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ABSTRACT

Thinning is one of ¢Lhe important low level segmentation
procedure. There :;re number of thinning algorithms, but no one
is good. Existing thinning algorithms {(chapter 1) are not
generalised in the sense that a particular method may be
suitable to a particular class of images but not to all kind ﬂf'
images. There doesn’t exist any generalised model for
measuring time complexity of thinning algorithms. "As a result
their performance can be compared in order to select with
minimum time complexity with better skeletone. Most of the
thinning algorithms are iterative approximation method, when in
most of the cases shape of the skeletone are not preserved by
the approximation method As a resultt inaccurate results are
submitted to the next staze thus error propagation has
occcurred. One model of analysis of the most  widely used
template matching thinning algorithms, based on markov process
met.hod (ch:apter 3> for conducting average case analv=sis of
thinning algorithms in order Lo measure their pertformance, have
been proposed. Also we have desighned a model for the generation
of random binary image <(chapter 2) which are either normally
di=stributed or 48 connected uniformlly distributed. We have
used these binary images to study the emperical average

performance of some template matching thinning algorithms.



SOME TEMPLATE MATCHING THINNING ALGORITHMS

1.1. INTRODUCTION

Thinning is one of the most important operation being performed
during low level segmentation. Thinning is perfomed on the edge
images which are obtained by edge detection procedure. An edge
image _iés consisting of a set of edge points lying on the
boundaries of the object present in the original image. Usually
the boundary of the object are elongated due to the side effect
of the edge detection process. Such elonzated boundary of the
ob ject are thinned to get skeletone of the object. In general
t.hinrfing can be defined as the process of unusing points from
alongated boundaries of the object until the boundaries are
reduced to one-pixel wide boundaries called skeletone of the
ob ject. Thinning plays an important role in the preprocessing
stage of Image Processing. It deals with extracting the

distinctive features knhown as skeletons from the images.



1.2. ALGORITHMS:

1.2.1. Zhang and Suen’s thinning algorithm [15]}

It iz a 2-pass parallel template matching thinning algorithm.
They have considered window of size 3x3 with centre element as

the candidate pixel. A typical window is given below,
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Figd<t 1> : A 3x3 window

a2leorithm @ Input - a binary image matrix I
output. ~ thinned version of the input image.
PROCEDURE PASS_1(PD;
BEGIN
iIF (p=1) AND < 2= B{p>= &6 > AND { A(p>=1 > THEN
(% Bipo= total # 1’s in the neighbour of p. %x)
(% A{por= # 01 sequences in pi’pZ’ - Pg xD
BEGIN

IF < pi*pstp5=0 > AND < pgtpstp?nﬁ > THEN
delete (i.e., make 0> the candidate pixel p
ELSE remains unchanged;
END;
END;

PROCEDURE PASS 2(p:
BESIN d
IF (p=1> AND < 2<£ B(p3=Z & > AND { A{p)>=1 > THEN
BEGIN
IF ( pitpﬁtp?=0 > AND <( p1*p3*p?=0 > THEN
felete (e, make 02 the candidate pixel p

LLSE remeasns dnchanged;



END;
END;

BEGIN <(® main body =)
REPEAT
FOR each pixel p of 1, call PASS 1(p>;
set a new modified image matrix I’
FOR each pixel p of I', call PASS 2(p);
get. a new modified image matrix I%;
(¥ two passes make one iteration =)
I {— I ;
UNTIL ¢ # delgtions = 0 );
END.

1.2.2., Holt et al thinning algorithm [4]

It's a modified verzion of zhangy & suen's alzorithm. They haves
used boolean representation of '0' and 1. It {3 an 1-pass
parallel template matching thinning algorithm with 4x4 window.A

typical window is given below,

I P P P P
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1 P P = S T
S 5 4 14
1 P P P 1 P
o 10 11 15
¢ d
Figd1.2> : A 4x4 window
algorithm : Input - a binary image matrix I,
output - thinned version of the input image.
FUNCTION edge(p) : boolean;
BEGIN |
IF (p=1> AND < 2% B(p>»< & > AND ¢ A<{p>=t > THEN
(¢ B(pd and A(p> are az in ZHANG & SUEN alszorithm e 3



(% with ’1’ as ’true’ and ’0’ as ’false’ *D
edgé {— true
ELSE edge <— false;
END;

PROCEDURE PASS(p : bhoolean);
BEGIN
IF ¢ p AND < NOT edged(p)
OR < edge(pa) AND Py AND P >
OR ( edge{pﬁ) AND Py AND P >
OR < Edge{pa} AND edge{p4} AND edge{ps) >

THEN delet.e the candidate pixel
(¢« ie., if either <1> p will be on the edge. x)
(w or <Z2> ne'l’ z='1’ and e neighbour ig on the edge.
(% or <3> e=’1’,.w=’1’ and s neighbour is on the edge. P
(x or <4> e.se.,s neighbours will be on edge. » )
& then delete; x® D
{ % | where, ¢ = east, w m west, = = =outh, n = north, xD
(% se = zouth-east x)
ELSE remains unchanged;
END:

BEGIN (% main body x)
REPEAT
FOR each pixel p of I, call PASSOp):
get. a new modified image I,
I {— T’
UNTIL (, # deletions = 0 )»;
"END.

1.2.3. Chin et al thinning algorithm [16]

It is an one pass parallel template matching thinning
agorithm. They have used windows of different sizes which are
given below . [fig 1.3 : <1>-<8) 1 are used for detecting

Eﬂu:udary pixels, [fig 1.3 «|9)>-<10> 1 are used for disabling



the deletion of pixels if certain conditions are satisfied and

the rest templates are for trimmining.
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fig 1.3 : templates used in chin’s algorithm.
wvwhere (1DO-(B> for f.hinning R COO-10D for Irestoring and

{110-{14> for trimming.



Algorithm

Step 1

Step 2:

Step 3:

Step 4

If an window matches with any of (9> to <10 templates
then the candidate pixel c<can not be deleted and

move Lo the next position and go to step 1 else goto

step 2.

Iff an image window matches with anv of 1) to &)
templates then the candlidate pixel will be deleted for
the next. iteration else move to the next. position. If

any pixel i=s deleted then 2o to step 1 else goto step 3

If an image window mat.ches with any of (11> to 14D
templates then the candidate pixel will be deleted.

STOP.

1.2.4. Pal and Bhattacharyya’s thinning algorithm (18]

In this

parallel thinning algorithm the binary pattern consists

0ol those pixels those are 1’s. In this algorithm a 5x3 window

is sliding from left to right and from top to bottom fashion

over the image.

23 24 o 10 .
P P P T P P
2 2 o 4 2 ‘2
P P
P21 P;} P 3 49
P P
P P
Figdl 4D A  Bx5 window



A vertical stroke of width 2 is guarded by peeping of its

edges. So a point on west edge can be preserved only if it i=

not on a corner and its east neighbour is on an edge. The of

horizontal and vertical straight lines can be preserved by if

one of its four templates in 'ig 1.6 matches.

T~ N = SV

X X X X 1 X 1 1 X
1 1 o X X 1 1 1 X
1 1 1 X 1 1 1 1 X
1 1 1 X 1 1 1 O X
X 1 1 X X X X b4 X
Cad Cb>
1 1 X 1 b 4 4 X
1 1 1 X X O 1 1 1
1 1 1 1 e 1 1 1
G T .1 1 X} 1 1 1 x
X X X X X 1 1 X 1
{cd (dD

: horizontal and vertical line preserving templates.

Algorithm

Step 1
<

Step 2

Step 3

All the basic Steps of Holt et al thinning algorithm

except. loops.

If the 5x5 window matches with any of the 4 [fig 1.5
(a) to (dd} templates then the candidate pixel will be
deleted,otherwise 2oto step 1 after =zliding the window

by one position.

If any pixel is deleted in the above steps then go to

Step 1 otherwise STOP.



1.2.5. Guo and Hall’s thinning algorithm (17}

In this algorithm they had assumed a 3x3 window <(f ig 16> is

sliding over the binary image. It i< an  two  pass  parallel

template mat.ching thinning alsorithm.

PB P:l P?..
- 1.
P P P
P -} P P T
o3 5. 4

Figl1.6> : A 343 window

De finttion 1.
CCP>  is  defined as the number of dist.inct. 8-connect.ed
components of 1’s in P’s eight neighbourhood. CP> = 1 implies

P is 8-simple when P 1= a boundary pixel,

De finttion 2
NP> iz used to detect endpoint and which can be helpful to

achive thinner resuits where

Niij) and Nz(P) each break the ordered set of prg neighbmring

Fixels into ftour pair of ad Joining pixels and count the number

of pairs which contains one or two 'z,

Atgorithm

Step 11 An element I to be removed when it is 4 boundary
point. This often identified by 2 = NCP> < 3 and
CP> = 1 if a4 pixel is on boundary Ppoint and CP2 v
P3 1'% F’E) V P4 = 0 is there then the candidate Pixel

15 to be deleted for the next PASS 2.



Step 2 : Scan the window one position at a time or SCAan

all  the po=itions at. a time and apply step 1.

Step 3: when all the pixels of the given image have been

processed and at least one candidate pixel has become

O then go to PASS 2 else exit.

PASS 2:

Step 1 : An element. is to be removed when it is a boudary
point. This often identified by 2 < N (P> < 3  and
C (P> = 1 if a pixel is on boundary point and P,V
P? V Pi) v F’B = 0 is there then the candidate pixel
iz to be deleted for the next PASS 1.

Step 2 : Scan the window one position at a time or sCan

all 't,he positions at a time and apply step 1.

Step 3 when all the pixels of the given image have been
processed and at. least one candidate pixel has become

0 then go to PASS 1 else exit.

1.3. RESULT AND CONCLUSION

We have studied and implemented five parallel template matching
‘q’t.hinning algorithm= of which two algorithms,viz., Zhang &
Suen’s algorithm [15)] and Guo et al’s algorithms 171 are two
pass algorithms ot.hers are one pass. In the one pass
_élgﬂrithms_,Chin’s algorithm  [16] explicitely describe t.he
templates used in algorithm, and others describe the property
of the templates used in the thinning process. A set of output
CAppendix A) of different algorithm for a particular set ol
;:irlput. shows the quality of  thinning alrorithms, Hardware
éimplementations: are very simple. But no one is a generalized
%zthirming algorithm. So new thinning algorithm development scope
‘15 always Dpén in the field of Image Processing/s7Computer

Vision.
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RANDOM BINARY IMAGE GENERATION

2.1 . INTRODUCTION

In computer vision, image is 5 matrix of integer values which
1z indicating sray value at a particular position of an Image.
Binarization method converts the gray level image inte a binary
image. There are 5 number of image processing  operations [11)
sSuch as coding, contour following, skeletonization performed on

a binary images {l.e., Linary patterns or bilevel

Images/patternsy, Classification of binary pattern recognition

(103,133, biological or medical image processings (121,
englhearing drawing [¢1, map procez=sing [6), and other Machine
manipulations of imaginary data often incorporate binary image
pProcessing at  some stage in their application. In 1992,
Haralick {21 eNCouUrages t.o the community of imagze

analysis/machine vision to de=ign a model fop the determation
of the performance o image analy=sis  algorithms. This 1S an
awiul state of affajrs for the engineers whose job it is to
design and build image analvsis  or machine vision SVvStems.
study of perr Ormance analysis of thinning alsorithms have
started from last few vears. The empirical study of thinning
élgar-it,hmﬂ have been studed by Chen and Hsu [13 and Heydorn and
Weidner [31 Jang and Chin [5) Studed formally the hehaviar of
thinning alsorithms using mathematical morphology and also Pal
and Bhat,t.-achary}ra 7.8} studed the average behavior of Ltemplate
matheing thinning algorithms Uzing a probabilistic urn  model.
In the emperical studvy of the avelage performance of various
image pProcessing andl clas=zification algorithms oh binary
images, it is nNecessary to generate s sStatistically distributed
binary imagse and also hecessary to analvze tLheip tolerance and
Sensitivity to noize (141, I thi= Papel* we have presented o

- Statistically distributed binary image gensration method.
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2.2.DEFINITIONS AND TERMINOLOGIES

De finition 1 : A binary imagze B = libij] be represented by

B (1 , Object

, =
1] t 0 , background
where 1 = 1,2, .n J = 1.,2,..m and n x m iz the size of

the binary image matrix B (Figure 1).

11 1

11 1%

111 . .11 1
11111111
111411111
111 .11 1
11 1 11 ¢

Fizrure 1 - A binarv imase
E o} . =

The real world mage contains some natural patterns. Mostly
they are connected. The connectivity of an image is defined by

the following definitions.

e 3

o | "2 | Fg
"s | Pt | Py
P, | Py | Pg

Figure 2 : The 1-neighbour and 8-neighbour of the point. P1'

F’1 = Central element, F‘2 = North, P4 = East, Pﬁ = HSouth,

PH = West, F'3 = North-East., Pr = Louth-East, F"ﬂ = LSouth-VWVest,

P = North-west.

i

12



Definition 2 : In a binary image four elements, namely, top
(le),“ bottom {fpd}, left {'PE} and right {P4} are 4-nelighbours
of the elements Fl {or 4~adjacent ¢to F’i} (Figure 2. Two
subsets U and V of S (say) are said to be 4-adjacent (Figure 3)
if there exist at least one element of U which is 4-adjacent Lo

atleast one 2lement of V.

4-adjacent elements

11 .. 11
{1111....1111
1111 .111111
.. . 1111111 111 . .
. 11111111, .. 1111 .
e 1111111 ..111111
1111111111
S U v

Figure 3 : U and V are 4-adjacent to each other

De finition 3 : In a binarv image four diagzonal elements of P:-.

(Figure 2> are =said to be B-neighbours of F’1 (or B-adjacent to
F“i}.- Two subsets U and V of S ({(say) are said to be B-adjacent
if there exists at least one element of U which is 8~adjacent

to at leazst one element of V (Figure 4).

B-adjecent elements

R 11
1 111 1 . .01 1 1 1
1 1 1 1 . 11 1 1 1
. . . . 1111111 1 11 . .

1111131 1%V . . . . 11 11 .

1111111 1 1Yy 1013

111 3y 1 x 31111
S g V

Figure 4 : U and V are 2-adjacent to each other
De finition 4 © An 8-path {d-patho nr{p{.q'} (Fizur= 5> of length

n from p to g is a sequence of points {(element=s) <p = p
pi_,..,,p s > =uch that p is an S -neizshbour G-neighbour> ot
L' "

P, and p € B where B I a binary image and 1 7 1 & n

13



1 : 1 1
1111 p . : qg 1
PP. .ppp 1l .
« « « . . . . .PPD . 1 1 .
11111111 . . 1
1 11 1 .1 1 1111
111 1 :

B

Figure 5 : ﬂg(p,q) shown in the image B

— Ry .

De finition 5 ' Twao different points p and g of B, where B is a
binary image, the point p iz =aid to be B-path connected
(4-path connected’ or simply S-connected <4-connectedd to g ir

there exists an S-path {4-path>, nn{p_.q) in B (Figure 6.

.1 . 11
1 111p. : q 1
'. PP . PPpP1.
- - - . . . . PDPUPD 1 1 .
11111111 . . .1 .
1 11 .1 11111
1 111
B
Figure 8: 8-path connected image.
2.3. UNIFORMLY DISTRIBUTED BINARY IMAGE
De finition 6 - A binary image iz =aid to Dbe unitormly

distributed if the binary image generated from an uniformly

distributed binary 0.1 generator.

An  uniformly distributed binary image generated in different.
WAy,

(1> Each elements of 23 binary image is generate Using an
unitformly distiributed binary 0.1 generator. This image does not

zUarantes the conectivity of the pattern

(23 A d-connected (B-conected? random binary pattern can be
seherated as follows,  In thi= method & binary tinif ormily

diztributed randem number <0 O 1} generator ssnerates s and

P'ss and placing them on its 1-ad jacents  (B-ad jacents ACCOrdine

14



to its incoming seguence then move to the upper level and find
next 1 and apply the above method recursively and when it does
not find any 1 of its adjacent then come down to a step. This

ultimate pattern will be bounded by 0°’s only.

To zenerate d4-connected binary image from uniform random

number . we proceed as follows:

algorithm - Input : Uniform random number.

Output @ a 4-connected binary image.

PROCEDURE FILL 4¢< x,y J;

BEGIN

IF ¢ NORTH i= wvalid, ie., NORTH of the candidate pixel i=
within the image matrix and it ix NOT yet filled by 0’ or
17 2 THEN put a random no. to NORTH and set a rlag, =say,
NFLAG,;
(% random no. i= zenerated from uniform{Q,1) It’s x 3
{u a fraction between G’ and 1’ So to get 0 =)
(o or 1, use modulo Z )

IF ¢ EAST is walid, i.e., EAST of the candidate pixel ix

within the image matrix and it is NOT vet [filled bv ’0° or
17 2 THEN pitt. =& random no. to EAST and =set a ftlag, =avy,
EFLAG,;

IF ¢ SOUTH is wvalid, ie., SOUTH of the candidate pixel is
within the image matrix and it is NOT vet filled by 0’ or
i THEN put a random no. to SOUTH and set & flag, =sav,
SFLAG,

IF { WEST is vwvalid, i.e., WEST of the candidate pixel is
within the image matrix and it i NOT vet filled by 'O or
S SO THEN put. a random no. to WEST and set a flag. sav,
WELAG,

IF { WFLAG » then PUSH{O x.y-13;

IF ¢ SFLAG > then PUSHO x+1,v);

IF ¢ EFLAG > then PUSHCO x.yv+13

IF ¢ NFLAG > then PUSHC x-1.vx
END:



PROCEPURE 4 CONNECTED IMAGEC x.v )i
BEGIN
call - FILL 4< x,v 2
REPEAT
FOP an element from the =tack which contains the
co—ordinate of the pixel to be expanded Let the
co—ordinate be (p,q’;
call FILL 4<p,q>:
UNTIL { stack i= emptly J;
END.

Similarly, we can generate 8B-connected random Dbinary image
using above algorithm, only we have to use FILL 8 procedure
which ' iz obtained from FILL 4 considering also the diagonal

pixels together with east, south, west and north pixels.

2.4. NORMALLY DISTRIBUTED BINARY IMAGE

A normally distributed binary image can be gzenerated by
u=sing a normally distributed random number generator. Since the
image i= binary image so we have to select the po=sitions on the
image plane such that it will produce an edge line binary

image., We can define a normally distributed binary i1mage as

follows.
De finttion 7 1 A grav level image G 1 =aid to be normally
distributed or a mixture of normally distributionz i itx

‘histogram of gray values of the image is approximated by a
smooth curve and the histogram looks like a normal distribution
curve O & mixture wh g Nnorinal distribution CUTVes {ie..

multi-peak) then the image 1= saad o be normally distribut.ed

Definittion B8 : A binary image contains (0.1 with natuaral
patterns of lines and points. Natural  pattern formation by
using (.1 is positional dependsnt. The pos1tion o f 1 = =

selected by a oormally distriboted random number generator on A

Zel'e image matrix B OB i1s zaid o be o normally Jdistiabuat.ed



binary image.

Now we shall generate the positions of 1’s in B {initially
U2, Let us assume that B is a pixel matrix so that the distance
between two pixels is fixed in a particular direction So there
is no deviation on distance, only deviation mav exists on the
value of orientation € (d(zay). So we shall generate a rnormally

distributed angle 8 with respect to a random starting position.

The parameters of a normally distributed random direction
senerator are standard deviation (o 8}" mean (o 5‘} and the
initial value of 8 = 93 (say). Mathematically we can write

7 = N8 ).

0’Hee
where & iz a real number, in degree or radlan So we =shall make

this & in degree to its nearest integral value and take a

modulus over 3600. If & is negative then it convert to a

L 0 X
po=zitive value by 360 +2. Then choose the £ nearest. of Aan
element. of the set

o O O O O O O )

{0°, 30, 45%, 60°. 90°, 120°, 135°, 150°, 180°, 210

2257, 240°%, 2707, 300°. 315°, 330°

. 360"}
This angle helps us to select the position of 1 using Table 1t

and Figure 7. A formal algorithm of this method is given below.

3 : £

v . . 0 . . 1

o6 . 0 . . 16

7 3 O 14
12 13 14

Figure 7 @ pixels with corresponding positions;

O  having the centre pixel.

Table 1: dngle and the corresponding position of pivel.

J
|r 1 o | s 1o e ¥ 120" 13 20"
2 30° | 6 120" | 10 210" 14 200"
3 45% | 7 1357 | 11 225 175 315"
4 a0 | 8 1507 | 12 240" | 15 20°

17



Formal Algorithm

1> The binary image matrix B = [hi.j]

vV 1,j € [0, m;0,.n] where b, ,= 0 V¥ i,

i

2> We shall generate w <X rn2 elements of 1

3> Initialize value of & = eﬂ_. B and o = 2

4> Generate a normally distributed random number
6 = NGOG,uod) for a seed of uniformlly dist.ributed
prandom numbexr.

5> © m o # NORMALCu,0) + R

6> 6 = Integer<8), agsume 8 is Iin degrea,

if not. convert it to-its corresponding values of degree

T 8 = 8 mod 360
8> If @ is negative then 8¢ = 8 + 360

o> Selef_':t 8 to its nearest. value of the set

O O O O

- 40°, 30°, 45°, 60°, 90°, 120°, 135°, 150°

, 180°, 210°,

8 O &) O

225°, 2407, 270", 300°, 315°, 330%, 360°}.

Also choose 1its corresponding position as shown in table 1

16> Fill that position by 1 and its 8-neigzhbour in B.

11> E:’?D = &

12> Repeate the steps 1 to 11 until it generates w points.

2.5. EXPERIMENTAL RESULTS AND CONCLUSION

Ve have implemented uniformly (both 4—connected and
B-connected)? and normally distributed binary image generator
using pascal ddn Micro-VAX and IBM-PCH. We have perf‘armed‘ &
humber of experiments to generate different binary imagze=s. Few
results of the experiment are shown in Figure 8-10 In the Study
ol t.lhe average performance of template matching thinning

algorithms [7,8] used uniformly distributed binary image. The



same study can be performed by using normally distributed
binary image. Also we can make this binary image more realistic
by adding =ome noise [14). This idea can be expanded for the
random natural line segment (le. map line segment.} seneration
using normally distributed random r:umbér- generation for the two .
par-amet,ép in polar co-ordinate system (r,5) - where r is the

length of the line segment and € is the orientation.



ANALYSIS OF TEMPLATE MATCHING THINNING ALGORITHMS USING
MARKOV PROCESS

3.4. INTRODUCTION

In this chapter we have analysed the template matching
thinning algorithms for measuring their time complexity. The
objective is to measure the total amount of time required by
the algorithm and the average number of iterations required to
converge the thinning process.  Here we have  proposed  a
probabilizstic model using Markov process f'or measuring average
Ltime c:nmpléxit,y of the template matching thinning alrorithms.
Using the proposed model it iz also pos=sible to compute a bound
on the number of iterations reguried 7for thinning process

applied on a normally distributed binary image.

3.2, SOME DEFINITIONS

Stochaztic process can be defined (22) as a collection of 1'~;.=1r:dq‘
varible= }{L bt =2 T. These random variblez are defined on a”
common  probability space and T < (- 00) 1= t.l'm'ugi-:t. ol as

a ttime parameter set, The process s called a continuous
parametey process i T is an interval having positive length
and a discrete parameten process it T iz a subset of the
integers. If ths random variables= Xt, all f.ake on values

from the fived set S, then § iz called the =state space ot the

PIrOCesS.

Many stochasitic processes poSsSoeEs the prroperty that. given the
present. state ol the process, t.he past history does noet affect
conditional probabilitiess of event= A=fined 1n  terms  of Lhe

furute. Such procssses are called Markov processes.

The property that given Lhe present =t.ate, the past states have

fe influence on Lhe futulbe. i3 khown as Markov property and 1.) e
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systems  having this pProperty  are called Markowv chains.
Equivalently, we can Ay a process {}{n} having state space S

iz s=sald to be Markowv process if for eﬁer-y cholce of

non-negative integer n and the numbers xﬂ_,xl,...xn_'_i each in S,
P{}Ck = x| }{0 = Xy ,J{k_1 = Hk-—l} ze
P‘{}ik= Xy | }"k-i = N .2

; <l -+

HL‘J"' for O < t < 1

S < < T

}{1. for Ty = . £

< T

}{L =~ HE’ for rz =t < 3
X g for Ty = < LY

- 3 3 < { Yy

¥4 Tor e = t. X

where, T = [0, o ).

3.3. PURE DEATH PROCESS

Let Yt, be the random variable <r.v.) representing a number of
deaths occured at. time interval of lensth t. So Yt, Lakes wvalues

U.1,2,.. etc . The pProcess {Yt, Lt = 0 is known as dJdesth

process [{21] Provided the following assumptions hold,

Cald The conditional probabijity thuat, during An interval
‘L.t+h). where h ¢ 30 5 jis small. a death occurs, ziven that at
the beginning of the interval the s=svstem was in =tate i, ix
Approximately egual to “iy

1
Ca2) The conditiconal probability of more than one

death during <t,.t+h) is nestdi-ilkls

where, o isx death rate in State 1. In pure Jeath process
i

there iz absolut.ely no birth, Thus. the pure  death process  can

broe Toreat,edd g FLETITYRINN € AYRY SN



Define the transition prababilities as

piJCt.) . P(Yt+h = § | Yh = i) t,h 2 0, which gives
the probability that at time d+h> the system iz in state j
{i.e. number of alives at time t+th 1is J > given that at time

h it was instate 1. So, we have pij(t,.} = 0, for j > i, =ince it

13 pure death process.
So, by (ail pi,i-ich) = P{Yt.+h = i-1 | Yt. = i) = SR and by

{add p (th) = P{Yt&h = | | Yt, = j+kd, is negligibie,

i+k., |
for k >» 1.

Suppose that at time € = 0 tLhe system is at state i, In order
to have state j at time t+h h is small positived, we consider

the following three possibilities,

a2 at time ¢, it iz in state j+1 and one death occurred

during (t,t+hd.

(b2 at time t, it iz in =state j and no death occurred during
{(t..bL+ho.

(c2 more than one death occurred during (L.t+ho.

Thus we have,

t.+h> = ¢ h>) + ¢ LY p, .Ch)
pij( h pi,j'}“l LD pj_'_i’j{h pi_,_j ijJ gt

(t> p Ch

Pk .

i
t L kK= j+2

= pi_._j-l-i{'t'} H i1 | I o pi,.j{t) [ 1 - H h ]

+ negligible term=

[ bv al,aZ2 and the fact, p. . . <hy = 1 ]

i .

which gives us the following,

*

), (Lo D, WS . op, ALY o
pl_,.,k = }”1?_14-1 *u_;,"rl pi,} a
[ dividing both =ides by h and taking ldmit onh hh 1
A O O
init.ial conditions are P, j{IJ} = O, Y 1= ]
and p, W = 1,
i.d
NOw s SR = ¥ 1. - p. .SL3 o { from 1> }
W, Py YWR b M T Py =i -
= = & 75 I
Pii i

22



_Jujt'
2 D, (L) = e YV L =20 ... .. ... . 2>
1,1

{ using initial conditions 1}

put j =i - 1 in 1), so

Pia-1t2 = Pyt B TPy 8 ey
THyt " |
= e - pi,i-—i{t) Hao g J o using 20 )
e ... $3D
LEMMA 1
If ¢t = ~ o (L) + gdb), for- t = O , then
| -at v —a{L=3)
f(L.,D) = o £<¢O0> + J- e 2(s> ds
O

one can easily prove it by multiplying both =sides by

the given condition and integrating over s from 0 to t.

S0 using LEMMA 1, we get from (30

-Jui_it t. —pi_i(t-ﬁ) TS
. : + -
pi,i—iitj = o Pi,i-i{"ﬂ) B J' e = d=
O
it S SR -t
= _1“ ¢ e ! 1 e 15 (4
T i Ti~1

Now putting j=i-2 in (1), we get

Py i-2%%2 = By Py i8> 7Kg Py
T e TH 2Ot
M. M Lt 1 - e
5 p Ao = i Ti-1 R [
A-2 I L -
: i Hi-1 i-1 Hi-2
-(Hl -“i~2)t
1 - -
,-=~"1 - “1—2
[ u=sing LEMMA 1 1
It iz reasonable to assume that L, ox i, ¥V 1. So pe, =

H 18 the proportionality constant.

23
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Now,

e—pt(i—l)

P, 1t::‘t,}ﬂ:l (1 - e )

yi=
i

, _ | y:
and "'1,,1—2“') = ( > Y e HE1=2) [1 - e HE ]

Thus for anv § ¥ i, we have

i i-
)e_‘ut"j [1- e-iut’] ’

, SAL) = ,
Pi.j ¢y

3.4. MODELLING OF THINNING PROBLEM

Suppose we have a thinning algorithm A and we want to thin an

image, say, IQ. Now applving A on IG we get different modified

images, =ay, I 1.12,.,,11{ At different iterations and the
algorithm will =stop after k-th. iterations, if the number of
1's ¢ considering binary imagze 2 in Ik-—-i 15 =ame a= that in Ik'
We =ee that the intermediate thinned image Ir- +1 depend& only on
the Iimmediate past thinned image Ir-" not on the images
IO"Ii“’""Ir-—‘l' S0 if Xr is a rwv. denoting the number of 1’s in

Ir' r =0,1,. .k, then we can say that

P(}(k = XN | }{ﬂ = Xpys oo "'xk-l = Hk—‘l} =
P{Xk= X} i xk—l = Hk—i}
where, Xy +X (0¥, are non-neg ative integpsr=.Thus wWe :Aan

conclude, thinning is a Markov proc ess.Thinnhing can also

be., treated as Pure Jump process, as

. 3 O = ¢t T
[ %y fonr < "
X, O T =t < T
1 ! A
X = N, t'or T = b T
t, 2 Bt $ Tg
iy , 11 T SESEE DU
k-t - ¥ k-1 L
h ., Yor T = < ¢
'{k_ 1 1ol 1 t ¥
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thinning process of binary

is a Pure Death Process.

25

at different time point t. Also,

image, 0O
changed to 1. But 1 may change to 0 or remains unchanged. So it

can

Now, P¢ YB = H(}" YT1= Hi" C. ?YTk—1- Hk-i . YTk - Hk_l}
= P(YG = xﬂ) P(Y%l = X | YO = xﬂ)
P(Y_Tk_i-t Xy | YO i PN .,YTk_ZI Xmn?
P{YTk = Xy 4 [ YG ™ Ky - .YTk_1= Hk—ij
= PCY, = HO_) P{Y.Tj - X, | Y, = Xn) .
P(Y_Tk-il X q | YTk_g. Xy
P{YTk =Xy | Yrk_ln STEPR S
t by Markov Property ]
= 7¢O (:l) ) e U [ L - T ]Hﬂ_’ﬁ c : ; E'wxzc-rz—-r_i)

k-2 He1 Tk 1" T2 T T 1T T 27 e Ry
{ ) e 1 -~ e
k=1
T YT T TR
=
wvhere, -n(0)=P(YD=xﬂ) and using 5
k-1
k=1 x H [iE T Y N Ty ]
0> TT ¢ o ) e ot
1=1 i
- THAT ST, ) o, -
%——1 [1_ - MO T T i ].’{1"1 i
15 [ with « =0 )
k-1
- +
X% m[ ig‘l B ﬂ{k*i] -wd 0 k-t
i N,
1= {HD
L as=uming that. r - =d . ¥ 1 ]



let w = usv be the # elements in the templates used for

thinning. So 2" iz # different patterns of the window ¢ ali

possible templates ) produced.

Let m be the # templates used in the algorithm for thinning. So

PC O is changed to 1 ) = Poi™ 0.
PC 0 is changed to 0O > = Poo™ 1.

total # possible windows
which are matched

PC 1 is changed to 0 ) = Pio" all possible windows

o

m
= .
W
PC 1 is changed to 1 ) = Pyy™ 1 - Pio
Initially, there was X 1’s in the input image . After one
: .- » : i 1.
iteration # t’'s will be X, = xﬂt Pyy Similarly X, = 5{1# Py
Hence X, = X, *x pii, Vis=12, .., k-1.
S0, &6) becomes
PC Y = x .Y = x, . .. .Y Ix_‘,,Y = X D
O 0 T, 1 LSV k-1 Ty k=1
1 - 31(_1
i P11, k-t
k-1 x._ P it T, T P
= 7<0> [T ( ) e
| i=m1 i -d x{}(l—p;‘c;i)
[ 1 - e © ]
.o L4 S &
< 1, [ as it is a probability ]
LEMMA 2 :
If N = n, + ., + . . . o+ n, for any non-negative integer N,
where, n's are also non-negative, then ‘we have
i > l ¢ t
N 1 = ntntoon
k-1 x X !
NOW, :I( :-{1 1) = {xn,.— X, 21{x —D‘{ 3 (X - X 2ix
=1 i O S | 2 7 T k=2 k=17 k-1

|

1 ., I by LEMMA 2 ] R & -

26



Hence combining (7> & (8) we get,

;. Kkt
Lds P11, k-t
H 0[ Pi1™1 - p P11 ]
11
Q) e
x C1-pi- 1y
.[ 1 - e-yd ] O 11 n2 |
p11(1_p§;1 ’ k- 1
> <0y - - 2
% log =<0 ,udxe e b,y ,ud'«cu Py

k-1 . - tid
+ xﬁ(i Pyq >logdii-e 2 £ 0

i taking logarithm on both sides 1

- lﬂg{I-e_“d D ] < udx

- xulogti—e_#d

[ on _Simpli‘.fication ]

Here, ud is average # deletion during time d. So, ud > 0.

~ ud

Thus loaz{(i-e > <0

case 1 : 05 < p“ = 1

=0, 1l—1::~11 > 0 and ;Zip_“-i > Q.

2p, -1
Thus=s, 1_1_1 S O
Pi1
| Z2p, . -1 _
Hence , cd 1}:} - log{i-e pid > >0,
11 provided Py > 0.5
50, from (D
P -
Ledd K 11 - X. logdli-e Ha > = log <>
O 1--;:)_1_1 O
k=1 <7,
Pyg 7 o 1
Py
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= 1 + o = C, say
2Py -1 - d
X [,ud T - log{i-e HS ]
P
11
[ on simplification 3}
As 0 < n<0d < 1, S50, pdx,. - log 7<0> > 0O

O
Thus, C > 1

So, k-1 log p11 < log C

log C
log p ’ |
11 [aspﬂ(i andsnlﬂgp11<0]
2 : 0 = < 0.
case p“ 0.5

Let. us assume that,

2p. .1
11 -
pd —— - logd-e H% 5> < o,
P4
1 lwg(l—e_“dJ
& ~Z2 + - -
i—p 1 < 0, [ as pd >0 1]
11
1
& p.<1- -
11 e
2 + logci-e Y
d
H [ on simplification }
logCt-e M9 i
Again, 0 < 2 + — < 2, as logci-e M9 < o
- 1
So, > 05
, - redd
log{li-e ),
2 +
il
1
s 1 - o < 05
5 4 logd{li-e 2
Ll
Thus=,
1 o = e b LTUE
5+ logCi-e 70
i
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2p11-1

So, d - logci—e M3 > < o,
1-p
11
log G
: =
Thus, k < 1 + Tog b1y , provided P44 < O.D

¢ proceeding as case 1 )

But in practice, pﬂz 05. So, this relation ﬁrﬂvides lower
bound of the # iteration required. We are now trving to get an

upper bound of k.

X~y

i Y A .
Suppose, PC Y, = vy | Y, = X ) =® e e=y3T which is

Poisson Distribution with A as the parameter denoting average

deletion of 1’s in each iteration.

Now,
1z POY, = X Y‘Tii v o - ,YTk_i-: Ximq Y_Tk = xk_i}
= PCY, = Xy F’{YT1 = X, | Y, = X2
P(Yrk-1= Xy g i Yo = X5 ._,YITk-2= Ky
F’{YTk = X __. | YG = Xy ._,Yrk_1= xk—‘.l)'

. 0 k-t
= 7¢O e KA A
o xym X O X Y
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‘ 0 k-1 :
= n{0> e KA A t by LEMMA 2 ]
(x. ~x bR
0O k-1
X —X
0 k-1
> ) ek)k A —w { as } > 1
(x -x 5 0 k-1 ! it
0O k-1t T 4 I
Now, xﬁ > xk_1 I trivial }
=p{)<x0—xk_1(x0
= =1 P > 1 v 10D
O k-1 O
(KU. xk-i) (xﬂ)

combining <(9) & €100, we pget

Q> e_k}‘ A L O |

Here, X is estimated unbiasedly by the mean of

denoting # deletion in each iteration.

S + v —w oo _ i
N {xo xi) (x1 };.2) + ... {hk__z xk—i‘}
A == =
| k
® Ry X S kKX {125

combining (11> & 12>

i "}‘L 3
CO5 E.k.f ( A )K < 1
. 0
(xu)
- ko
: )
N n(ﬂi ¢ i\ ) < 1
9§
{xo)
~ —kh -
.}k ' .
=% { - 3 > W{D;
[ = - _ - 0
{x_D
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> k x dog( ; > > log n<0O> -~ X log( X5 .)

ok ¢ 1 { log ad0d> - Xy log« X > ] = B , say
A

1 - logdl X D L. 013D

.

[ assuming A > e 1]
LHince 0O < <0 € 1, So, log nd0Y € 0, and thus

log ~{0> -~ xﬁ.lﬂg( X > £ 0 as XK, > 1_

Al=o we have assumed X > e. Thus ( 1= log X > < 0.

Hence RHS of {{3) is positive. So, (13D gives us an upper

bound of k.

3.5. COMPLEXITY ANALYSIS

Usually performance of an algorithm is measured by time and

space reguired for that algorithm. Here, in fact, these things
are function of size of the input image. We are considering

average case complexity to measure the performance of template
mat.ching thinning algorithm. Measuring time complexity of
images of different sizes, we took average of them. There are

S0 many such algorithms, but nobody has described their

performance except. Pal & Bhattacharvya [T

we  have proposed a stochastic model regarding this. The
following tables give the actual number of iterations required
for 10 different normally distributed binary images [ described
in chapter 2 ] of different sizes, their estimated bounds and
f.ime redguired for five different algorithms £15.,16,17 ,4,181]1,
wl'zerte-f S, £, n are  the parameter of the algorithm for

normally distributed binary image, N is the no. of iterations

Iregquired, B is t.he bound of no. of iteration obtained
Cexperimentally and # is the average no. of deletions in each
1teration. Table 1 to table & are corresponding to image =size

HZ2X32 and rest are corresponding to 64x64.



Table 1 :

Alorithmi{ o o n xn N A B tLime
1 _ ' | 1 (y.%ec)
. <hang & 5 | 37.6 39 . 542 2260 |
Suen
T - }
Chin 11 42 .72 34 .272 3430
B | 4
‘Hall O |0.356} 4561 610 7 66 .86 18 . 242 1790 ‘
1 — } - —
Holt 8 D6 .37 22 .85 5820
— e — e
Pal & =~ .
Bhatt, I o 37 .78 22 .116 047 O
| S — I 1
Table 2 :
f | ~ T
Alorithm| o oy I xD N A B time
4_ B _ (u.secd
“hang & 4 | 55.75] 23.456 | 2010
-en J
Chin 10 48 .5 28 .266 2990
_ 4
Hall 36(0.467 ! 456 6516 o) B0 .33 14 522 1570
4 L | 4 —_—
Holt 7 67 .00 18.398 5200
- i I —_
Pal & | = -
Bhatt J 1 10 58 .30 22 .103 8590
Table 3 -
1 = h
1Alorithm! o < 2t X0 N A, B time
| _ (id.Sec)
Zhang & ey ey g
Suer 5 41 .83 39 .646 | 2960 *
! —
Chir; ; 13 43 .69 37 .365 4000
Hall 47 10.387 1 486 694 Q 62 .89 22 .95 ' 2300
; | |- ~ L
Haolt | 10 55 .4 27 .148 T570
Pal & | * . o _ T
Bhatt ; s, BO.O | 16.753¢% 885 O
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Table 4 :

-

b e T

>}

Alorithm| e o N x0 N B t.ime
(. sec)
A i 4 ] :
Zhang & 4 | 31.0 35.419 1190
i  Suen
Chin 6 51.67 17 .562 1630
: N
Hall Q@ 10.245| 357! 440 3 [105.00 O .9465 770
T |
Holt 4 | 7T4.75| 10.786 2540 |
4 | . -t
Pal & |
Bhat.t. J =1 8BS .0 8.995 3240
| ol 1 -
Table 5
i -r -~ a~ I
Alorithm| o oy n xn N X B Ltime
1 .l _ (u.sec)d
Zhang & -
Suern 7 39 .57 46 .213 360&_
————— !
Chin 16 37 .75 49 311 2380
| - B
Hall 47 :0.677 | 478 742 10 61 .4 25 587 2760
— - .
Holt 11 53.64 30.618 Q2900
Pal & o e o T
Bhatt. 5,78 19421 10540
— I i
Table 6 :
Alorithm! o oy n :{0 N l ;: B time l
; _ {g.ﬂecg_i
Zhang & |
Suen 5 38.0 38.59¢ 1950
J & '
' Chin > s '
17 P26 .59 63 .808 5050
1
Hall 2810.367 389! go5 i 65 .86 18. 43 1770
—_— 4. [ i
Holt 7 62 .28 19.833 5430
- Pal & |
Bhat.t, 83 &56 .12 18.332 | TOZ20
: !

—_
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Table 7

: H
L
[ WP ——— —r—

— , _ _
Alorithm o o4 n xo N A B LCime
R | i {u.sec)
Zhang & . .
Suen 6 83 .67 414 . 57¢ i 6330
. Chin 9 136,78 23 .848 8520
~ ' —————
Hall 0.478} 698! 1747 6 (209 _ 67 14.028 4620
Holt 7 1?2.001 17 .947 14590
-1 T
Pal &
|
| Bhatt J 7 177 .8B6& 17 . 188 16900
] , |
Table 8 -
Alorithm o n X N X B time
j t (u.sec)
I . .
| <hang & 9 | 68.44! 54 795 9140
Suen
R
| Chjn 17 78 .65 45 . 718 13980
- —
Hall 0.699] 798| 1636 11 122.91 25 .827 7590
Holt 12 1109 25 29 .983 21940
. i
Pal &
20 .27 6.5 23560
Bhatt. 11 120 .2, 26 .544 35
Table 9
e e — ——— T o~ H
Alorithm o I N h ¥ N A B time
| 0 < >
H.osec
[ : r i
] <hang &1 | 1171 96.10, 63.249 | 18040
Suen -
Chin 31 T8 .38 88 . 731 36090
| Hall | U.935 1276 29301 18 1134.5 44 557 16510
. Holt f | 18 {130 .89 46 . 107 { 52140
| F i | = ,= a
T : 1 .l I
- Pal & | § i ; 19 1133.211 45 pov 3150
Bhatt, i i |




Table 10 :

Alorithm

Zhang &
Suen

Chin

Hall

Holt

Pal &
Bhatt. .

s o n X N A t.ime
G

| ) (p.sgc)
11 ‘5 .36 65 .65 13420
26 68 .46 74.421% 25280
4510.966| 910 2144] 12 149 33 27 . 476 16010
13 ({133.46 31.631 31630

3 I |

15 116 .87 37 .302 39190




REFERENCES

10.

Y. & Chen and W. H. Hsu “A comparizon of some one-pass
paraliel thinnings. Pattern Recog. Lett.. Vol. 11, 1000,
35-41.

K. M Haralick ‘"Performance characterization in image

analy=is: thinning, a case in point.. Pattern Recog. Lett.
Vol 13, 1992, B-12.

5. Heydorn and P, Weidner "Optimization and performance

analysis of thinning algorithms on parallel computers®.
Parallel Comput. Vol. 17, 1991, 17-27.

C. M. Holt and A. Stewart “A parallel t.hihning algorithm

with fine grain subtasking'. Parallel Comput. Vol. 10,

B. K. Jang and R. T. Chin "Analysis of thinning algorithms

using mathematical morphology". IEEE-PAMI. Vol. 12, 1990,
B41-561.

M. T. Musavi, M. V. Shirvaikar, E. Ramanathan and A. k.

Nekovei "A  Vision Based Method To Automatic Map
Processing'. Pattern Recognition., Vol. 21, No. 4, 1989,
319-326.

5. Pal and P. Bhatt.adharyya “Analysis of Template Matching
Thinning Algorithms". Pattern Recognition, Vol. 25, No. 5,
1992  497~503.

5. Pal "Some Low Level Image Segmentation Methods.
Algorithms and Their Analysis" PhD. Thesis, Department

of Computer Science & Engineering, Indian Institute of

Technolozy, Kharagpur, 19vi1.

W, Pferd and G Stocker “Optical Fibers for Scanning

Digitizers", Bell Svs. Tech. J. 60 ., 1981. 523-~534.

L. 6. Shapiro, "“Inser Matching of Line Drawings in a

36



11.

12.

13.

14.

15.

16.

18,

19,

20,

21,

Syntactic Pattern Recognition Svstem', Pat.tern

Recognition, 10, 1978, 313-3<Z1.

J. C. Stoffellbkd> Graphical and Binary Image Processing
and Applications. Artech House, Dedham, M A, 1982

H. J. Trussell, Processing of X-ray Images, Proc. IEEE 69,
1981, 615-627.

J. R. Ullman,"Binarization Using Associate  Addressing’,

Pattern Recognition, 6, 1974, 127-135.

X. Zhou and R. Gordon ‘"Generation of Noise 1n Binary
Images”. C V¥V G ]I P: Graphical Mdels and and Image
Processing. Vel 53, no. 5, Sept. 1991, 476-478.

T. Y. Zhang and C. Y. Suen "A fast paralle] algorithm for
thinning digital patterns."” CACM, Vol. 27, No. 3, March
1984, 236-239.

Chin R T, Wan H K , Stover D L , Iverson R D. " A one
pass thinning algorithm and it parallel
implementation".Comput.er Vision,Graphics and Image

Proces=sing,vol 40 , no 1, pp—-30-40, oct, 1787

Guo Z s Hall R W, "Parallel Thinning with Two

Subiteration Algorithm™,CACM.Vol 32, No 3, March 1938%., pp
359- B73. |

Pal 5 and Bhattacharyva P. A Shape Preserving One Pass

Parallel Thinning Alzorithm", Indian Institutse of
Management., Calcutta, working paper ﬂériea No 1234895,
1989.

Queueing systems,vol 1: Theory by Leonard Kleinrock,]John

Wilev & Sons.1975.

Bratlevy, Fox & Schrage, A ziude t.o Simulation',

Springer—Verlag, New York1987, 160-164.

. Syski." Random Process ', Marcel Dekker Inc., New York

and Basel, vol 908 second edit.ion.revised expanded,

37



22

283-294

FP. G. Hoel,

Stochastics Processes" Hought.on

S, Pal, R

Statistically Distributed Random Binary

IJPAM, 1993,

N

-, C. Port. and G. J

Stone,

Introduction to

Mifflin Company, US.A.

Bhat.tacharyya, S. Bhattacharyya, A. Ray, "aA

{(communicatedd

38

Image Generat.or',



o

. :

Figure 8: 4-connected random binary image of size 128x128
with seed (a) 903284, (b) 25, (c¢) 2300 and (d) 65.

il

Figure 9: 8-conmected random binary image of size 128x128
with sead and msdber of 1 generated in (a) 2387, 500, (b)
8792, €00, (c) W45, 550 amd (d) 3784,550.

Figure 10: Normally distribtuted random binary
image of size 2002200 with seed 4376, and mean
& s.d. of the normal distribution and the
number of point generated in (a) N(0,0.55).

400, (b) N(0,0.86), 400, (c) N(0,0.4), 200 and
(d) N(1.0,0.2), 250.
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&

Figumll:ThimuedimeofFigure:Bbyusing Zhang and
Suen’s thinning algorithm [15].

S A I S

Figure 12: Thinned image of Figure 9 by using Zhang and
ouen’s thinning ailgorithm [15].

A

Figure 13: Thinned image of Figure 10 by using
Zhang and Suen’s thinning algorithm [15].
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The following images are the thinned vebsinn of the given image
by (a) Zhang & Suen (b)) chin et. al <> Guo & Hall

(d> Holt et al and <(e) Pal & Bhat.tacharyya ‘’s
- algorithm
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