct auch tiles which would assemble on top of this gequonce
of tiles to form another sequence of tiles representing the bits of B = I3 « r{moduloRt),
This operation is shown in Figure 6.3. Here the labels on the sticky ends represent the
information carried by them. Wo denote by {z] the nucleotide sequence encoding the value
x and by m the complementary sequence.

Notice the tiles (with six sticky ends) floating above the tile assembly for B. The
sticky ends of these tiles are labeled by variables x,y,z and r of whidh x,y and r can take any
value from {0,1}. So we have eight different tiles of this type for various values of x,y and
r. Only those tiles having compatible sticky ends could join together. Thus the tile which
assernbles on top of the two tiles storing b, and b,_, respectively, would have z = b2,
r = rn-1 and the same y value as the "M’ tile adjacent to it (which is equal to b,_{). This
tile then computes the value x +y*r =b,, o+ b, | *r,,_; = 6 | which is the (n-1)th bit
of By (see Figure 6.3(b)).

Thus, the tile representing the (i-1)th bit of 3, passes the value of the bit to the
i-th tile in the upper layer throngh tho sticky ond in its top lolt corner, Tho I-th bit Lilo i
the upper layer gets the value of the (i-1)th bit, b;_; and computes the value (b;_; + Y *T5)
of the i-th bit of By. The value of y is passed to each tile from the tile on its left, through
the sticky end in the middle. The value of y is initially obtainéd from the leftmost tile of
the B sequence as b,,_1, and is passed to the upper layer through the tile labeled 'M’.

On repeating this siinple operation, we can get By = I « z*(moduloR), on top of
By and By = B » z%(moduloR) on top of B, and so on. Thus, we would have an assemnbly
of multiple layers of DNA tiles, where the i-th row would represent B;. Now we only have
to perform an addition of all such B;’s for which a; = 1. For this we maiutain a partial
sum, S; at each layer i such that |
S.1=0

and
Sl' = S,;_.h_l + @ * B;’

The bits of 5;_; are passed to the i-th layer through the bottomn left sticky end of the tiles,
along with the r value. But, in order to calculate the corresponding bits of S;, the value
of a; should be available. The solution is to construct a diagonal tile assembly tepresenting
the bits of A (as shown in Figure 6.3(c)), and allow this to join to the left side of our earlier
assembly such that the tile storing the i-th bit of A is attached to the i-th row. The value
of a; would be passed along the row, through the sticky ends in the middle, along with the
y value.

This is done using the tiles shown in Figure 6.4. Here, H(z),G(w,+) and Q(y,m)
denote nucleotide sequences encoding the value z, w and r, and y and m respectively. The
tile shown in Figure 6.4(c) is the computation tile which computes the bits of I3; as explained
before. But, it also computes the partial sum bits as w’, using the value of partial sum bit
w that it receives from the lower layer through the sticky end at its bottom left. The value
of y and m = a; are passed from one tile to another in the same row, using the bridge
tiles shown in Figure 6.4(d). The value of a; is initially passed to the layer representing By,
through the tile labeled M1’ shown in Figure 6.4(b), to which the ith bit tile of A would
attach. Finally the tiles shown in Figure 6.4(e) are used for adding a zero at the end, while
computing B; from 13, .

(Z=X+y"r)

M _L-ﬂ-*“""ﬁl
Iy}
[bn—l] LAy [bn-—ll Irp] | by] [5)] [bal |r
\ /¥ | 0 91
{bn-—l]_ b, _,] [by] [b[}] -— B
(a)
[] i 3 1 |
M Ibn-—l h“__Q] Tt [h21 3 [hll [h[)] :E1
- I - '
Y s Y s T e V) by] .
(b)
a n-|
a2 . e
o ~ M h{n-—! S hinul " hz_j,z h:il bo | B 3
=]) 2)
~ M ba-1 b2 " b2 b b0 'Bo
R i i i l s
M b_n~1 ba=2| *** | b2 b_| b_0 : . B 1
M b_n-1 b2l *e b_2 b_1 b_0 * . B
(c)

Figure 6.3: Implementing the basic step of computing B x x(moduloR) from B: (a) Tiles
representing the bits of B with other computation tiles hanging above (b) The tiles assemble
to tform B * x(moduloR) over B (c} After multiple iterations of the basic step, we get each
B;. The tile structure for A is shown alongside.

A - Eh e R B '
i

LAkt
FEERHs AR
e R
e P Tk
SRR e e
.af?%nam?rﬁ.,... fTe R .,“,m.." .,.....,..........m....,..,...,. .,:...m....?.n,..,. Y
R B :
&
o T e A A A
- : R P et e
s
i L
T : RS
ST
P e e S
) e P
S G e ,,.,.....ﬂ,,,ndwf
AT bt AT
0 >.w.“u, ﬁﬁvﬁ# i hﬂmﬁﬂf
e Lot
etttk Ly ety
. =
R o]
o
T
25

s
P
:
:
S
i R e
S e
H i 5 A A R LA
; e
i e
RS ; T
o H (g H
S
P
L e
e R R R ;
" Y H e ot
iR L T i
R

=
ol

e
o
T

L
i 5
NN

PO
s o Db v
e T T
3 s
L
TR
L,
Wa 0y
S i
F) i
LA ek
R Y "
T G H
o N AN R - H HHH) e 2Rl
i it i o R " A
St i i e it e S
et o b o
AES R R Al R D ;
Y] i ey e ; i A
R O SRR
A L T !
A U R
e R =
A Au.".
LERRTe et o
poht H H
Ho 2y 5
o) A e
T A R
1&?55}?&«5{- Y
. R e:.n..r.r A T
i e
L

LY
o e
o Y SR
Gy AL &
Lo S
He

i e
AT
R
R e HE
R T
SRR
; g
RS
T

Eowied

]

i
7
et
>
it :,”......“ﬁx{..n.“....“...,.."......“.,.
He
b
e
A,

e

R

Hey - i

v

S

- o,

ﬂm :

R
e e

iR

e
B

e,

..

;

A
. -

X -

R

e T
AR r w.»........_....m..n....pr.

HEEEEH

...:._..:._,.:._,..
FHE”.......M.n
T
i

i
e,

Tt
P

S
Lt

- el r
L ok 4
N e T

-~ -
R
i

S

k3
e
v
et

TR R
e
r{sfﬁﬁw&#éww& R

L

ALY
S
ST
e,
e "
T
= SN

R
R
,..ﬁ...,...”.w.... 5

-
Faheth
HEH

pLhr L,
R

R I I,
S
ST
R

ot

PR LR b ﬂm.ﬁixhwﬂhupﬂ..
- " Yy
i ..;ﬂ_"...w._.msx.m i mﬁnm,.ﬁ.».ﬂ..ﬂxmmu p_,....“.w,.,.,..“u.
5] A
AR

)
H - -
H e e)
T
W
£
=

HHH
w.w.w.p..x s
Al
ﬂ..,u,." o
"

S
R PR
I ey L
L P e R S
. S
S

;ﬁﬁ@ S
i
el
T e]
e
e

]
AR
e e i
S el
T R e
H A i
St e L Au,..... -,
. i B R VT S AT
Wi SoEden
I ;nwn.r.n.......m”...}}d..?qh?x o A
T e e e e
A e L U e e R
......m.......,...n“......".ns.“. L rx}eﬂﬂfianﬂh,. .,.,.....:.n.“,..,.... Vi FEeX
Hebea it iy ..."...w.".....n.w,.,..n S .m......,m.n

by

The Lo stractiure for 71 wonld he na miown e Tlgiee G680 mand thin conmisin o ALY
tiles with rotated 'I'X tiles in betwoen. Ibach tile has two sticky ends at its top, the left one
encoding the value of the bit b; stored in the tile and the right one encoding the value 0 ag
the i-th bit of the initial partial sum S_1, along with the value of 7y (the i-th bit of R). So,
the r; value is stored along with each bit by of B. 'I'wo special tiles ehcoding the symbols
'S0’ and 'E! respectively, are used to denote the start and the end of number. Note that, a
single strand of DNA (shown in Green), passes through cach tile of B and tliis contains an

encoding D(b;, r¢) of each bit b; of 3. This single strand oi DNA can be used to represent
the number B.

—

Vs
alri)

20 """"---...Vfﬂ.‘i)

| . V{(82)
_ al.ri)
| lﬂ,ﬂg}‘
l/':‘* —_V(a0)

e TH}

Figure 6.7: Input Tiles-1 : DNA representation of the 4-bit number A = (a3, ﬂ?,ﬂl,#ﬂ)

- S{h—D(%_l , rn—l —— _—-D(Hl ’ rI)_ D(“D*FU)ME_-

Figure 6.8: ssDNA representation of the n-bit number 4 = (@n—1...a1a9)

Figure 6.7 shows the tile structure for 4. Here each tile has only one sticky end
and 1t encodes the value of the bit stored i the tile. This tile structure consists of TAO tiles
and as explained earlier, a single strand of DNA passes diagonally through the structure.
This single strand passes through each of the tiles and encodes the bit value stored in each
tile. Note that this encoding i3 the same as that used for representing the number B.(Here,
the r-bits are retained only for uniformity, and they are not used in the computation).

So, we have a unique representation for cach number in GI(2") as a single stranded
DNA molecule as shown in Figure 6.8. This is the form in which wo would b sloring all
numbers, in our system.

6.2.2 An Example

Let us now look at an example computation of finite field nmltiplication using our method.
For simplicity we will consider four bit munbers, or elements of GF(21). We take,

A=z 41
or, A= (IDIU)
B =234 2 + 1

or, 3 = (1101) and,
| R=zV4+241

The numbers A and B, which are in the form of 8sDNA (a8 in Figure 6.8) are converted
Lo approprinte tlle structures as i Flguro 6.7 and Pigure 0.0 respactively, Now, we add
the other tilos (Figure G.4) regnired for computation and allow théw to annond Logother,
Flgura 6.9(a) shows the Initial stage of tho compitation whila IMlgure 6.9(b) shows the pro-
final stage of the computation when the last layer representing O3 has been computed. At
this stage the sticky ends of the final layer tiles contain the result of the multiplication. In
order to output the result in the form of a DNA strand, we require some output tiles of the
form shown in Figure 6.5. On adding these tiles, and allowing them to auncal, we get the

the final tile assembly as shown in Figure 6.9(c). On adding Ligase to seal the bonds, we
will have a single strand of DNA passing through the tiles in the final output layer, that

encodes the result of the computation. This single strand begins with the unique nucleotide
sequence labeled "res"”.

To extract the ssDNA representing the result, we first break up the nydrogen bonds
to decompose the tile assembl y into DNA single strands and then do an extraction operation
using the nucleotide sequence complementary to the “res” sequence. The ssDNA obtained
as the result of the computation would be in the same format (Figure 6.8) as the original
inputs, and thus can be used as the input in further computations.

,I.

6.2.3 Finite Fleld Addition

!

The finite field sddition operation can be implemented in a similar way. Figure 6.10 shows
the ~'dition of two four-bit numbers A= (a3,a2,al,a0) and B = (b3, b2, b1,50). The
numuer A would be represented by the tile structure shown in the - top while the number B
would be represented by a similar tile structure with sticky ends at the top of the tiles instead
of the bottom. The blue-colored tiles shown in the figure form the result, C = {3, ¢2, cl, 0)
of the computation. Note that a single strand encoding the result passes through these tiles,
and contains the ‘res’ sequence in the front. This strand can be extracted as before and
used in further computations.

6.3 Implementation Issues

To implement our method of finite field arithmetic, we have to find suitable nucleotide
sequences for encoding all the symbols used in our computation, such as S0, E, V(0), V(1),
D(0,0), D(0,1) etc. and we have to ensure that these sequeices (and their complementary
sequences) are sufficiently different from each-other. The other issues to be considered while
implementing our method are -

* Constructing the input DNA strands - The input DNA strands of the form shown
in Figure 6.8 consists of the nucleotide sequence 50 followed by D(0, »;) (if i-th bit
i8 zero) or, D(1,r;) (if i-th bit is 1) for cach i € {n -1, .0}, finally followed by the
sequence B (here ri's are the bits of the irreducible polynomial R). Between the
sequences encoding two consecutive bits we have another nucleotide sequence, say S.J
which will be required for forming the tile structure. Now, we can initially construct
all possible numbers by joining together the different nucleotide sequences forming
the numbers. We will store multiple copies of all the numbers as a data pool and at
the time of executing a computation we will extract the DNA strand cncoding the
particular number to be used as Input.

A

0

ST

I P M S R e S L A 2 s e el et e T LA, s
R ;ﬁ..w,.wu...".. nnw\v,..m,f,. +f»ﬁﬂ¢ﬁﬁ.ﬁﬂ”ﬁm % ..n.rn.wx,.....,,m.,...”......ww..... .p.,..xﬂ.m,..,m,..,...m..m...u..w..m...? i .,...ﬂ ..r,.n..w.n i ,.“.m.....m.m ;H}xxﬁxxacuﬁwﬂ.ﬂ% }MM% e
v . - H et e H) "
H 5 e : i e L S s A e Ve
R] .,...n.Wﬂ ,..;.,&H,,.{f{ﬁ:..ﬁ.....?..,..ffr.......ﬁ.vf. R L e e .,..“.}ﬂ_...,.,,,.;.. ?.?E.nMM...
SR i wvwﬂ./ﬂ” P R o R e S T Y
e e
e ﬂﬁ?ﬁﬁiﬁ?ﬁééxﬁﬁﬁx A A T I
15 . E. RS At e ot e e SR Rk it
e i S e
R H e,
B

S

T
e
B

i
5

! nan e A
b %..i AT
e, - iy LR ..f.r..
%ﬁ%ﬂﬁ@
o, .“,_wﬁ. .Mx. H o .
a d e
L R T Ry]
ey ; A
A S T Hi s
e] R T it
e e e TR
T T e A R o
P e NS B : s R
...,..H.......H
T
T
H MR
R S
"
i
1
E N
"
o

R,
S ,Mwﬁx.ﬂ h
ﬁﬁ{.;.”- ..,,....,..“.... xﬁﬁﬁ..i}?ﬁfd#.,?{;rﬂﬁ}a o
o oohod e
Tty éﬁx,...Mﬂ,.. B s
L S s S e
.9......." P e H i : ST, .,,.........n,...,.,.n
Tl
E i
i
S SR S
R A L,
i S ..?f..?,..“.““ﬂ?. A
PR
i R PR
e
L

S
A
.............,,. A

LY
i b %
R S
ety s s S A ot
A A S
S e
HE

R R A h
P L
A S T
ﬁnﬂ.ﬁ,ﬂwﬁw L]
. H HHH
m.mu.n.............s .V.n.....".

ey

R AT
FALs bt
ar R
A xx&:ﬁJﬁ? %
LA =

o

et

A
Lo
?ﬁi’

s 2
S by
-, o P k)
PLEs N P o F e
R
3
ST
S

L
S
R
o
SR A
AT A
PRty gff
- o T
o P L
S T B e
] e
.,..,.,...rs...r....f,.s .;.n.ﬂ
= Pty el
%?Eﬁ,%?
AT ;

fpa

et

LS e
R

Bt

5

: i 7

A

by

SR HRL

Y

T i
{.mm"."..u..,..fﬂf....p} e
; 4]
. ey
A
v

Iy Dt
R i,
ik HH

Sl Fa

LR A
ﬁﬁﬁmﬁn{#ﬁ{a\.ﬂs

H,
e

b

S
R S
i
D
S

)
HHH
T
TR
T
AN
e

A S
ohe e

S
; e
S A AT i
R P
S
Py 5

...
e“.m..
T

.r-.r.r
Fe
e L -
ERr R o
P R
LA

AL
A
R
e
B R A L
e et ettt".".,........,.,,....,.n..,....... e LS L ﬁ{ﬁﬁ@.ﬂ{iﬁe
cfgﬁ% ,,...,r,..u,.,m.
oA,

aEAT
EE
}.f,. = .,M.... Iy

)
]
o
i
i,
R s

g A

,...........,.ﬁ... e

e
k) ...H:..n H
LY ﬁﬂkﬁcﬂﬂ.ﬁﬁ
o
S
e WA
LA

e

i
e e R
0 .,
R
e
e e A P
e R
R S
e
B
AT S,
S e s
S

»
i
A

et
et
FER T

i ¥ i
e o P
A i ",.n.ﬁ.". .“.M.u.”-.
.ﬂ..._..,.m«,,wﬁ.,...,ww? CEREELT, .."..,.“"."".,,mﬂ...... cirrh
AN T, R e
ﬁ,.....n....,...n.“..x.”. S 3 »ffxafxmﬂf.....?
: Pk R Y,
TR Rt
.....,..........,...".n.,..,..,.n i ..,.....,.xr{,"..x;?
; ViR
e
T vt
L e T
- by rHum,.. ot
4

AR T

b)
Pt

g
S
PR f,."..,.n..".ﬁ{ S R
R LT
b o
uf...,.,..#.;.U...#.“..#... EHE
S B A
. £
QT S
RS .“..."ﬂmm"...““.. TERCo Y
SRR = e e
P ; I
LT R
e ,,..x.,.,.,..“.m...n...“,".....,,...... T :
e Srn
e e e H L g
SR CH TR e .>...._n..n.....“.”. iy
Lt e e Y el
e R i
¥ A

P
e m“....,..,...,...,.,..,. Y]
i
A A TV R
S o o % ...u........,.ni....
s
B
...".......u....,..,.."....,..}.n R
EEEEEER PeEREY
et Y,
Pt

i
et e e L
e b
o
H ",

& FRT R

L R b Loy
S T

Lt Y H o o~

T T
e

B

D o R e

P
gD
e

-

S
A

LT

ATty
o oty pTHh
e
S R T e
AR ;
Rt

-
i

it
N

ren N S LI o i
Lt -
F;m,w......if {ﬁx@%ﬂﬁ% f&%ﬂﬁ;ﬂ%ﬁ

TG L L L RL LT »
e P LTy - ..n |)
EOoE PP T A S L e S A s :
i ; e S
S o i e vl
T 3 Tk T o ﬁﬁéﬁﬁ
- ; ..,,..f.. iﬁﬁr}f...
Rt B : : ..:...
. fgﬁ i
¥ e P)
i e L e
{."ahaaadaa.rrﬁﬁﬁ TR L i }.....m.....”..r..........u. u.,.”..“
i
FHRCR P T
A

b
Rtk

.....,......
...,..,.n....,.,....n.}..,....n,.-.;.
S
; e
: BRI :
i
- -
tH FHH
Br.............n.......n..n L

R

A e L s
e S A TR

v
i
s T e
TR
S
oA
Y o
= -
A =
o
o ...u.,.....:.ur..:..:n,..
SR
ety i
e
el
b
] it
o v,
L H
. wA L
Ca A i P e
RS
S
e A

- Y
e
HEH Dot e
R R
- LRy

SR et e

R
.n,......,...........n.n H

e e
e R
S x.x.m.u”...ﬂn.,.ﬁ._mm?

e s

R AR o S

e -U.rr-
ot

b
SR

LN

e
pa TR YA
% r...wp;.,.{..ﬂ...w.. ot
TR i,
e g e
T
LA
bt
bty
e
BT
o ALY
S
R
i T ih....}..r
s
R EEpeage
Iy
o
i
HO ey
IR,
LR

f.
...-...,......_r.r...r...
H#ﬁ;ﬁ.ﬁmﬁ L ..M.wwhf.. N
PR Fat L LT AT x
A e B S b

Ge S ottt 7 .>....“.n...">.,wm.s....,,§ux...

3 R
. n--.r-rﬁ;. f-

R .
TR .
e
AT R
T
R PR R
k]

e,

)
B
o ST,
»/bv ST
HHL -4 ;
T e
e
S, ,.;.n“.,rfb.?..ﬂu.,.
"
e
it d
Lo

-|Ih-.-|.-..-..1- ..-o."ﬂ-
oy
S

(L
R
S

i
e
e
S

o

i : .

RS e SRR IR
b ;ﬁfﬁ : -
oo,
e
e

o gttt

SR
e

T E R et R
A
=

.... .

. .,.....,..,....f.......

......S,.,..n......r.......n,.,.......

S s S

L e e R
e = e

N e .

-.r.r.n

ey

Ry

Y

AT
ratonhe

v
o

N 'y
L
S
P
e R e
A Foi
o
i i
..n.".m.nu....u N#{:."n.meﬁ?.n{

)
i,
B

S

FERS
A
o

Fteed
e
AR

o
-

s e
EENLE
oA,

s

- e
[
P

hoHEy

:

&

....v.n... L

T

" pR e
e

>
P

e
=

Gy
LA T L
e A R e
LR
i
LA
LS
PR
AN S
p T
)
R
i, ..r.-.r

b

5
e

oy

SHLLY

it
St

-
oy

14
=
il
A
i
i,
e
S

i
HEH
D A AL,
SR e

R
Sk A B I
St

.r-r-.r-
- L
A
P S
LT AL
SR
- Ly atat
7 A
O e
e
S L B
H o
o .&anﬁvﬁ{ ...ﬁ..... =
g
el
P
S L
S
i Hnr d LAl 3 S
h L S A M H
H e, " o S
SR
A

....m..............;......,nw ot
i
Ty =
3 s

3
e e S
A é&ﬂ% e
e

o
R o
e
i :
i
A
S 2
g L P ke &
R <.ﬂ.,ﬁn.m¢xfﬁshﬁxh=$xﬁ..x..¢nww“ax
=
g
e i :
i

ot
S
A

e
2

.r:.;”fn“-“.---u S
e .rr-ﬂr.r.ru
......,.........,....m.....}..}...,. H
nEH ER
LR e {...%
i R
by
.n...,...wﬁf......u...}.u. .n.....,....... B i
H : A L L e
ﬁ%ﬁi ﬁu.ﬁ{.%h.ﬁf;{x m.....”mvv.w...?,“.m....m.n H R e
R ; R P TR Eabge
- P PR e S R
B b
e i“....h......w.....“...."...m.".n.r.n. i H ..u.m.waa,“.&w..aaa{ﬂaufﬁ?u.fr,.f.n,. .n
oE. S e L S .
ST o o
e
SR - :
Jnﬂaﬁi.ﬂa agﬁx%%
A
....".mn.....ﬂ..."..,.?,.

....."."
e ...
S G R
Y LA H R

y P
Y R

.......,.....:..."..n...."..n..,.v e &
i -
S R
i ST,
o ..rn..r....ru,"..ﬂ...mr",“,“.}.xx.e?v....?“...#mx
,,....””M// 2 Pl
: [iy ' .
ﬂﬂ;..mm.w?{ i, S
s A o, :
o, PP N S
o
H

g L

S
: ,.sﬁ.wﬂ.,
}sﬁwfvﬁeﬁﬁ??; R
e
i - ", H "
e

o

i

SN
T A R
....,,.ﬂ,,.....,,..,...n........m.."..
Hh b

)

P kY : e ,,.,H......“.hmr"...wx,.m.". AN Pl s .ﬁ.m..vfﬁ..w.ﬂ.m. 3
: i R SR
R A e S

5
LA ALY
A .
et

reactions and the last two reactions by dillorent colored dyes (reprosenting 0 and | ro-
spectively). Then, we perform the gel electrophoresis operation ou these dyed strands,
the result of which will show the position of the zero’s and the one’s in the original
result strand.

6.4 Analysis of the method

Our method for implementing finite field computation, extends the technique used by
LaBean et al.[LWR99] for binary addition and XOR. The advantage of our method, is that
once the initial strands are constructed, each multiplication operation is computed very
fast through the self-assembly process and the output of one computation can be directly
passed as input to another computation. The only time consuming operation is the reading
of the cutput. As this would be done only once at the end of a series of computations {or,
a program), this would not much affect the total computation time.

To conclude, we look at the possible errors that can occur during our process of
computation. The possible sources of errors are, either an error in constructing the tiles,

or an erroneous binding of tiles. The former error can be minitnized by appropriately
choosing the nucleotide sequences used in the tile. LaBean et al.[LWR39] have shown that

the nucleotide sequences of the constituent strands forming a tile, can be chosen in _'such
a way that, whenever these strands are allowed to anneal, they almost always form the
desired tile structure, without forming other unwanted structures. The other possible error
i3 when a tile attaches to a site meant for some other tile. Now, if we choose the sticky
end sequences encoding different symbols to be sufficiently different from each other and
their complement, then only matching sticky ends will danneal together. In that case, a
wrong tile attaching to a site is still possible if a tile with three sticky ends uses only two of
them to attach to the site, with the third sticky ends remaining unmatched i.e. hanging. If
that happens then the resulting structure will be highly unstable relative to the stable and
compact 2D structure that we get for all correct bindings. Thus, the probability of such a
mismatch occurring is very low.

Chapter 7

Conclusion

In this thesis, firstly we have introduced the subject of DNA computing and looked at the
various operations that can be performed on DNA molecules. These operations have been
utilized in various ways by scientists working on DNA computing, to come up with different
methods of computing using DNA. We looked at some of these mothods i chaptor three.
Most of these methods were proposed as theoretical models of computing, which have
not been supported by practical experiments. Indeed, there has been very few practical
implementation of DNA computing methods since the time when Adleman performed his
experiment. One of the reasons which makes it difficult to practically implement DNA
computing methods, is that the major bio-chemical operations used in DNA computing
are very tedious and time-consuming. To make DNA computing {easible, we have to do
away with such lengthy and tedious operations so that, DNA algorithms can be run faster.
The 2-D self-assembly method proposed by Winfree is a step in this direction. As we
saw in chapter four, the self-assembly process can work very fast, once the tiles have been
designed and constructed. But, there are still some problems with the process; the initial
step of constructing the tiles and the final step of extracting the result can be a bottleneck.
Moreover, the success of the process depends on each tile attaching correctly in its position.
The occurrence of a wrong attachment due to partial matching can lead to errors. Thus,
we have to devise methods for minimizing the chances of error during self-assembly.,

In chapter five and six, we looked at two methods for inplementing the finite field
arithmetic operations. The first method uses the cutting of DNA strands by: restriction
enzymes in a clever way, to obtain a seemingly feasible method of commputing’ finite field
arithmetic. While the finite field addition can be very efliciently executed by this method,
the multiplication method takes O(n) bio-steps, which is not very efficient. The second
method uses the self-assembly of specially constructed DNA tiles, to compute tho finito
held arithmetic operations. Here, the major time-consuming step is the construction of the
tiles. If the tiles can be constructed before-hand, then the process of computation would be
very fast. Also it is possible to execute a series of finite field computations at a go, because
the output of one step can be easily passed as the input of the next step. The possible
pitfall here is the error-prone extraction operation that is used to obtain the result of the
computation. if the error in the extraction operation can be minimized, then this would
iIndeed be a most eflicient and effective method for finite field computations.

Bibliography

[Ad194]

|[ARR96]

Amod7]
(BMO02]

[BDO3]

[Ber66]

IBDLO5)

[BDS96]

(GFB96]

[GPZ97]

[HAK+97]

[Hea87]

L. Adleman, “Molecular computation of solutions to combinatorial problems”,
Science, 266:1021-1024, Nov.11, 1994.

L.M. Adleman, P.W.K. Rothemund, S. Rowesis, and . Winfrco, “On Apply-
ing molecular computation to the Data Encryption Standard”, In Proc. of the
Second Annual Meeting on DNA Based Computers, Princeton Univ., June 1996.

M. Amos, “DNA Computation”, PhD thesis, Departinent of Computer Science,
Univorsity of Warwick, UK, Soptomber 1997, _r‘

R. Barua and J. Misra, “Binary arithmetic for DNA computers”, 8th Interna-
tional Workshop on DNA-Based Computers(DNAS8),. Sapporo, Japan, 2002.

R. Barua and S. Das, “Finite Field Arithmetic using .Self-Assembly of DNA
Tilings”, Submitted to the CEC2003 Special Session on Bio-molecular Comput-
ing, University of New South Wales, Canberra, Australia, 2003.

R. Berger, “The Undecidability of the Domino Problem”, Memoirs of the Amer-
ican Mathematical Society, 66:1-72, 1966.

D. Boneh, C. Dunworth, and R. J. Lipton, “Breaking DES using a molecular
computer”, Technical Report CS-TR-489-95, Princeton University, May 1995.

D. Boneh, C. Dunworth, and J. Sgall, “On the computational power of DNA”,
Discrete Applied Mathematics, 71(1-3):79-94, 1996. |

F. Guarneiri, M. Fliss and C. Bancroft, “Making DNA Add”, Science 273:220-
223, 1996.

V. Gupta, S. Parthasarathy and M.J. Zaki, “Arithmetic and Logic Operations
with DNA”, In Proc. of 3rd DIMACS Workshop on DNA Based Computers, U.
Penn, 212-220, 1997. \

M. Hagiya, M. Arita, D. Kiga, K. Sakamoto, and S. Yokoyama, “Towards par-
allel evaluation and learning of boolean u-formulas with molecules”, In Pro-

ceedings of the 3rd DIMACS Workshop on DNA Based Computers, pp 105-114,
University of Pennsylvania, June 23-25, 1997. |

1. Head, “Formal Language Theory and DNA : an analysis of the generative

capacity of specific recombinant behaviors”, Bulletin of Mathematical Biology,
49(6):737-759, 1987.

TWR99)
[LYK+00]

[Lip95]

[MLRSO0]

OR8]

T.H. LaBenn, F, Winfreo, J.H, Reif, *Fxporimental Progross Il‘l Clotnprdation
by Seclf-Assembly of DNA Tilings”, 5th International Meeting on DNA Based
Computers(DNA5), MIT, Cambridge, M.A., June 1999.’ °

T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.II. Roif and N.C.

Seeman, “Construction, Analysis, Ligation, and Self-Assembly of DNA Triple
Crossover Complexes”, J.Am.Chem.Soc. 122:1848-1860, 2000.

R. J. Lipton, “DNA solution of hard computational problems”, Science 268:542—-
545, April 28, 1995.

C. Mao, T.H. LaBean, J.1. Reif and N.C. Seeman, “Logical Computation using
Algorithmic Scif-Assembly of DNA ‘Iriple-Crossover Molecules”, Nature 407:
493-496, 20600.

M. Ogihara and A. Ray, “Simulating boolean circuits on a DNA computer”,
Technical Report TR 631, University of Rochester, Computer Science Dejpart-
ment, August 1996.

(RWB+96] 5. Rowesis, E. Winfree, R. Burgoyne, N. Chelyapov, M. Goodman, P. Rothe-

[Wan61]

(Wan63]

[Win98§]

[Win00]

mund, and L. Adleman, “A Sticker based Architecture for DNA Computation”,
In Proc. of the Second Annual Meeting on DNA Based Computers, Prir{ceton
Univ., June 1996.

H. Wang, “Proving theorems by pattern recognition ”, BellSysteins Technical
Journal, 40:1-42, 1961

H. Wang, “Dominocs and the AEA case of the Decision Problem”, In Proc.
Symposion on Mathematical 'Theory of Automata, pp. 23-55, Polytechnic Press,

New York, 1963.

E. Winfree, “Algorithmic self-agscmbly of DNA”, Ph.DD.thesis at California In-
stitute of Technology, August 1998.

. Winfree, “Algorithimie Self-Asscinbly of DNA: Theoreticnd Motivations and

2D Assembly Experiments”, Journal of Biomolecular Structure and Dynamics,
11(2):263-270, 2000. |

[WLWS98] E. Winfree, F. Liu, L. Wenzler and N.C. Seeman, “Design and self-assembly of

two-dimensional DNA crystals”, Nature 394:539-544, Aug.6, 1998,

W34

