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Chapter 1: Introduction

Patterns generated in nature often enchant us. Since reproducing the realism of the
physical world is a major goal of computer graphics, pattems are 1mportant for rendering
synthetic images and animations However, patterns are so diverse that it is difficult to
descnibe and generate them in a single framework. This motivates computer graphics

peniodic and quasi-periodic. Patterns, which occur in a regular manner or periodically, are
called regular patterns. Spots of cheetah, coat pattern of zebra, spots of giraffe etc. are
examples of periodic patterns. Patterns, which are repeated after long period or in other
words, which occur in a quasi-periodic way, are called quasi-periodic patterns. An
example of quasi-periodic pattern is human fingerprint.

or stiffness’ of a body, is optimized to create patterns in real world. This is also known as
pattern  generation through structural topology optimization. The term ‘topology
optimization’ will be explained in the proper context. The underlying goal of this model
Is to get the optimal material distribution of the structure, given certain forces and

reaction-diffusion mode] proposed by Turing [1] was the pioneering work in this context.
Among other models, Meinherdt’s stripe-formation model [3], netlike structure
generatton model {3], models proposed by J.D. Murray [4] are well known.

The motivation behind our work 1s to study pattern generation models and to
design a similar model using level set framework [8]. Level set is a curve evolution
method. Here evolution of the curve is traced by embedding the curve into a higher
dimensional surface. We generate patterns by evolving a curve under different
conditions, motivated by physical and biological phenomena. The main difference of our
model with previous models s that level set based model of pattem generation is more
efficient. Using level set method, the change i connectivity or topology of an evolving
curve can be traced efficiently. This is important for pattern generation process. Reaction
diffusion model of Tunng ;s computationally expensive But the method what we have
proposed faster than reaction-diffusion model.

In Chapter 2, we discuss topology optimization model and reaction-diffusion

model of pattern generation. In C hapter 3, curve evolution theory and level set mode] is
described. In Chapter 4, we propose our model of pattern ceneration based on level set

2



tframework. Also we apoly our mode} of pattern generation to regenerate some
amoccluded patterns. In Chapter 5, we conclude

by discussing about possible future work
ot the proposed approach.

In the next chapter we discuss how

patterms are generated using shape
optimization and reaction-diffusion approach.

'.__,_J



under specific physical constraints. The optimized structure 1s often visualized as
aesthetically attractive graphical pattern. In Section 2 1 we discuss pattern generation
using structural topology optimization. Here we describe the method with an example of
a rectangular structure. In Section 22 we describe pattern generation by reaction-
diffusion method,

In the pattern generation model based on optimization of structural topology, the
objective is that given a Structure, we apply forces and constraints on it to generate a new
pattern. So the aim of this model of pattern generation is to find out the stable

by the external forces on the body. Therefore, the objective is to maximize the stitftness of
the body or minimize the compliance with certain constraint on the volume of the totaj

Consider a design layout as shown in Figure 2.1(a). The body is subject to a force
at the night end and supported at the left end. The shape of the body is allowed to vary,

stresses and displacements of the elements of the body and the method of moving
asymptotes (MMA) [17] is used to find the optimal material distribution.

{

1 Design Domain
!

;
i

;
!

Support kJ
Pp Load

Figure 2.1(a) Design Layout Figure 2.1(b) Desired Pattern



Material Model

The design domain is discretized into N = nefx nely number of square elements
or cells where nelx is the number of rows and nely is the number of columns of the des; gn
domain. Vertices of each square cell are called nodes. So there are total (relx+1) nodes in
a row and (nely+1) nodes in a column. We take upper left corner of our desien domain as
ongin. We can arrange the displacements u; and the forces £ ;On every node in the desi n
domain in vectors U and F respectively. So the compliance C can be expressed as,

C=F'U, 21

by the definition of the work as the force times displacement Using finite element
methods we get a system of linear equations,

F=KU, (2.2

where K is the global stiffness matrix and U the displacement vector. Since K is
symmetric, 1.e. K' = K, the compliance may be written as

C=FU=UKU (23)

Desion Variables

The geometry of the body is specified by some design vanables, the densities of
matenal m each cell, x,. The index e refers to cell e. The constraint is to use a fixed
volume of material, so the desi gn vanables must fulfill

V=xv, +x,v, oo+ Xy, (2.4)

where ¥ is the total number of cells, x is the vector with components x; and v is the vector
of cell volumes v,

The total stiffness matrix of the body obtained by finite element method can be
written as a sum

K=xky+xk, +...+x.k (2.5)

where k, is the element stiffness matrix determuning the relations between the stresses

and displacements in a emgle cell. The stiffness of each call 1S assumad to be proportional
to the density of the material it contajns -. -

To reduce the gain from overlapping nodes one may assign

K=xlhky+xll, +...+x%k, (2.6)

e

A



that 15, the densities are raised to the power of p. For example, when p=3 the benefit from
a density of 0.5 will be 0.125. p is called penalization power.

Yo sum up, the topology optimization problem where the objective is to minimize
the compliance can be written as,

‘ r N 7 ™
min: C(x)=U'KU = ¥ (x,) o kou.
x e=i
. Vi{x)
subject to: = f, (2.7)
Vs -
KU =F,
C O<xpmn<x<],
—

where U and F are the global displacements and the force vectors, respectively, XK is the
global stiffness matrix, u, and &, are the element displacement vector and stiffness matrix_
respectively, x is the vector of design vanables, xuin 15 a vector of minimum relative
densities (non-zero to avoid singularity), N ( = nelx x nely) is the number of elements
used to discretize the design domain, p 1s the penalization power, ¥(x) and ¥, are the

The optimization problem (2.7) could be solved using different approaches such
as Optimality Criteria (OC) method [7] or the Method of Moving Asymptotes (MMA)
[17]. For simplicity we describe a standard OC-method.

Following [7,8] a heuristic updating scheme for the design variables can be
formulated as

‘ﬁ

max{x__,x, —m) if x,B] <max(x__,x, —m) |
;"= x,B if max(x,,,x, —m)<x,B" < min(l, x, +m)%  (2.8)
min(l, x, + m) if min(l, x, +m) < x, B j

rew

where ¥ is the updated design vector, m is a positive constant which is the limut of

change of the design vector, 17 is a numerical damping coefficient and 3,is found from
the optimality condition as follows:

3= ( X (2.9)




where 2 is a Lagrangian multiplier that can be found bv a well-known bi-sectioning
algonthm. The element sensitivity (1.e. change in compliance with respect to change in
design variable) of the objective function is found as

cC ¥
o :*p('re )p
ax,

H: kﬂ i, . (2 IO)

In order to ensure existence of solutions to the topology optimization problem
(2.7), some sort of restriction on the resulting design must be introduced. Often a filtenng
technique [18] is used. This filter works by modifying the element sensitivities as
follows:

cC ] N s cC
STy LH X —, (2.11)
5'1..; rffz-le =1 fo

H,=rn,—dist{e, f), F={feN (dist(e, f)< o), €= L2,..... N, (2.12)

where the operator dist(e, f) is defined as the distance between centre of element ¢ and

M

the centre of element f The convolution operator H s is zero outside the filter ares (F).

The convolution operator decays linearly with the distance from element £ r_ is the

filter size. Instead of the onginal sensitivities as in (2.10), the modified sensitivities of
(2.11) are used in the optimality criteria update in (2.8).

Figure 2.2 shows an example of the pattern generated by topology optimization of

a 32x20 structure whose left side is fixed and an umt force is applied at the position
(30,20), initial volume fraction is taken as 0.5 and penalization power 1s taken as 3.

Fixed
end

<1gurel.Z. Fultern generarted by topology optimization

%

For biologically motivated models, partial differential equations goveming
reaction ditfusion cenerate various patterns. This 1s discussed next

-~



Section 2.2: Reaction-Diffusion ¥ethod

process, for example, patterns of zebra, jaguar, leopards etc. Alan Turing is the first to
articulate an explanation of how the pattems of ammals, like [eopards. Jaguars and zebras
are determined [1]. Turing observed that pattems could anise as a result of instabilities in
the diffusion of morphogenetic chemicals in the animals’ skins during the embryonic
stage of development. The basic form of a simple reaction-diffusion system 1s to have

dimenstonal system to look at segment formation in worms, or we could look at reaction-
diffusion on a surface for spot formation. Following are the equations showing the
general form of a two chemical reaction-diffusion system:

cd

— =Fa,b)+ D V-a (2.13a) and
Ct

ch :

= = Gla,b)+D, Vb~ (2.13b)

¢

The equation (2.13a) says that the change of concentration of a at a given time
depends on the sum of the function F (@,5) of the local concentrations of g and b and the

diffuston of a from places nearby. The constant D, defines how fast g i1s diffusing, and
the Laplacian V4 is a measure of how high the concentration of a is at one location with
fespect to concentration of @ nearby in a local region. If nearby places have 2 higher
concentration of a, then V-q is posttive and a diffuses towards the center posttion of the

local region. If nearby places have lower concentrations, then Vg is negative and a
diffuses away from the center of the local region.

The key to pattern formation based on reaction-diffusion is that an initial small
amount of vaniation in the concentrations of chemicals can cause the system to be
unstable initially and to be driven to a stable state in which the concentrations of a and b
vary across a surface. A set of equations that Tuning has proposed for generating pattems
In one dimension provides a specific example of reaction-diffusjon [2}:

A, =s5(16-ab )+ D (a,, + a,_, —2a) (2.14a)
8b, =s(ab ~b,-B)+ Db, +b_ —2b) (2.14b)

Equations (2.14a) and (2.14b) are given for a discrete model, where g, is the
concentration of chemical a in the i-th “cel]” m a line of cells and the concentrations of
neighbors of i-th cell are a.; and a,.;. The values for B: are the sources of slight
uregularities in chemical concentrations across the line of cells. Figure2.3 illustrates the
pProgress ot concentration of chemical b across a line of 60 cells as its concentration
varies over time, Imtially the values of g, and b, are set to 4 for all cells along the line.

3



The value of B, cluster around 12, with the values varying randomlv by +0.05 The
ditffusion constants are set to [2,=25 and Dy=.0625, which means that g diffuses more
rapidly than b. and we take parameter s as 0.03125.

. —— . - - - [ am - - — Ll T — —_—— e ———

] 5 :! .+. . " : .
FE S !.i!_i_ [ﬂ)_] - {b)

(¢) S | - (d)

A (f)

T (&)

' :' ' : | A _—
) ! { i . 1
S N i‘l o .
. i i i
' : K - [ L : :
\ F | L
:.'I : I: E_.l 1 ! : IF !

if _1;’_ - uf i
Figure2.3: One-dimensional example of reaction-diffusion. From figures (a) to (f)
concentration of chemical 4’ is shown in intervals of 4000 time steps.

Reaction Diffusion on a Two-dimensional Grid:

The reaction-diffusion system given in the previous example can also be
simulated on a two-dimensional field of cells. The most common form for such a
simulation is to have each cell as a square in a regular grid. The two-dimensional
extension of equations (2.14a) and (2.14b) are: |

Aa, = 5(16 - a&by.) + D (4:::.'1_{””F ta,,+a, ., + a .,

Ab, = s(a,b, -b, - BI.J)+Db(bHLJ +6, +b, ., +b

i, i+l ro—l

In this form, tne vaiue of Lapiacian V-a (in equations (2.13a) and (2.15b)) at a
cell 1s found by summing each of the four netghbouring values of g and subtracting four
times the value of @ at the cel] Each of the neighboring values for a are given the same
weight in this computation because the length of the shared edge between any two cells is
always the same on a square gnd.

-
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Chapter 3:Curve Evolution Models

Section 3.1: Basic concepts of Curve evolution:

The basic concepts of the theory of curve evolution are now presented. These
concepts can be extended for surfaces as well.

We consider curves to be deforming in time. Let C(p,1):8' x[0,T)—> R"
denotes a family of closed curves where ¢ parametenizes the family and 5 parameterizes

the curve. Assume that this family of curves obeys the following partial differential
equation (PDE):

oC(p,1)
Ot

=a(B,0T(5,0+ B(P,ON(B,1),  (3.1)

with Cy(p) as the initial condition. Here N stands for the outward unit normal and 7

denotes the unit vector along tangential direction. This equation (3.1) has general form
and means that the curve is deforming with o velocity in the tangential direction and B
velocity in the normal direction.

Note that for a general velocity ¥ . o = (V , T) and 3 = (ﬁ N > where () denotes

the vector ‘dot” product. If we are interested in the geometry of the deformation, but not in its

parametenzation this flow can be further simplified following the result of Epstein and Gage
[19]:

Lemma 3.1: If 8 does not depend on parameterization, meaning B is a geometrical
Intrinsic characteristic of the curve, then the image of C(7,r) that satisfies equation (3.1} 1s

identical to the image of the family of curves C(p,?) that satisfies

XD BNy (32

ct

In other words, the tangential velocity does not influence the geometry of the deformation,
Just 1t parameterization. Basically, with equation (3.2) we do not know exactly where each point
(.(p) 1s moving; this depends on the parametenization. We just know how the whole curve, as a

geometric object. deforms. The art In curve evolution then becomes the search of the function P that
sotves a given problem. Figure 3.1 shows the independence of the geometry of che curve under the

etfect of tangential component of velocity pictorially.

[3



1

N

Figure 3.1: General form of a curve evolution. The velocity 1s decomposed into its tangential and
normal components, the former not affecting the geometry of the flow, just its parameterization.

In the next section we describe how curve evolution can be embedded in level set framework.

Section 3.2: Level Set Method:

A number of problems need to be solved when we are implementing curve
evolution such as equation (3.2):

l. Accuracy and stability. The pumerical algonthm must approximate the
continuous flow, and the algorithm must be robust A Lagrangian approximation of the
curve, based on moving particles along the curve requires an impractically small time
step to achieve stability. The basic problem is that the marker particles® on the evolving
shape can come very close together or very far away during the deformation. These can
be solved by a frequent redistribution of markers, altering the motion of curve in a non-

obvious way.

2. Developments of singularities. If. for example B = 1 in equation (3.2),
singularities may develop. The question 1s how to continue the evolution after
singulanities appear. The solution is that we need a scheme that finds the right weak
solution when singularities are present in the flow

3. Topological Changes. When a curve is deforming, its topology can change
(split or merge). Tracking the possibie topological changes with marker particles is an
almost impossible task, or at least incredibly hard to implement and computationally
demanding at run time.

These problems lead to deveiopment of level et techniques, which are presented
now. The technique for 2D deformable curves is described; the extension td higher-
dimensional surfaces is straightforward.

" In marKer particle techmque, the parameterization of the curve 1s discretized into a set of marker particles whose

posttions-at any tine are used to reconstruct the front

14



Level set method is based on the toliowing observation due to Osher and Sethian
(8] A curve can be represented implicitly as the zero level set of a function in higher
dimension”. For a 2D deformable curve, zero level set is the intersection of the higher
dimensional (3D) function and the z = 0 plane. In the following paragraph the method of
embedding of the curve in level set surface is described mathematicaily.

Let, as before, C(p,1): §' x [0,T7) > R° denotes a family of closed (embedded)

curves where time ¢ parameterizes the tamily and p parameterizes the curve. At different
instant of time ¢ we get different curve of the family. Assuming that this family of curves
obeys the following PDE:

wgf*f) =V=B(p.0N(p,t),  (33)
9,

with C (p) as the initial condition.

Let us represent a curve at time /, which is satisfying the differential equation
(3.3), as the zero level set of an embedding function ®(x, y, 1) R° x[0,T) > R as

Lx,y,t)={(x,y)eR’ : ®(x,y,1) = 0}. (3.4)

The mmtial curve G is represented by the intersection of an initial function
®,(x,y) and x-y plane. For example, we can consider the signed distance function

d(x,y) from a point on the plane to the curve C; (negative in the interior and positive in
the exterior of Cy), and D, =d(x,y) as the initial level set function Figure 3.2 shows a

two dimensional curve and its level set function which is taken as signed distance
tunction. Zero level set, which is the intersection of the level set function and the X-y
plane, is shown in the figure by red curve.

Boa
c ? S
.'-q_
L
#:

Figure 3.2:(a) The original curve lies in X~y plane. (b) Correspoﬁaing level set
function,

b



We now have to find the evolution of ® such that C (x,yv.1)=L{(x.y,/). thatis,

the evolution of C coincides with the evolution of the level sets of © By differentiating
(3.4) with respect to ¢, we have

voLnE 2L n=o (3.5)
ot Ct
We have — =N, (3.6
|V

where N is the normal to the level set L (the sign depends on the assumed convention for
the direction of the normal). This equation combines information from the function ©
(left hand side) with information from the planar curve (right hand side).

To have C=[, we must have

91::?:[31\7. (3.7)

Cl
Combining the equations (3.5), (3.6) and (3.7) we have,

0= VOV +®,

= VO.BN + O,
_V_ﬂl
jaf

= BHV@H+ D, .

= VO B( )+ @,

Alternatively,
oD
= - -Bjvaof (3.8)

Recapping, when a function is moving according to equation (3.8), its level sets.
all ot them, are moving according to equation (3.3). A number of comments are worth
mentioning regarding this formulation:

l. We see once again that this time, because of the dot product in the derivation
leading to (3.8), only the normal component of the velocity affects the flow,

2. As evolution of level set depends on the normal component of the velocity, the
level set formulation 1s a parametenization free tormulation, it is written in a fixed (x. v)
coordinate system. For this reason level set formulation is called Eulenan formudation.

3. A number of questions must be asked when the above denvanon is introduced:

(1) Is the deformation independent of the initial embedding ®y? (i) What happens when
ihe curve is not smooth, and classical derivatives cannot be computed” Fortunately, these

16



questions have been answered in the literature [8]. For a large class of initial embeddings,
the evolution is independent of them. The classical solution of equation (3.8), if it exists.
coincides with the classical solution of equatton (3.3). In addition, when singulanties are
developed, then the theory of viscosity solutions is used. This automatically gives a
generalization of the of the curve flows of equation (3.3) when the curve becomes
singular and notions such as normat are not well defined

4. Embedding the curve in a higher-dimensional function automaticallv solves
topological problems. Although the curve can change its topology, the topology of @ is

fixed; so there is no need to track topological changes, the evolution of @ is
implemented, and the changes in topology of the curve are derived when the
corresponding zero level set is computed.

Initial
L’\ zZero
i level
set

embedd-

ing level
set \
function

[ N

Tapolegical
changes of the
zero level set

Figure 3.3: Topological changes of the zero level set

Section 3.3: Numerical Implementation of Level Set Flows:

To complete the picture, we need to show how to numerically solve equation
(3.8). This is not a straightforward case, as for example, we have to make sure that in the
case of singulanties the correct weak solution 1s picked up by the numerical
implementation. A brief description of the basic numerical technique is now presented:

Iu solve numericailv we discietize dhe domain of level set function into a uniform
grid of spacing 4. At grid node ({, /) we use the notation O to approxiymnate the

solution ®(ih, jh.nAt), where Aris the time step. Using this notation one might write
equation (3.8) in discrete form as follows:

{7



LR 3
(D-:f N d)f';'
Al

+ 3 IVy.(D;

= 0. (3.9)

Here, a forward difference scheme in time has been used, and IVUfD;l represents some

appropnate finite difference operator for the spatial derivative. An explicit finte
difference approach is described in the : ext section.

Wind Computation Schemes:

The discrete solution to the Hamilton-Jacobi equation (3.8) is computed using
finite differences over discrete time steps and on a discrete gnd over the level set
function. A highly robust and accurate computational method was developed by Qsher
and Sethian [8]. Based on the notion of weak solutions and entropy limits [8], a so called
“up-wind scheme” 1s proposed to solve (3.8) with the following update equation

n+l _ awn
o = @

ik

-[max(B, 0)V" +min(B_, 00V},  (3.10)
with

™ -x 2 . rx oz PR
max(D, . ,0)" + min( 0) +

ik >
V' =t max(D;},0)* + min(D;7 ,0)° +L (3.11)
0)°

{l

gk *

max(D,;,0)* + min(D;7,

max(D;7,0)* + min(Dj7,0)* +]
max(D}],0)* + min(D;},0)* + | (3.12)

max(D;,0)" + min(D;,0)°

5
[
<
f

Here, At is the time step, and D=*

ik >

D, and D are the respective forward and backward

difference operators in the three dimensions of xeR> separately for a general 3D solid. In
addition, the nime step Ar must be limited to ensure the stability of the up-wind scheme
(3.8). The Courant-Friedrichs-Lewy [8] condition requires A satisfying

Armax(B <A, (3.9)

where A o= min (A, Ay, \z) stands for the minimum grid space among the three
dimensions [8].

Local Schemes of Level Set C omputation:

The up-wind solutions produce the motion of level set models over the entire

range ot embedding, 1.e. for all values of ® in (5.8). Since the curve under consideration
s defingd to be. as zero level set, the calculation of solutions over the entire range of iso-

18
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Chapter 4: Level Set Evolution Based Pattern Generation
Model

After studying two pattern generation models in Chapter 2 and level set model in
Chapter 3 our idea is to develop a similar model of pattern generation in level set
framework. In this chapter we show how various Interesting patterns can be generated
using level set based model. Bnefly speaking, our plan of pattern generation is as follows.

To evolve a level set influenced by some physical or biological phenomena for
pattern generation. The shape optimization and reaction-diffusion based methods are
utihzed in this respect. The stable zero level set provides the desired pattern. Visualization
of a rendered pattern also needs assi gnment of intensity values. This is further explored on
the derived patterns using interpolation model. The main issue of pattern generation using
level set framework is to find the velocity field with which the level set 1s evolving.

Corresponding to each velocity field we get a new pattern.

shape optimization. Optimization of this energy function along gradient descent direction
grves the velocity field of level set evolution.

In section 4.2, we derive a velocity field motivated by reaction-diffusion mode] of
pattern generation. We first construct an energy functional corresponding to reaction-
diffusion system. Again, the gradient descent based optimization provides evolution of
level set leading to pattemn generation.

Integration of pattern and intensity through interpolation is discussed in
sectiond.3.

We apply proposed model to regenerate disccluded patterns in section4 4.

Section 4.1: Level Set Evolution Based On Shape Optimization

In this section we first derive a velocity field due to structural optimization. We
apply a method of "Shape Derivative’ [15] to get this velocity field. Then we use this
velocity field to generate various pattemns n level set framework We {irst write the
compliance minimization problem of (2.7; anal yiically. |

In hinear elasticity setting (i.e. stress strain relation of the material is linear), let

£2C R~ be a bounded Open set occupied by a linear isotropic elastic matenal (1.e. elastic
properties are independent of the onentation of the axes of coordinates) with elasticity
coefficient 4. For simplicity we assume that there js no volume forces but only surface



1t the opumization

ue solution of the linearized elasticity
System:

—div(de(u))=0 n 0 (4.1a)

U=u, on I, (4.1b)

(Ae(u))n=g on I'vr,, (4.1c)

. | intial value
of uon T, is uy. The unijt normal direct s n. The objective function
1s denoted by J (€2 and is defined by,

J(Q)= § gudssze(u)e(.u)dr.

i?}f S +1fdx.  (4.3)

In general (4.3) admits a minimizer (1e. the problem is well-posed) only if some
geometrical and topological restrictions on the shape are enforced [20].

state some results of shape
ute shape derivative of the
e required velocity field,

Framework of Murat-Simon:
=== 0l Murat-Simen

Let Q, be a reference
v EW"“"'(H:;R:). Wl
differentiable infi

domain. Consider iItS variatio

(R R*) is the space of al] map
nitely many times and Id

n Q=(Id+6)Q, with
pings from R to R* which are
1s the identity mapping in W'"(R*. R}

The set Q= (/4 +6 1€, 1s defined by, Q= {x *0(x)xeQ,}. The vegtor field
9(x) is the displacement of 2, We consi ' 11
as the Frechet derivative [14]

d
F



Definition 4.1:Let 7 be an operator on a normed space .X into another normed
space Y. Given x € X, if a linear operator dT(x) & B[ X, Y] exusts such that

- WT(x+h)-T(x) - dT (x)h|
Ilm —— m———
b0 W
then dT(x) is said to be the Frechet derivative of T at x, and 7 is said to be Frechet

differentiable at x. B[.X,Y] is the space of bounded linear operators on a normed space X
into another normed space Y.

0,

The operator d7 : X — B[X,Y], which assigns d7T(x) to x 1s called the Frechet
denivative of T,

Definition 4.2: The shape derivative of J(£2) at (2, is the Frechet denvative of in
W (R R*) of 8 = J((Id +8)Q2,) at 0.

i P +e))-J(@-(Qf

b0 B

We apply the following results of shape denvative [15].

Result (4a): If J,(Q) = | f(x)dx, then shape denvative of J,(€)at €, 1s given
by, ;

J{()@)= [dv(@(x) f(x)ds = [0()n(x) S (x)ds
where n(x) is the unit normal vector to €, { boundary of Q,) and for any
8 e W-°(R*;R?).

Result {(4b): If J.(Q) = [ f(x)ds, then shape denvative of J,(£2) at 2, is given
by, B

1 (@)@)= [ 8(InCN G H 1),

where H is the mean curvature of &, which i1s defined by, H=div(n(x)). Applying
results (4a) and (4b), we get shape denvative of compliance (4.2} 1s

i

-_—

! M or S
J(£2,)0)= 1[0 (.x;.n(:c){Z[ﬂ(f’H) + H(g.u))—Aetu)e(u))as. (44) .
r

where T is the varnable part of the boundary of the reference domain Q. n{x} s the
normal unit vector to T'. H is the curvature of T” and u is the solutton of (4.1} 1n Q).

{J
I



We now have all the necessary theoretical ingredients to describe a gradient
method for the minimization of an objective function J(Q). As we have seen, the general

torm of shape derivative is

J(€,)0)= [6(x)n(x) vods,  (4.5)
aQ,
where v, is given by,

Vy= Z[a(agr;u) +H (g.u)]- Ae(u)e(u). (4.6)

- By Cauchy-Schwartz inequality we find a gradient descent field, which minimizes
the objective function as.
O=-vn, (4.7

and then update the shape as
Q, =(ld + A®)Q | (4.8)

: Inthialize the embedding level set function ®(x,0) atr=0 by the distance
mapping of the boundary of the initial Structure 2. So ®(x,0)=0 on 5, greater than 0
inside 0Q and less than 0 outside oS0 .

Step 2: The boundary conditions (4.1) are solved to find the displacement u.

Step_3: Calculate the speed runction y,= Z[a(éiu) +H (81)]— Ae(u)e(u) that

defines the speed of propagation of all level sets of the embedding function D(x,1).

Step_4: Solve the following standard level set equation to update the embedding
tunction ®(x,¢): |

Step S5: Stop when we get a stable pattern. This condition is checked by the
change in volume fraction of the structure 1n consecutive iteration. [f change i3 neglieible
We assume stability condition has been arrived.

Examples of Patterns:

[n Figure 4.1 we present several examples of patterns obtained with the proposed
ievel set based pattern generation model. In left hand side of each pattern we write the

kl*



parameter values of the model. which WE SET to generate this patten. We start with a
rectangular pattern. ne/x < denoted as the total number of elements along a row and nely
is denoted as the total number of elements in 3 column. Vertices of every element are
nodes. Both nodes and elements are numbered column wise from left to rnight

(1). nelx = 60, ne[y:— 20, T ] -—
Fixed degrees of freedom: 1:2:2%(nely+1), ; ;"""__"“"'-"'-__1__ —
2*(nelx+] Y*(nely+1), | T

Load: F(2,1) = -1: I |
(i1). nelx = 60, nely = 20 o ' '

Fixed degrees of freedom: 1:2:2%(neby+1), | | T
2¥(nelxy*(nely+1): 2: 2*(nelx+l)*(nebf+l) | SR S il

Load: F(2,1) = -1:

— —
(u1). nelx = 32, nely = 20
Fixed degrees of freedom: 1:2*(nelhy+1), ] : I"‘"-—;:. S
_ -'::#.*" ",_' "';i
Load: F(2*(nelx+1)*(nely+1),1) = -1 T
-ﬁv)_ nelx =32, nely = 20,
. .-" = &"r
Fixed degrees of freedom: 2*(neb+1), e ‘"’_.--"'"'*-1_"-,_
2¥(nelx+1)*(nely+] ), o o

Load- F{(nelx+1)*(nely~ | L1 =-1;

(v). nelx =61 nely =31 !

Fixed degrees of freedom: L:2%(nely+1),

Lol Lp—— e e

Load: F(2*(nelx+] }*(ne:fﬁl)-(ne!yﬂ),l) = -

. i
[ . —

i




(v1). nelx = 00, nely = 20

Fixed degrees of freedom: 2¥(nely+])- R
L2 (nely+1), 2% (nelx+] Y*(neh+1), |

Load: F{(neix+] )*(ne!y-i-l)-f{ne!}f-kl), I)=1;

(vii). nelx = 60, nely =20 -

Fixed degrees of freedom: 2*¥(nely+1)- ; | e L
L:2%(nely+1),2* (nely+1 Y*(nelx+1),

Load: Fi ((nelx)*(nehr+] +2,1) = 1.

(vii1). nelx = 00, nely = 20:-—

Fixed degrees of freedom:;

1:2%(nefy+1),
2*(neix)*(nely+l H1:2*(nelx+] )

*(nely+1)
Load: F ((nelx)*(nely+1 H2,1)=1:

F((nelx+1 Y¥(nely+1 FHnely+1),2)=1

.__-_.—__'_'——-—___—_ ———
(ix). nelx = 60, nely = 20,

P 12:2%(nely+1),
2¥(nelx+1)*(nely+1),

Load: F{(nelxy*(nei+| 2,1)=
l -

l;((ne!x-i-l )*(nely+1)+(nef_y+l ),2)

Fixed degrees of freedom: 1:2%(nely+1), | L e
2*(nelx+] )*(rely+1),

L
I.

F ’((neir+ ! )*(neb»—!—l)ﬂne!yﬂ),.? ) . .

oad: F ((ﬁffx)*(ne{1'+ IH2,1)=-

| = i




(x1). nelx = EIS, nely = 45,

Fixed degrees of freedom: 2*(neh+1), f .
2*(nelx+1)*(nely+1); a‘ o "

Load: F((nelx)*(nely+1)+2,1)=-
L
F((nelx+1)*(nely+1)+(nely+1),2)

N e L1 "EETEETERE T

=1

(x11). nelx = 30, nely = 30, -
vixed degrees of freedom: 1:2%(nely+1), | j
Load: . , e Bt
F(2*(nelx)*(nely+1)+2,1)=1;

F(2*(nelx+1)*(nely+1 Y+(nely+1)

2)=-1

F

(xm1). nelx = 30: nely = 30,

Fixed degrees of freedom: 1:2*%(nely+1),

Load:
F(2¥(nelx)*(nely+1)y+2,1)=1;
F(2*(nelx+1 Y (nely+1)+(nely+1)

2)=-2

(xivj. nelx = 60, nely = 20,

Fixed degrees of freedom: 2*(nely+1),
2*(nelx+1)*(nely+1);

Load:
F((nelx+1)*(nely+1)+(nely+1)+1
0,1)=-1;

F{(nelx+1)*(nely+1 y+(nely+1)- -

10,2)=-1;




(XV). nelx = 60, nely = 20,

Fixed degrees of freedom:
[:2%(nehy+1 ),2*(nelx)*(nely+1 +2,2*(nelx+1
V*(nely+1) '

Load: Fi((nefx)*(nely+1)+2,1)=- -
L | _.

F((nelx+1)*(nely+1 Yt(nely+1),2)
=1:

(xvi). nelx = 45 nely = 30,
with a hole with center at (nelx/3, nely/2) and
radius nely/3.

Fixed degrees of freedom: 1:2%(nely+1),

Load: F(2*(nelx+1 Y*(nely+1),1)

=_I;

(xvi1). nelx = 45, nely = 30,
with a hole with center at (nelx/3, nely/2) and

Fixed degrees of freedom: 1:2%(nely+1),

Load:
F(2*(nelx)y*(nely+1 2. 1)=1;
F(2*(nelx+] Y (nel+1)2)=-1:

| Tadius nely/3. T:""‘*—-.# ;-""-u.l
g
Fixed degrees of freedom: 1:2%(nely+1), T
Lead:
F(2*(nelx)*(nely+1 Hnely+1))=
-1 ;
(xviii). nekx = 45, nely = 30,
with a hole with center at (nelx/3, nely/2) and
radius nely/3. ™, —— ] !
o,

Figure 4.1 Partemns generated by level set model
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Section 4.2: Level Set Evolution Based On Reaction-Diffusion

In this section we derive a velocity field to minimize the energy of a reaction-
ditfusion system of two chemicals. Let us consider a mechanical system made up of two
unstable components. These components are chemicals having different levels of density
distnibution. The problem is to describe stable confi gurauons and to characterize the
interface booween the two chemicals while the system reaches to a stable state. We
characterize the interface between the chemicals by zero level set. This interface gives the
boundary of pattern to be generated. We evolve the level set function with a velocity,
which makes the system stable. A system is stable when the energy corresponding to the
system 1s minimum. So to generate the pattern we have o find out the posttion of the zero
level set in the stable configuration of the system.

The energy term corresponding to a reaction-diffusion system of two chemicals
with densities a and b can be as [4],

E(t) = iﬂwadr, (4.9)

where the norm ﬂVwﬂzr-IValz +]V’b[:i and B is the domain of reference. The initial
boundary condition is given as:

(n.VIYw=0 on oB {4.10a)
w(x,0) =w,(x) on B. (4.10b)

To lnd the gradient descent direction so that energy defined in (4.9) is
mimmzed. Taking the first variation of the energy term with respect to ime we get,

oF & 2 2
& o g(lwl Ve e
Vg AV

= [Va.a nds—[div(Va)a,dx+ [Vb. b ids - Jdiv(Vb) b dx
o B a8 o8
= —~ [div(Va)adx— {div(Vb)b dx
38 G);

= [(-dim(Va).a,)ux [{- div(V8), b, )

B iy 1
[Using  boundarv condition (4.10a)}

By Cauchyv-Schwarz inequality the field for which energy £(7) decreases most
rapidly 4s given by,



= div(Va), (4.11a) and

) oy
'C.‘J'-Hlﬁ

=div(Vb) .(4.11b)

J

1

ﬁ

We can take either of the above fields in the normal to the surface of
concentration as our required velocity field of level set evolution.

So we write the pattern generation algorithm as follows:

Step !: Initialize the embedding level set function P(x,0) at =0 by the distance
mapping of any closed curve in the domain B. S0 ®©(x,0)=00on 8B, > 0 inside &R and <
0 outside OB . |

Step 2: Calculate the speed function B =div(Va). This defines the speed of
propagation of all level sets of the embedding function ®(x, f).

Step 3: Solve the following standard level set equation to update the embedding
function ®(x,r):

2 ~-pivay.

For implementation we use numerical techniques proposed in Chapter 3.

Step 4: Stop when we get a stable pattern.

Examples of Patterns:

In Figure 4.2 we present some examples of patterns obtained by the proposed
level set based pattern generation mode|
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Section 4.4: Pattern Disocclusion

| The problem i_s to “re -generate some missing part of a pattern. If part of a pattern
IS qccludgd the question 1s, can level set based pattern generation solve this disocclusion
Or Image inpainting?

pattern of | the given pattern. In Figure 44 we give some examples of Pattem
reconstruction, here number of iteration is taken as parameter which is varjed for getting
the most similar pattemn correspond_ing to the occluded pattern. The similanty measure
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Figure 4.4: First column shows occluded patterns. Second col
model. Third column shows the iteration-match plot.

umn shows the original




Chapter 5: Conclusion

We have proposed a level set based pattern generation technique. Also we have
discussed a pattern disocclusion technique. There is lot of scopes of explonng level set
pased technique for generating textured images and quasi-periodic patterns like human
tingerprint. Intensity interpolation method can be modified so that generated patterns
become more realistic. Level set based pattem generation model can also be applied in
the area of surface mapping,
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