SOME'STUDIES ON CIRCUIT COMPLEXITY

A dissertation submitted in partial fulfilment of the requirements for the
M. Tech. (Computer Science) degree of the Indian Statistical Institute

By
Pranab Chakraborty

under the supervision of

Dr. Rana Barua
Stat-Math Unit
INDIAN STATISTICAL INSTITUTE
203, Barrackpore Trunk Road
Calcutta-700035

July 24, 1996

Certificate of Approval

This is to certify that the thesis titled SOME STUDIES ON CIRCUIT
COMPLEXITY submitted by Pranab Chakraborty, towards partial
fulfilment of the requirements for the degree of M. Tech. in Computer Sci-

ence at the Indian Statistical Institute, Calcutta, embodies the work done
under my supervision.

July 24, 1996

Dr. Rana Barua
Stat-Math Unit

Indian Statistical Institute
Calcutta-700 035

Acknowledgements

First, I express my sincere gratitude to my supervisor Dr. Rana Barua for
his encouragement and guidance throughout my dissertation work. I feel
fortunate to have attended the course on Abstract Algebra, offered by him

in our first semester, which will remain as an unforgettable experience for
me

I am deeply indebted to Dr. Jaikumar Radhakrishnan for introducing
me to the wonderful subject of circuit complexity. I have also learnt much,
while working under him, during my summer training at ‘TIFR, Bombay.

I would like to thank the following people who patiently attended my
seminars on communication complexity and helped to clear my concepts
on the subject through valuable discussions : Dr. Bimal Roy, Mr. Palash
Sarkar, Mr. Subhash C. Nandy, Mr. Pabitra PalChaudhuri, Mr. Jeet
Chaudhuri, Mr. Prakash Narayanan, Mr. Subhashis Majumder, Mr. Sub-
hamoy Maitra and Mr. Paramartha Dutta.

Special thanks goes to Mr. Kaushik Dutta, for allowing me to use his per-
sonal computer at unearthly hours. Without that facility it wouldn’t have
baen possible for me to finish this document in time. 1 am also thankful to
Mr. Samik Sengupta, Mr. Pinakpani Pal, Mr. Rana Aich, Mr. Bhaktipada
Kundu, Mr. Biswadeep Biswas and Mr. Soumen Ghosh who have helped
me in many ways.

Finally, I must thank all my classtnates for making my two year experi-
ence at ISI a memorable one.

Contents

1 Introduction

2 Introduction to Circuit complexity

2.1 The circuit model

iiiiiiiiiiiiiiiiiiiiiiiiiii

2.2 Boolean circuit and Turing machine e e e e e e e e e

2.3 Nonexplicit lower bounds

llllllllllllllllllllllllll

2.4 Explicit lower bounds in general circuits

3 Restricted circuit models

3.1 Bounded-depth circuit model
3.1.1 Probabilistic bounded-depth circuits
3.1.2 Circuits with MOD, gates

3.2 Momnotonecircuits

3.3 Formulas and circuitdepth
3.3.1 Communication complexity approach
332 Thefusionmethod

4 Some lower and upper bound results

4.1 Using the gate elimination approach
4.1.1 Threshold function
4.1.2 MNy; class of symmetric functions

4.2 Using the communication complexity approach
4.2.1 Graph connectedness function.

4.3 A combinatorial lemma

5 Conclusion

iiiiiiiiiiiiiiiiiiiiiiiiiii

b

O 00 O b

11
13
13
13
14
16
21

27
27
27
29
37
37
38

39

Chapter 1

Introduction

The Circuit Complexity of Boolean functions is a topic of long-standing interest
in Computer Science. The subject originated form the requirement of minimising hard-
ware circuit costs for computing Boolean functions. The pioneering contribution in this
direction was made by Shannon in a paper[47] in which he proposed the size of smallest
circuit computing a function to be the measure of its complexity. He proved an upper

bound on the complexity of all n-input functions and used a counting argument to show
that for most of the Boolean functions this bound is not too far off. The problem of

finding lower bounds on the complexity of circuits computing Boolean functions has
motivated considerable research over the past four decades.

The other motivation to study this subject came from the need of developing suit-
able mathematical models to study the theory of Computational Complexity. The
classification of problems from the point of view of computation can be divided into
two major subdisciplines. One of these is the theory of Algorithms which gives the
upper bounds on the amount of computational resources (time, space etc.) needed to
solve particular problems. The other one counsists of techniques for analysing a problem

in some computational model irrespective of any algorithm and tries to get some lower
bound on the amount of resources required to solve it. The most common model of

computation is Turing Machine model. Hartmanis and Stearns[20] first formalised the
measure of complexity of functions as time on Turing machine and Edmonds|18] felt
the need of avoiding brute force search method and foresaw the issue of polynomial-vs-
exponential complexity. Cook, in his 1971 paper[15], precisely formulated the P vs. NP
conjecture. Savage[46] first showed the connection between circuit complexity and Tur-
ing machine time. Over the years, many researchers have felt that the combinatorial and
static nature of Boolean circuits renders them more suitable for proving lower bounds
on complexity of problems and allows for natural variations and restrictions. Thus,
gradually it became apparent that devising new frameworks for studying complexity
In circuit model and applying them to explicit problems may lead towards solving the

interesting unsolved questions of Complexity Theory.
Outline of this document

This document consists of two parts. In the first part, described in Chapter 2 and
Chapter 3, a brief survey on circuit complexity is presented. Details of major portion
of this review are contained in the survey work by Boppana and Sipser|13], in the book
by Wegener|[55], in the Ph.D thesis of Mauricio Karchmer{23] and some recent papers
on the fusion method[24],[9]. We have tried to touch upon the different techniques
available to prove circuit lower bounds and have attempted td list down those results
that are considered as breakthroughs achieved in this subject. In Chapter 4, we describe
some of our results. This is followed by Conclusion and then a list of references.

Chapter 2

Introduction to Circuit complexity

2.1 The circuit model

A Boolean circuit is a directed acyclic graph. Each node of indegree 0, called input
node, is labeled with a variable or a constant (0 or 1). Each internal node(rn;), called
gate, has indegree §;(1 < é; < k) where k is fixed and is labeled with a Boolean function
on at most é;-inputs. Unless othewise specified, these Boolean functions are restricted
to AND(A), OR(V) and NOT(=). One of the nodes with outdegree 0 is designated
the output node. Indegree and outdegree of a node are referred as fanin and fanout
respectively. For a Boolean circuit C, size(s(C)) denotes the number of gates and the
depth(d(C}) denotes the maximum distance(in terms of number of gates) from an input

to output. A Boolean formula is a special kind of circuit whose underlying graph is a
tree. In a monotone circuit no NOT gates are allowed.

A Boolean circuit computes a Boolean function in a natural way. For a function
f:1{0,1}* — {0,1}, the circuit complexity of f is the size of the smallest circuit
computing f and is represented as C(f). For g: {0,1}* — {0,1} and h: N = N, we
say that g has circuit complexity h if, for all n, C(g,) = h(n), where g, is g restricted
to {0,1}". The circuit complezity of a language is the circuit complexity of its char-
acteristic function. Depth complexity(D(f)) is defined in an analogous fashion.

The class of all n-variable Boolean functions f : {0,1}* — {0,1} is denoted by B

nl

There exist 2% functions in B,. A Boolean function is called monotone if for =z =
(1, zn),y = (W1, ..y ¥) € {0,1}", 2 < y (ie,x; < y; Vi€ {1,...,n}) implies
f(z) < f(y). For a monotone function f, a minterm(mazterm) is a minimal set of vari-
ables which if we set to 1(0), the function f is set to 1(0). Let min(f)(mazx(f)) be the

set of minterms and maxterms of f respectively. The class of all n-variable monotone
functions is denoted by M,. For a monotone circuit C and a monotone function f,

85 (C), dm(C), 8(f) and d,.(f) are defined in the obvious way. The folIUWing facts are
immediate.

Fact 2.1 For a monotone function [, for every p e min(f) and every q € maz(f),
pNg#0.

Fact 2.2 The only functions computable by monotone circuits are monotone
functions.

In the definition of Boolean circuit we have restricted the basic gate operations to

{A,V, =}, the DeMorgan basis. In general we can choose any finite set(?) of Boolean
functions as basis. A basis 0 is called complete if any Boolean function can be com-

puted by some Boolean circuit that uses gates labeled by functions solely chosen from
{1. Examples of complete bases are B,, DeMorgan basis, {A,=}, {v, -} {1,®,A),
Uz = By \ {®, =} etc. The monotone basis {A, V} is incomplete. The following theorem
asserts that size and depth complexities of a Boolean function can increase by at most
a constant factor if we switch from one complete basis to another.

Theorem 2.1 Let Q) and V' be complete bases, ¢ = max{Colg)] g€ ¥} and

d = mam{Dg(g)I g < QI} Then Cn(f) S C Cgr(f) and Dg(f) S d an(f) fOT‘ all
f e B,.

Proof. (From [55]) We replace gates for g € by optimal (with respect to size or
depth) Q-circuits for g. Starting with an -circuit computing f we obtain an -circuit
with the required properties.

We denote by C(f) and d(f), the size and depth complexities of f with respect to
the DeMorgan basis. In those places where we may use some other basis({2) we would
explicitly refer the complexity measures as Cgf f) and do(f). In the circuit model
described above, fanin of each gate is restricted to k. The size and depth complexities
of a circuit can increase by at most a constant factor if we switch from fanin k& model
to fanin 2 model. All the notions of circuit complexity can naturally be extended to
unbounded fanin situation. Unbounded fanin circuits were first studied in[14).

We now define some complexity classes according to [23].

Definition 2.1 NC* is the set of all families F of functions for which there exists
a family C of circuits computing F such that, for all n, d(C,) = O(log*(n)) and
$(Cn) = n%, NC = UNC*.

Definition 2.2 AC* 15 the set of all Jamilies F of functions for which there exist
a family C of unbounded fanin circuits computing F such that, for all n, d(C,) =
O(log"(n)) and s(C,) = n%W. AC = UkA_C"‘. |

Definition 2.3 P(non-uniform) is the set of all families F of functions which
have polynomial circuit complexity.

We can easily verify the following facts about the complexity classes defined above.

Fact 2.3 For every k, AC* C NC**! C AC*!.
Fact 2.4 NC = AC € P(non-uniform)

We can define the monotone versions of the above classes in a similar fashion and the
corresponding facts hold there.

2.2 Boolean circuit and Turing machine

The connection between circuit complexity and Turing machine complexity was first
shown by Savage[46]. Pippenger and Fischer[37] proved the following theorem.

Theorem 2.2 [37] If a language L is accepted by a deterministic Turing machine
tn O(T(n)) steps, then L has circuit complexity O(T(n) log(T(n))).

To demonstrate the main idea of simulating Turing machine computation in circuits,
we describe a weaker version of the above theorem as follows.

Theorem 2.3 If a language L is accepted by a deterministic Turing machine in
O(T(n)) steps, then L has circuit complexity O(T *(n)).

Proof. (From [13]) Let a k-tape, k-head Turing machine M accept £ in O(T(n)) steps.
Converting M to a single tape, single head Turing machine the number of steps increases
to O(T *(n)). Now the computation on some input can be viewed as a table where row
¢ 1s the tape at i-th step. At any point in time we consider the cell currently scanned
by the head to contain a symbol representing both the actual symbol and the state of
the machine. Let cell(i, §) be the contents of the ith cell at step j. It is easy to see that
cell(i, j) only depends on its predecessors cell(i—1, j—1), cell(i, j—1) and cell(i+1, j~1).
Thus the possible values of a cell may be encoded in binary and build a small circuit
(independent of the length of the input) for each cell which computes its value from its
predecessors. Assuming the machine indicates its acceptance in the first tape cell upon
halting, we designate the appropriate gate from cell(1,1) to be the output where is the

index of the last row. Since the total number of cells is O((T ?(n))?) = O(T*(n)), the
simulating circuit has size O(T *(n)). B

Thus every language in P has polynomial circuit complexity. The converse of this is
not true. The following example illustrates this.

Example 2.1 It is known that there exist subsets of the set of natural numbers(N')
which are recursively enumerable(r.e) but not recursive. Consider one such subset
K. Since K is not recursive there can not exist any algorithm that could be used
to test whether a given number z € K. So the subset of {1}* which corresponds
to K can not be in P. On the other hand every subset of {1}* has linear size
circutts. Thus the converse of the theorem does not hold.

In the above counter-example, we showed that a family of small circuits exist but it isnot
clear how these circuits could be obtained. On the other-hand, the circuits promised by
Theorem 2.3 are quite regular in nature, that is, there exists a polynomial time program
which when presented the input n in unary, produces the description of the nth circuit
in the family. If this uniformity restriction is imposed on the circuits then it can be
shown that the converse holds.

A family of circuits {C}, C,,...} is said to be P-uniform if there exists a polynomial
time program to generate the description of C, given n in unary.

Theorem 2.4 If L has P-uniform circuits then L € P.

Proof. (From [38]) Let the P-uniform circuits recognizing £ be {C}, C,.. } Suppose a
subroutine A generates the description of C; in polynomial time given input 1}, Then
the following polynomial time program recognizes L. |

1. Input z (let |x| = n).
2. C— A1),
3. Qutput C(zx). |

3
Alternatively, we can view the converse side through a nonuniform extension of P.

Definition 2.4 We say that a language L is in P/poly if there exists a sequence
{a1,a3,...} € {0,1}", called an advice sequence, a polynomial p(n), and a
langwage L' € P, such that

e VneWN, |a,| < p(n)
e Vz € {0,1}", € L = < =, ay >€ L',

Theorem 2.5 L is in P/poly iff L has polynomial size circuits.

7

Proof. (From [38])

(=) : Suppose £ € P/poly. Then there exists a sequence of advice {a;,a;,...} and

a language L' € P satisfying Definition 2.4. Thus £’ has polynomial size circuits, say,

{Ci, Cs,...}. The circuits {C;’,C7’,...} for the language £ are obtained from Citlai bY

presetting the advice a;.

(<) : We encode the polynomial size circuits for £ as advice. Since a polynomial size

circuit can be evaluated on any input efficiently, this constitutes a valid advice sequence.
|

Thus one primary motivation towards studying circuit complexity arises from the fact
that if one could prove a super-polynomial lower bound on circuit size for computing
an explicit problem in NP it would mean P # AN'P. The circuit model appears to re-
searchers to be more static and easy to reason about than programs. However so far, no
function in NP has been shown to require even super-linear circuit size. On the other
hand, the truth may be that all NP problems have polynomial circuit complexity, even
though P # N'P. If it were the case, Karp and Lipton[28] and Sipser showed that, the
polynomial hierarchy would collapse and that is somewhat unexpected.

The fundamental difference between circuit model and a software program is that a
circuit works only for inputs of a definite length, whereas a reasonable program works
for inputs of arbitrary length. The software model is termed as an ungform computa-
tion model. Turing machine is a representative of such model whereas Boolean circuit
is a representative of nonuniform computation model.

2.3 Nonexplicit lower bounds

The number of circuits with small circuit size or small depth grows much slower than
the the number of Boolean functions which implies that almost all functions are hard.
We describe the following result obtained by Muller[34] who, based on & counting argu-
ment of Shannon[47], proved an exponential lower bound on the circuit complexity of
nonexplicit problems.

Definition 2.5 A statement of the form “almost all functions f of a class F, C B,
have property P” stands for the assertion that

{f € F.| f has P}|/|F,| =1 as n — co.

Theorem 2.6 [34] Almost every Boolean function of n variables requires circuits
of size (2" /n).

Proof. At first we prove that the number of circuits with n variables and size s is
bounded above by (3-(s+n+2)*)*. Each gate in a circuit is assigned an AND or OR or
NOT operator that acts on at most k previous nodes. Each previous node can either be
a previous gate(at most s choices), a literal, i.e., a variable(n choices) or a constant(2
choices). Thus each gate has at most 3- (s+n+2)* choices. Compounding thsese choices
for all s gates proves the claimed upper bound. Now for s = 2" /(5kn), the bound is
approximately 2%'/% 4 2%". Since there are 22" Boolean function of n variables, almost
every Boolean function requires circuits of size larger than 2" /(5kn). Hence the result.

This lower bound is optimal upto a constant factor. We know that every Boolean
function can be expressed in disjunctive normal form. Thus every Boolean function
has circuits of size O(2" - n). Muller[34] and Lupanov([32] showed that it is possible to
improve this upper bound to O(2"/n).

2.4 Explicit lower bounds in general circuits

Although for almost all functions the general upper bound on circuit complexity is op-
timal upto a constant factor, no one has so far been able to show a super-linear lower
bound for any explicitly defined function f € B,. Blum{11], improving a bound of
Paul(36], proved a 3n — o(n) lower bound over B, basis and fanin restricted to 2. The
best known lower bound over U, basis is 4n — O(1) due to Zwick([58].

The method used to prove these bounds is referred as the gate elimination technique.
To illustrate this technique we describe the following simple bound for threshold func-
tions. Let TH;, be the function that outputs 1 iff at least k of its n variables are
1.

Theorem 2.7 Forn > 2, the function TH,, requires circuits of size at least 2n—A4.

Proof. (From {13]) The proof is by induction on n. For n = 2 and n = 3, the bound is
trivial. Otherwise, let C be an optimal circuit for TH;,, and suppose w.l.o.g that the
bottom most gate of C acts on variables z; and «; (i # j). Now under the four possible
settings of x; and z;, the function TH);,, has three possible subfunctions, namely, THj ,,_2,
TH,, 5, and TH;,_,. Thus, one of z;, z; (suppose z;) must feed another gate of C, for
otherwise C' would-have at most two inequivalent subcircuits. Setting x; to 0 will now
eliminate the need for at least 2 gates from C. The resulting function is TH,,_; , which
by induction requires circuits of size 2(n — 1) — 4. Adding the two eliminated gates to
this bound shows that C has at least 2n — 4 gates which completes the induction.

We state some lower bound results for explicit functions from [55], which were obtained
by using the gate elimination technique.

Result 2.1 For n > 2 and c € {0,1} the B; circuit complezity of the PARITY
function 2, @ --- ® x, ®c 13 (n — 1), the U; circuit complexity equals 3(n—1) and
the DeMorgan circuit complezity is 4(n —1).

Result 2.2 Consider the equality test function f,~ € B,, defined by,

o (1,00 s Ty Yty oy t) = 1 iff (z0,...,2,) = (Y1, .., ¥n). By circuit complexity of
fim 8 (2n-1), U, circuit complexity is (4n — 1) and DeMorgan -circuit
complexity[45] is (5n — 1).

The besf. known lower bound over B; was proved by Blum[11] by considering the fol-
lowing function.

Result 2.3 Let n=2", a= (ﬂk_l,...,ag), b= (bk-ln-“:bl)): C = (Ck_l,...,q}),
T = (To,...,Zn—1) and p, q, v be Boolean variables. If f € B, aris i3 defined by,

fla,b,e,p,q,m @) = [gA ((ziay Azp) V(D Az Azi™))] V [GA (4 ©)],

then Cg,(f) > (3n — 3).

Note : xi’c' = Zje| BT

10

Chapter 3

Restricted circuit models

The apparent difficulty in proving strong lower bounds for explicitly defined functions
in general circuit model, led researchers to explore the situation in restricted circuit
models,

We want to prove that the computer cannot do something quickly. We cannot(have
not been able to) do this. But if we tie the hands and feet of the computer together
maybe we will have better luck. The hope being of course that we eventually will

be able to remove the ropes and prove that the full powered computer needs a long
time.

To be more technical, we want to study a weaker model of computation end develop
techniques for proving lower bounds in this weaker model, and may eventually be
able to extend these techniques to the general situation.

~ J. Hastad[21].

Some examples of the restricted circuit models are bounded depth circuits, mono-
tone circuits and formulas. We discuss about these models in this chapter.

3.1 Bounded-depth circuit model

This model, also called small-depth circuit model, restricts the depth of computing
circuit to be either a constant independent of the input length, or a slowly growing
function of the input length. The first strong lower bound in this modél was proved by
Furst, Saxe and Sipser[19] and independently by Ajtaifl]. Furst et.alq19] proved that
circuits of depth &k that compute PARITY require size Q(nhﬂ[s(*_m "} where logl! n de-
- notes the logarithm function iterated i-times. Ajtai, using a probabilistic-combinatorial .
method, proved a stronger bound Q(n°!°¢"). These results implied that AC® ¢ NC..

11

Subsequently, Yao[57] gave a deeper analysis using the method of [19] to prove an ex-

ponential lower bound of 9(2"‘”“). Hastad[21] further strengthened and simplified the
arguments in his Ph.D thesis. We state the results obtained by him.

Theorem 3.1 [21] Thére is no depth-k PARITY circuit of size 201/10)/¢ Dnt/e-) for
n > no* for some absolute constant n,.

~ Corollary 3.1 [21] Polynomial size PARITY circuits must have depth at least

logn
~Tloglogn for some constant c.

The bound on the size can not be significantly improved as it is quite close to the easily
obtained upper bound.

Theorem 3.2 [21] PARITY can be computed by circuits of size
O(n*2/ (*'1)2“1“*"13) and depth k.

The depth bound given in the corollary is tight since for every constant c, there exists
a polynomial size circuit.

Complexity of MAJORITY

MAJORITY (z;,...,x,) is 1 iff at least half of the z; are 1.

The lower bounds for PARITY are also valid for MAJORITY and are also close to
optimal. If we can compute MAJORITY we can also compute “at least ¥” and “at
most k”, for any k, in almost similar complexity. Taking AND of these two functions
we get the function “exactly k7 and finally OR of circuits computing “exactly k” for
odd k < n gives PARITY of n variables. So given a gate which computes MAJORITY
one can construct constant depth circuits of linear size which computes PARITY. Thus
one can say that MAJORITY is at least as hard as PARITY and in general as hard as
any symmetric function. Hastad[21] proved that constant depth polynomial size circuits
computing MAJORITY that contain PARITY gates need at least Q((logn)*?) PARITY
gates.

The technique used by Hastad to arrive at the above-mentioned results was the method
of probabilistic restriction which was first introduced by Sipser in [19]. This, in fact, was
preceded and motivated by an infinitary version of a result in (48] in which he suggested
a finite/infinite analogy :

Polynomial growth is to exponential growth as countability is to uncountability.

This analogy hints at a suggestive correspondence between finite complexity and defin-
ability in descriptive set theory. The class AC’ corresponds to the class of Borel sets
and the class NP corresponds to the class of analytic sets. It was proved in [48], that
there is no countable depth-d circuit computing a parity function on w many variables.
Barua|[8] showed that Sipser’s result on w-parity functions can be viewed as some sort
of Ramsey property.

12

3.1.1 Probabilistic bounded-depth circuits

A probabilistic circuit C is one in which, in addition to its standard inputs z;,...,x,,
some specially designated inputs yy,...,y,, called random inputs, are provided. These
random inputs are chosen from a uniform distribution. So the output of the circuit
C(z), is a random variable. A probabilistic circuit is said to (a, b)-accept a language if it
outputs 1 with probability at most a for strings outside this language and outputs 1 with
probability at least b for strings in the language. The circuit accepts a language with
e-error if it (€,1—¢€)- accepts and it accepts with e-advantage if it (0.5, 0.5 + €)-accepts.
Ajtai and Ben-Or[2] proved the following theorem.

Theorem 3.3 [2] Every probabilistic circuit of size s and depth d that accepts
the language with (log™* n)-advantage (for fized k) has an equivalent deterministic
circutt of size poly(n) - 8 and depth (d + 2k + 2). |

3.1.2 Circuits with MOD,, gates

Razborov[40] extended the results of bounded-depth circuits to obtain exponential lower
bound for MAJORITY function on more powerful small-depth circait model having
AND, OR and PARITY gates. Subsequently, Smolensky[51) showed that for any p and
g powers of distinct primes, the MOD,, function cannot be computed with AND, OR,
NOT, MOD, circuits of polynomial size and constant depth. The method used by them
is briefly as follows. .

The gates of circuit C are thought as operating on functions rather than on Boolean
variables. The results of each of AND and OR operators are slightly adjusted in such a
way that (1) each adjustment alters the output of C on few input settings, while (2) the
end result is a function which differs from MOD, in many input settings. Hence many
adjustments must occur, thereby giving a strong lower bound on circuit size.

3.2 Monotone circuits

A monotone circuit is a Boolean circuit with AND gates and OR gates, but with no
NOT gate and the only functions computable by monotone circuits are monotone func-
tions. Many important graph-theoretic functions like CLIQUE, Hamilton-circuit etc.,
are monotone.

The monontone circuit complexities of several single-output or multi-output symmetric
functions are well studied in the literature.

Boolean sorting : Given n Boolean variables output their values in non-decreasing
order. Ajtai, Komlos and Szemeredi[3] gave a very clever construction of monotone
circuits of size O(nlogn) for this function. This result is tight since Lamagna and

13

. Savage[31] established an {}(nlogn) lower bound for size of monotone circuits comput-
- ing Boolean sorting. It is interesting to note that Boolean sorting has general circuits
of linear size from the observation of Muller and Preparata[35].

‘Majority : This function has monotone circuits of size O(nlogn) as a consequence of
the result of Ajtai et. al{3] for Boolean sorting. Dunne[17] proved a 3.5n lower bound
on the monotone circuit complexity of MAJORITY. |

Boolean matrix multiplication : This problem takes two n by n matrices as input,
and outputs their n by n Boolean matrix product. Mehlhorn and Galil[33] indepen-

constructed circuits of size O(n23) for this function.

Boolean sum : For this class of n input, n output functions, each output is an OR of
some subset of inputs. Andreev{6] has explicitly constructed, for avery € > 0, a Boolean
sum with monotone complexity Q(n?-¢). |

The first strong lower bound in this model is due to Razborov[42] who showed that
detecting cliques of size s in a graph with m vertices requires monotone circuits of size
(Y (m*/(logm)?*) for fixed s and size mPUoEm) for & — llog (m/4)]. Shortly, after this,
Andreev(5), using methods similar to Razborov, proved an exponential lower bound for
& monotone problem in A"P. This implies an exponential lower bound for the CLIQUE
function since clique is complete (with respect to polynomial monotene projections)
for “monotene A/P”. Alon and Boppana [4] further improved the bound by showing
that for s = [3(m/logm)*?] the monotone circuit complexity of CLIQUE(m,s) is
exp(§2((m/ logm)*/?)). Strong lower bound for monotone complexity of a function does
not necessarily imply strong lower bound in general circuit model since Razborov(41]
showed that the problem of testing for a perfect matching requires super-polynomial size
monotone circuits, whereas this problem is in P. However, for some class of functions,
called slice functions introduced by Berkowitz[10], the two complexities are polyno-
mially related. A proof of this result is presented in the next section using commu-
nication complexity approach. There are some A/ P-complete slice functions. Thus,

super-polynomial lower bound on the monotone circuit complexity of an explicit slice
tunction in NP would mean P # AP. _ -

3.3 Formulas and circuit depth

A formula is a restricted circuit model in which fanout of each internal gate is one. The
size of a formula is defined by the number of occurrences of literals in jts corresponding
Boolean formula. Thus, the size is precisely one more than the number of gates in it.
The formula csmplemity of a function, Lo(f) is defined to be the size of the smallest

14

3_- formula over €. The primary motivation for studying formulas is their close relationship
- to circuit depth which is analogous to parallel time. The following facts are well-known
- {[52],{54]), both for general and monotone complexities.

Fact 3.1 s(f) < L(f).
Fact 3.2 d(f) = ©(log L()).

Though it is known that almost every function has depth n — O(logn)[47], it is still
a major challenge in circuit complexity to construct an explicit function (say in N'P)
with depth w(logn). The best known general lower bound for formula is Q(n%/ 2=} due
to Andreev[6]. |
Over DeMorgan basis, Khrapchenko[29] presented a method for obtaining size lower
bounds of formulas. We describe it here. | | -

Let A and B be two disjoint subsets of {0,1}". A Boolean formula is said to separate
A and B, if it outputs O for every input from A and outputs 1 for every input from B.
Suppose the set A ® B is defined as

A®B={(a,b):a€ Aand b € B and a ~ b},

where a ~ b means that the inputs a and b differ on exactly one bit. If A ® B is large
then it is expected that any formula separating A and B should also be large, since the
formula must distinguish many pairs of adjacent inputs.

Theorem 3.4 [29] Let F be a DeMorgan formula that separates A and B. Then

|A ® B|*

size(F) > Al B

Proof. (Paterson). The proof is by induction on the size of F. If the size of Fis 1,
then F is just a single literal. Clearly, |[A® B| < |A4| and |A ® B| < |B|. This settles the
base case.

 Suppose F'= F; A F; (the case F= F; V F; is handled similarly). Define, A; = {a € A :
Fi(a) = 0}, A; = A\ A;. Note that F; is a separator of A; and B for i = 1,2. Applying
the induction hypothesis to the subformula F, yields

|4; ® B
(1Al - 1B[)

size(F;) >

Thus,

. . | A, ® B> |A;®B]* _ (|A; ® B} + |A; ® B)?
size(F) = size(F|) + size(F}) > — + - > — .
(F) = size(F3) + size(F) 2 T mmr + T4l 181 >~ (AT + 1 Ad) 1Bl

15

where the last inequality can be established by cross-multiplication. Since |A: ® B| +
|A2 ® B| = |A® B| and |A,| + |A;| = | A|, this completes the induction step for F.

B
Khrapchenko’s theorem shows that the parity function of n variables requires DeMorgan
formulas of size 2(n?). It is easy to see that this bound is tight. The theorem also shows
that the threshold function TH} , requires DeMorgan formulas of size k- (n—k+1)).
In monotone circuit model, the first super-logarithmic depth lower bound (with re-
spect to circuit size) was proved by Karchmer and Wigderson([25] by considering the
CONN(s,t) function. It is known that there exists monotone circuit for CONN(s,t)
(connectivity function of size O(n®logn). Karchmer, proposed a new approach, called
the communication complerity approach, which is based on an equivalence between
the circuit depth of a given function, and communication complexity of a related prob-
lem. Yannakakis independently discovered this equivalence (implicit in [30]). Using this
method, Karchmer gave a tight Q(log®n) depth lower bound for CONN(s,t) function.
We now discuss the communication complexity approach as described in [23]

3.3.1 Communication complexity approach

We give first an informal description of this approach. Let £ be a language. In the
communication game for L, there are two players, one having a string in £ and the
other having a string of the same length which is not in £. In the game, the players
communicate with each other to find a position where the two strings differ. The min-
imum number of bits that they require to do this over all strings of the same length
is the complexity of the game. Karchmer{23] showed that this is exactly equal to the
minimum circuit depth necessary for L.

To be more precise : There are two players, I and II, both with unlimited computing
power, communicate through a flawless binary channel. The players follow a determin-
istic protocol, and it is required that they communicate using prefix-free codes so that
30 that at each point of time, history uniquely determines the players’ turn to send a
message, |

Consider three finite sets X, Y, Z and a (ternary) relation, R C XxYx.Z. S(R) C XxY,
called the support of R, is the set of pairs (z,y) € X x Y such that for each such pair,
3z € Z with (z,y,2) € R. If S(R) = X x Y, the relation R is said to be rectangular.
Player I is given some x and player Il is given some y, where (z,y) € S(R), so that I and
II have to agreeon a z € Z s.t., (z,y,2) € R by communicating bits among themselves.
The number of bits communicated by following a protocol D on z and y is denoted by
D(z,y), while the communication pattern or history of D is denoted by a(z, y).

Definition 3.1 Communication complexity of R, C(R) is defined as,
C(R) = minp max(; yesr) {D(z,y)}, where the min is taken over. all protocols for

R.

16

Without loss of generality, if we assume that for every history a of D, 3 an (z,y) € S(R)

s.t., a = a(z,y), then in Definition 3.1, we can maximize over the entire X x Y plane
and we can extend R to R by

R=RU{(z,y,2): (z,y) € S(R),z € Z}.

Clearly, C(R) = C(R). It is also possible to look at the above game from the point of
view of a third party. A third party can infer the answer to the game by just listening I
and 1I's conversation, even if he cannot see either = or y. This is because every history

a is associated with a cartesian product X’ x ¥, X’ € X and Y € Y and for every
(:Bay) EX’XY: ﬂ.‘(:ﬂ',y)=ﬂf- |

Restrictions and reductions

Definition 3.2 The restriction of R into I C S(R),

R|; = {(msysz) € R:(z,y) € I}.
Lemma 3.1 (28] C(R|;) < C(R)

Proof. Any protocol for R can be used as a protocol for R|;. R

Definition 3.3 Let RC X xYXxZ and RCX xY xZ. R is satd to be reducible
to B, R< R, if there exist functions ¢;: X - X', ¢y: Y- Y and vy : Z — Z such
that for every (z,y) € S(R),

1. (¢1(z), du(y)) € S(R) and

2. (¢’I($)= ¢If(y)az,) € R = (117, Y, ‘*!J(z’)) € R.

Lemma 3.2 (23] C(R) < C(R').

Proof. A protocol D for R can be constructed out of a protocol D' for R in such a

way that on (z,y), D simulates D’ on (¢;(x), d1:(y)) at first. If IV answers Z then D
answers Y(2). | | _

If R< R and R' € R, the two relations R and R’ are called equival;ent, written as,
R = R'. We now describe a general game applicable to our present context.

Let By, By C {0,1}" be such that By N B; .= 0. Consider the rectangular relation
R(B;, By) € B, x By x [n] where (z,y,1) € R(B;, By) iff x; # y;, and the game for
R(B, B) is as follows :

17

Player I gets = while player II gets y; their goal is to agree on a coordinate 1, s.t., T; # y,.
C(B,, By) denotes the minimum number of bits they have to communicate inorder for
both to agree on such a coordinate. For a Boolean function f: {0,1}* —» {0,1}, R; (or

R[f]) denotes R(f-1(1), -1(0)).
Theorem 3.5 /28] For every function f:{0,1}* — {0,1},

d(f) = C(Ry).

Proof. Follows from the following two lemmas. . »

Lemma 3.3 (23] For all functions f:{0,1}* — {0,1} and all By, B, C {0,1}" such
that By C f~1(0) and B, C (1), we have

C(B,, By) < d(f).

Proof. In words, this lemma shows how to make a protocol for R(B,, By) out of a
circuit for f. We proceed by induction on d(f). If d(f) = 0, then f is either x; or T; or
constants 0 or 1. For constants, the game is meaningless. In case, f is either z; or T;,
Vz € By and Vy € By, z; # Yi, so that i is always an answer and C(By, By) = 0.

For the induction step, we suppose that f = f; V f, (the case, fF= Fi A f, is treated
similarly), and that d(f) = max(d(f:),d(f:)) + 1. Let B = B, n £ for § =1,2.
By induction we have, C(B’, B,) < d(f;) for j = 1,2. Consider the following protocol
for By and By : Isendsa 0 if x € B,', otherwise he sends a 1; the players then follow
the best protocol in each of the subclasses. We have |

C(B;,Bp) <1+ max;_; o(C(By’, By)) < 1 + max;.2(d(f;)) = d(f).

Lemma 3.4 (28] Let By, B, C {0,1}* be such that Byn B, =0. Then 3f: {0, 1} —
{0, 1} with Bn Q f—l(O) and Bl C f_l(l) 8.1.,

d(f) < C(By, By).

Proof. The lemma shows how to define a function f, and a circuit computing it out of
a protocol R(B;, By). We proceed by induction on C(B,, By). If C(By, By) = 0 then 3
an i1 s.t., for every £ € B, and for every y € By, z; # y;. Also it is clear that for every
z',z" € B; we have z;/ = z;” and the same holds for every ¥,y € By. Without loss of
generality, z; = 1 so letting f = x;, we get B, C f71(0) and B, C F1(1).

To prove the induction step, we assume that I sends the first bit (the other case is

18

treated similarly). ~For some partition, B, = B,'UB,®> Isendsa 0 ifz ¢ B! and 1
- otherwise; the players then follow the best protocol for each of the subcases and

C(’Bl, Bg) ==] + max,-=1,2(C'(Bl", Bﬂ))

By induction, there exists fi, f; so that By? C f;71(1) and B, C £;7(0) and d(f;) <

C(By, By) for j = 1,2. We now take, f = f; V fo. By C £,-1(0) N £,71(0) = F71(0).

By = B/'UB C i (1)U f,7'(1) = f(1) and d(f) < 1 + maxju1(d(f;)) < 1+
m&xj=112(C(Blj, Bo)) = C(Bl, Bu) . |

The monotone game

For monotone circuits a modified formulation of Theorem 3.5 was presented in [23].
Consider P, @ C P([n]) be such that for every p € P and for every ¢ € Q, pN g # 0.
A rectangular relation R(F,Q) C P x Q x [n] is defined such that (p,q,i) € R(P Q) iff
t € pNq. The game for R is to find an element in p N q. The minimum number of bits
that need to be communicated is denoted as C(P, Q). For a monotone function f, R,™
~ denotes R(min(f), maz(f)). Also let R;' C f}1) x £71(0) x [n] where for = € Y1),
y € f1(0) and i € [n), (z,y,i) € R} if 2, =1 and y; = 0.

Theorem 3.6 (28] For every monotone function f, we have d.(f) = C(R;) =
C(R/™).

Proof. We first show that d,.(f) = C(R/'). In the base case.of lemma 3.3, if the

circuit is monotone, we can always find an ¢, s.t., &; = 1 while y; = 0. On the other

hand if the protocol always gives a coordinate i with the above property, lemma 3.4
gives a monotone circuit. The induction steps are identical to that of those two lemmas.

We next prove that Rfl = R;" :

i) Rf™ < Rf' : Let p € min(f) and g € maz(f). Let ¢5(p); = 1iffi € pand let ¢;;(q); =0
iff i € q. Clearly, ¢;(p) € f7'(1) and ¢;(g) € £71(0). Thus, (d:(p), ¢1:(g),i) € R/ iff
it € pN q so that we can take (i) = 1.

ii) R <R/™: Letz € (1) and y € £71(0). Let p, =i : z; = 1 and g, = {¢:y; =0}
It is easy to see that 3p C p, and q C g, such that p € min(f) and ¢ € maz(f). More-
over, it is clear that i € pNqiff ; = 1 and y; = 0. The conditions of reduction are met
by taking ¢i(x) = p, ¢n(y) = g and (i) =i. i
Inorder to demonstrate the usefulness of Theorem 3.5, Karchmer[23] gave some intuitive

and new proofs of old results, improved upper bounds of depth complexity for some
functions and proved super-logarithmic monotone depth lower bound for CONN(s,t)

19

function. We briefly state some of these results below.

By the results of Valiant[53], Boppana[12] and Ajtai et.al.[3], it is known that polynomial
size monotone functions exist for all threshold functions. This implies by Theorem 3.5
that C(R™[TH,"]) = O(logn) for every k =0,...,n.

Let f be a function and let 0 < k < n. Suppose w(z) denotes the number of 1’s in z.
The slice k of f, fi, is a function such that for z € {0,1}", fi(z) = 0 if w(z) < k:
fi(z) = f(z) if w(z) = k; and fi(z) = 1 if w(z) > k. The result of Berkowitz[10]
which states that the monotone and non-monotone depth complexities of slice functions

are very ciose to each other can be proved very easily by communication complexity
approach.

Theorem 3.7 [23] Let B;, By, C {0,1}" be such that BN By, = 0 and for every
z € By U By, w(z) = k. Let R(B,, By) be as defined previously and let R! (B1, By) be
a relation 3uch_that (:I‘;, Y, ’i) c Rl(Bl,B{;) 1ﬁ ;> Y. Then,

C(R'(B, By)) < C(R(B1, By)) + O(logn).

Proof. A protocol D' for R} B, By) can be constructed out of a protocol D for
R(B, By) in such a way that the complexity relationships mentioned in the theorem
hold. Let D', on (z,y), follow D on (z,y) until it gives an answer i. If z; > y;, then D!
terminate. Otherwise, player I thinks of x as if it had z; = 1 so that k + 1 = w(z) >

w(y) = k. The players then follow the corresponding protocol for R™[THj1"]. N
From this theorem the following corollary clearly follows.

Corollary 3.2 [10] Let f; be a slice function over {0,1}*. Then
C(Ryz) < C(R,™) < C(Ry,) + O(logn).
By constructing explicit protocols the following upper bounds were proved in [23].

Theorem 3.8 [23/ For a given bipartite graph G = (XU Y, E) with |X| = |Y] = n,
if MATCH denotes a function which is 1 iff G has a perfect matching, then

dmn(MATCH) = C(R™[MATCH]) < n + O(logn).

Theorem 3.9 (23] For a given undirected graph G = (V, E) with two distinguished

nodes 8 and t, if CONN(s,t) denotes a function which is 1 iff G has a path from
s tot, then

dn(CONN(s,t)) = C(R™[CONN(s,t)]) < log’n + logn.

The following lower bound result was also first presented using communication com-
plexity approach in {23].

20

Theore1121 3.10 (23] The function CONN(s,t) requires monotone circuits of depth
((log n)*).

Raz and Wigderson{39] used the communication game and a lower bound on the prob-
abilistic communication complexity of the set disjointness problem due to Kalyana-
sundaram and Schnitger{22], to get a linear depth lower bound for monotone circuits
computing matching on n by n bipartite graph.

3.3.2 The fusion method |

The tramework that has been developed by extending the analogy between Razborov’s
generalized approximation method and ultraproduct construction in model theory
is known as the fusion method which has been studied in different variations{56].
Razborov originally used it to characterize the classes P-nonuniform and 'L and proved
a super-linear lower bound for MAJORITY on switching and rectifying networks in
this framework. Using this approach, Karchmer[24] presented a new proof for the ex-
ponential monotone size lower bound of CLIQUE and gave a characterization of NP
through this method. Karchmer & Wigderson[26] used the method to give another char-
acterization of AP and introduced a linear algebraic model of computation, the span

programs, and proved several upper and lower bounds on it. We describe the fusion
method according to the approaches in ([24],[9]) as follows.

Background

The circuit model considered in the present section assumes the source nodes to be
labeled by literals from {z;,...,z,} U{Z7,..., %5} and the remaining modes have fanin
2 (if @ < w) or arbitrary (possibly infinite) fanin in the infinite case (& = w) and are
labeled by one of the two Boolean operations AND(A) and OR(V)'. We only consider

circuits of finite depth. A Boolean circuit C computes a function f € B, (a € w) in the
- natural way.

For a Boolean circuit C, A(C) denotes the set of A-gates of C. The number of A-gates
in C, i.e., |A(C)| is denoted by s,(C). For a function f € B,, s (f) denotes the number
of A-gates of an optimal circuit that computes f. If f is a monotone function, s ()

and s,7(f) denote the size and number of A-gates of an optimal monotone circuit for f.

A non-deterministic circuit is a circuit with sources labeled by {z1,%1,...,%a,Ta} U
{¥1,91,.-.,¥5, 5} and is said to compute a function f € B, such that, for z € {0,1}",
flz) = 1 iff there exists a setting of the non-deterministic variables {y,...,ys} that
makes the circuit output 1. For a function f, ns(f) and ns,(f) are the size and the

In the ﬁEte case, bringing the NOT(~) gates down to source level does not increase the circuit depth
and can increase the circuit size by at most a factor of two.

21

number of A-gates of an optimal non-deterministic circuit for f.

A co-non-deterministic circuit is a circuit with sources labeled by {z,,7, ..., z,, T tU
{v1,71,-..,¥5,73} and is said to compute a function f € B, such that, for z & {0, 1},
f(z) = 0 iff there exists a setting of the non-deterministic variables {y1,...,ys} that
makes the circuit output 0. For a function f, 7is(f) and 7s,(f) are the size and the
number of A-gates of an optimal co-non-deterministic circuit for f -

Suppose, f is an explicit function in N'P. We have already seen that if one could prove
super-polynomial circuit complexity of f one would get P # N'P. Similarly, if anybody
can prove a super-polynomial lower bound of co-non-deterministic circuit size comput-
ing f it would mean that A/P # co-N"P. This is because, 7is(f) = nv(l) implies f is not
in A P.

The version of the fusion method which we describe next{24], presents a framework to
lower bound the number of N-gates needed to compute f. The following lemma due to
Alon and Boppana[4] shows that the number of N-gates cannot be much smaller than

the total number of gates. Thus, if s(f) is super-polynomial then so is sa(f).
Lemma 3.5 [{] For any function f, s(f) = O(sA ().

The main idea

Consider a “hard” function f and assume that Cis a “small” circuit which allegedly
computes f. Let U C f~'(0) be a subset of choice. Thus C should reject all vectors of U.
Now, if it is possible to prove that rejecting computations for the vectors in U can be
combined (in a sense to be explained later), to get a rejecting computation for a vector
in f7'(1), it would mean that C does not compute f correctly. |

A more formal description : There are two stages in this method. In the first stage,
to each node g of C, a subset [|g|] = {u € U: g(u) = 1} is assigned.

Fact 3.3 For any g,h € B,
1. {lg AR = [lg]] [JR]).
2. [lg v Al = [lgl] U[IR]].
3. [Igll = {lgl}".

In the second stage, a filter F over P(U) is chosen and g is given the value 1 if and only
if {lg]] € F.

Definition 3.4 A filter F over P(U) is a non-trivial upward-closed collection of
subsets of U, t.e. 0 ¢ F and if A€ F and A C B then Be F.

It is to be noted that the output of C will be assigned 0 value in the second stage since
0 ¢ 7. In contrast to the usual definition of a flter over a Boolean algebra, here, the

22

requirement of closure under A is ommitted. Conventional filters are quite trivial for
finite Boolean algebras.

Definition 8.5 4 flter F is said to preserve a pair (A, B) of subsets of U of
A,B € F implies that AN B € F, Stmilarly, F preserves an A-gate, fed by

functions g and h, if it preserves the pair ([lgl], [|h]]). Preserving a collection A of
A-gates means preserving each of its members.

Definition 3.6 A filter F is above a vector v € {0,1}" if for every i = 1,...,n,
vi=1={lz;]] € F and v; = 0 = [|77]] € F.

Definition 3.7 A Jilter F is said to majorize a computation of a vector v if for
every subfunction g of C, g(v) =1 = llg]] € F.

Lemma 3.6 [24] If F is above a vector v and F preserves A then F majorizes
the computation of v.

Proof. Suppose F does not majorize the computation of v. Now let us consider the
first node of C that is not majorized computes g. Clearly, ¢ cannot be an input node
as F is above v. Again, as F preserves A, g cannot be output of an A-gate. Finally,

the upward closure property of F prevents g from being the output of an V-gate. This
yields contradiction. ||

~ Definition 3.8 For a function [, let p(f) denote the minimum size of a collection
A of pairs of subsets of f~1(0) such that there is no filter above a vector in (1)
which preserves A.

Theorem 3.11 [24],[44] For any f¢ B.., sx(f) > p(f).

Proof. Consider, on the contrary to the theorem statement, that there exists a circuit
C with fewer than p(f) A-gates which allegedly computes f. By Definition 3.8 there is a
filter 7 which preserves A and is above a vector v € f1(1). By Lemma 3.6 F majorizes
the computation of v and the circuit € must reject v. This is because, if output(f) of

Cis 1 then as F majorizes v, {|f]] € F. But [I71) is 6 and @ & F. Thus C does not
compute f correctly. N

We state the converse of this theorem below.

Theorem 3.12 [24],[44] For any f€ B,, sa(f) = O(p(H*).
So, if s5(f) is super-polynomial then so is p(f).

23

For monotone circuits

Monotone circuits do not have any source node labeled by a negated variable. So, while
proving lower bounds in monotone circuits, we need to work with only those filters
which are weakly above some vector v € f-1(1) (a filter F is weakly above a vector v
if v; = 1 = [|z;]] € F). Using this approach Karchmer[24] proved §2(n®/logtn) lower
bound for CLIQUE(n,3) and provided hints on how to generalize it to CLIQUE(n,k).

Ultrafilters and N'P

In [24], the following definition of ultrafilter has been used inorder to propose a frame-
work for proving lower bounds on co-non-deterministic circuit size.

Definition 3.9 An ultrafilter U over U is a Jilter such that for every A C U, at
least one of A or A is in U.

By this definition, any ultrafilter is above some vector.

Definition 3.10 For a Junction f € B,, py(f) denotes the minimum size of a

collection A of pairs of subsets of f~1(0) such that there is no ultrafilter above a
vector in f~1(1) which preserves A.

Wigderson and Karchmer observed the following.
Theorem 3.13 For any f € B,, nisy(f) > pu(f). Conversely. nsa(f) = Olpu(f)).

Ultrafilters and countable circuits

Karchmer extended the fusion method to a framework which can be used to show that
for some given hard function f: {0,1}* — {0,1}, there does not exist any countable

co-non-deterministic circuit computing f. This framework is based on conventional
ultrafilters.

Definition 3.11 An ultrafilter U over P(U) is an upward closed collection of sub-
sets of U which is closed under finite intersections and for every A C U, ezactly
one of A or A° is inU. An ultrafilter is called principal if it is generated by some
uy € U (i.e., the collection of all subsets of U that contains up). A non-principal
ultrafilter is one which is not principal.

The following facts are immediate from the definition.

Fact 3.4 An ultrafilter is non-principal iff it contains a finile set.

Fact 3.5 For every ultrafilter U over P(U), U € U (due to upward-closure PTop-
erty) and 0 €U (asUel).

24

It is known that if U is infinite then there exist non-principal ultrafilters over P(U). The
following definition and lemma are crucial in this proof technique.

Definition 3.12 A collection C of subsets of U has the finite intersection property
(f-i.p) tff any finite number of subsets Jrom C has a non-empty intersection.

Lemma 3.7 [9] A collection C of subsets of U can be extended to an ultrafilter
over P(U) iff C has the finite intersection property.

If U is infinite then the collection of all co-finite subsets has the f.i.p and by the lemma
can be extended to a (non-principal) ultrafilter. |

Similar to the method described using filters, here also we procced in two stages, the
only difference being in the first stage, a rejecting witness w, is fixed for each u e U
inorder to set the non-deterministic inputs so that for each sub-function g of C, [lgl]
denotes {u € U : g(u,w,) = 1}. An ultrafilter & defines a Boolean vector z € {0,1}¥
by letting z; = 1 iff [|#;|] € /. The second stage remains identical.

Any ultrafilter U, which gives consistent (to be explained next) values to the sub-
tunctions of C and which defines a vector of (1) constitutes a proof that C does not
compute f correctly. The values assigned are said to be consistent if they are not less
than the actual values. As any ultrafilter is an upward-closed collection, values assigned
to outputs of V-gates are always consistent. So, we have to worry about the consistency
of A-gates only.

An A-gate with countable fanin A;.,g; can be viewed as a countable collection of subsets
{llg]]}j<w- An ultrafilter is said to preserve the A-gate if it gives consistent values to the
sub-functions associated with its inputs and output. This happens when the ultrafilter
U contains either Nj.,[|g;]] or one of the sets [|g;|]° for some j < w. These sets constitute
a countable cover of U. The following lemma follows from this discussion.

Lemma 3.8 [9/ A countable co-non-deterministic circuit for f induces a count-
able collection of countable covers of U = f7(0), one for each gate. An ultrafilter
preserves the N-gates of C iff it contains at least one set from each cover.

Ben-David et.al.[9] gave the following characterization of co-non-deterministic circuit
size in terms of sets of covers of the zeroes of a function.

Theorem 3.14 [9] For every function f€ B,, the Jollowing conditions are equiv-
alent :

1. For any countable collection of countable covers of U = f-1(0), there exists

some z € f~'(1) and a collection of subsets one from each cover, which, together
with the sets {{u e U: u; = 2;} : i € w} have the f.i.p.

2. There exists no countable co-non-deterministic circust for f.

29

The technique discussed above also works if U is taken as some subset of f-1(0).
Using the characterization mentioned above, Karchmer proved the following theorem.

Lower bound for clique : Let G denote the class of all countable undirected graphs.
Let us consider these graphs to be encoded as a set set of variables {z;; : 1,7 € N}

where z;; = 1 iff the graph has the edge {i, 7} Let the function CLIQUE, € B, be
defined as : CLIQUE,(x) = 1 iff 3 an infinite S C A so that Vi,j€S, z;;=1.

Theorem 3.15 [9] There is no countable co-non-deterministic ecircuit for
CLIQUE,. |

In (9] a finite analogue of this method was also proposed to obtain a characterization
of co-N'P. It was shown that this characterization yields an alternative proof of NP-
completeness of CLIQUE function. In another paper[26], Karchmer and Wigderson
proposed a linear algebraic variant to the general approximation method of Razborov
and derived four different combinatorial problems that characterize non-uniform NP.
All these variations of the fusion method present frameworks for studying the P vs.

NP vs. co-N'P question.

26

Chapter 4

Some lower and upper bound
results

4.1 Using the gate elimination approach

4.1.1 ‘Threshold function

Let us recall that THy, represents a function which outputs 1 if and only if at least &
out of n input variables are 1. We show here that Theorem 2.7 of Chapter 2 can be
slightly improved using the following fact.

Lemma_ 4.1 CBQ(THQ’Q) = 1 and CB.J(TH"},;;) = 4,

Proof. Cpg,(THy2) = 1, because the smallest circuit that realizes THjo(z), x,) is
(1171 A :'L'g). |
To prove Cp,, = 4 we first observe that TH;3 can be realized by a circuit consisting

of 4 B, gates as
TH2,3($1, L3, ‘.’33) = (271 A\ 3}‘2) V ((‘.'Bl V .’112) N 3:3).
This shows that
Cp,(THz3) < 4 (a)

We now prove that Cp, (TH, ;) > 4.

Let us consider an optimal circuit C that realizes T'H;3 and suppose input variables z;
and z; (i # 7) act as inputs to a bottom level gate g of C. One of these two variables (say
z;) must have outdegree two or more since under the four possible settings of «; and «;

to constants, TH,3 has three subfunctions namely TH,, and the constant functions 0
and 1.

27

Claim 4.1 If size of C is less than 4 then z; has outdegree 2 and each of the other
two variables has outdegree 1.

Proof. We know that z; has outdegree at least 2. So the number of input lines (i.e.,
the total outdegree of 3 variables) is at least 4. So C must have at least 3 gates. Also,
for a 3-gate circuit

total fanin > (the number of input lines + the number of gates — 1). So the number
input lines < (6 —3+ 1) = 4. Thus the claim. N

So if size of Cis 3 then its topology must fall in one of the three categories shown above
(fig. 1-3).

Claim 4.2 No Boolean circuit over B, with 3 gates can realize TH, ;.

Proof. As we are concerned with optimal circuits, g1, g2 and g3 can be taken to repre-
sent non-degenerate 2-input functions. We deal with three topologies separately.

Case 1 : We consider circuit topology of fig.1. The gate g; must be of type @ or =.
Otherwise by choosing appropriate constant for z; we can force the output to some
constant irrespective of the values on z; and z;. Similarly, g;(gs) can not be of type
(z® Az®)¢ since otherwise by choosing an appropriate constant for xx(x;), we can make C
independent of ;. So we are left with the possibility where each of the gates represents
functionality @ or =. This type of circuit can not realize TH, ;.

Case 2 : We consider circuit topology of fig.2. Let us try to fit correct functionality
into this structure as follows. We assume that when z; = 1, x; = Oandz; = 1 then g,
and g3 output ¢; and c; respectively where ¢, c3 € {0,1}. In this case g, outputs 1.

28

| s [a_:j mm . Comments ' |

110{0|0 (e Output of g; must change

0] 0 Output of g; must change

010 Follows from previous rows

0 (1 Since only for this combination of values of |
l g2 and g3, the circuit ouputs 1

011 Follows from the previous row

1|1

11

Now we observe that entries of 6th and 8th rows of the above table are contradic-
tory to each other as in both cases input combination to g; is identical but outputs of
g3 are different. So this topology is not possible.

Case 3 : We consider the topology of fig.3. Here ¢; can not be of type (z° A yb)° since
otherwise by choosing appropriate constant for x; we can force the circuit output to a
constant. Also g, can not be of type @ or =. This is because when z; =1 and z; = 1
are assigned the circuit output can be made 0 by choosing an appropriate constant for
Zr. So C can not be of this topology. This proves that

Cg,(TH,3) > 4 (b)

Combining (a) and (b) we get
Cp,(THys) = 4. .
| i

Theorem 4.1 For n > 3, THQ,,;- requires circuits of size at least (2n — 2).

Proof. We prove it by induction.

The basis case fo n = 3 follows directly from Fact 4.1. The induction step is identical |
to that of Theorem 2.7 of Chapter 2. |

4.1.2 MNy; class of symmetric functions

In this section we derive a lower bound for the class of symmetric Boolean functions
considered by Zwick[58] for which he obtained a 47 — O(1) lower bound over U, basis.
The bases considered by us are {A, =} and {Vv, -} and the variation of gate elimination
method used here is similar to that in [58].

29

Definition 4.1 If 8 is a circuit and A is a gate n § thew dg(A) denotes outdegree
of A tn B, resg(A) denotes the function computed at A and di(8) denotes number
of variables whose outdegree in 8 is exactly 1 and which are either feeding to
two-input gates or to —-gates having single fanout.

It is to be noted that the meaning of d;(8) in our case is slightly different from that in
[58].

Simplification steps : A simplification step in a circuit(8) is one of the following.

1. If an internal A-gate A of 8 is fed by constant 0 at one of jts inputs then this gate is
removed from (3 and the gates originally fed by A are now directly fed by O.

2. If an internal A-gate A of 3 is fed by constant 1 at one of jts inputs then this gate
1s removed from 3 and the gates originally fed by A are now directly fed by the other
input of A.

3. If an internal —-gate of A is fed by constant(c € {0,1}) at one of its inputs then this
gate 1s removed from S and the gates originally fed by this —-gate are now directly fed
by constant €.

4. 1 a gate G is fed by a —-gate A, which in turn is fed by another —-gate B, then A is
removed from B and G is fed directly by the input of B.

0. If an internal A-gate A is fed by the same function at both the inputs, then this gate
is removed from @ and the gates originally fed by its fanout are fed by one input of A.
6. Any internal gate which is not feeding any other gate of 3 is removed.

7. 1f the inputs to an internal A-gate A of 3 represent the functions f and fA g, then
A is removed and the gates originally fed by it are now fed by the line carrying fA g
function.

8. If the inputs to an internal A-gate A of 8 represent the functions f and fV g, then A
is removed and the gates originally fed by it are now fed by the line earrying f function.
J. It the inputs to an internal A-gate A of 8 represent the functions f and f A g, then
A is removed and the gates originally fed by it are now fed by 0.

10. If the input of a —-gate A of 3 feeds to another —-gate B, then A is removed and
the gates fed by its output are now fed by the output of B.

After a simplification step the changed circuit % contains at least one less number
of gates, di(y) > di(8) — 1, and it continues to compute the same function. We call a
circuit stmplified when no further simplication step can be applied on it.

We work with the same class of functions as was defined in [58].

Deﬁnitioﬁ 4.2 The sets S(n), Mi(n), Ni(n), MN(n) are de_ﬁ'néd as follows :
(1) f € S(n) if and only if f(z,,... , %) depends only on 3.%, x;. Functions be-
longing to S(n) are called symmetric functions. If f ¢ S(n) and f(x,,...,z,) = v,

30

where k = 37, x;, we associate with f the binary word v(f) = vyv;---v,. The word
v(f) is called the value vector of f.

(2) f € My(n) if and only if f € S(n) and every restriction of f to a subset of k
variables is not constant. It is easy to see that f € Mi(n) if and only if u(f) does not
have a constant subword (i.e., 000-.- or 111.-..) of length k + 1.

(3) f € Ni(n) if and only if f € S(n) and every restriction of f to a subset
{y1,..-,yn} of f's variables is not linear, i.e., not y; & --- @ y; or its complement. It is
easy to see that f € Ni(n) if and only if ¥(f) does not have an alternating subword (i.e.,
0101--. or 1010---) of length I + 1.

(4) MN(n) = Mi(n) N Ni(n). In other words, f € MN.,(n) if and only if v(f)
does not have a constant subword of length k + 1 or an alternating subword of length
!+ 1.

The sets MNi,(n) for n > k > 1 and MNy(n) for n 2> | > 1 are empty. The
first non-empty set of these classes of functions is MN;,(n). We will consider k,1 > 2.
Clearly, if f € MN;(n) for some n > k,l then every restriction of f obtained by fixing
the value of one variable belongs to MNg;(n — 1). Also, for n > £+ 1,1 and a function
f € MN;;(n}, by fixing the values of any two variables we cannot restrict the function
to a constant since the length of the value vector of the induced function can be at least
k + 1. For the same reason it is not possible by fixing the values of any two variables to
make the induced function independent of some other variable.

Lemma 4.2 Let 8 be a circuit over the complete basis {A,—} that computes a
function f € MNyi(n) for n > k+1,1. There exists a circuit é which computes a
Junction f' € MNii(n — 1) and satisfies [C(6) — d1(8)] < [C(B) — d:(B)] — 6.

Proof. From 3 we first obtain a simplified circuit{?y), if & were not already simplified.
After simplification, [C(y) —d1(7)] € [C(F) ~ d1(3)], because we have noted that at each
simplification step the circuit size decreases by 1 and d; can decrease by at most 1.
We prove the lemma by considering the following cases.
Case 1. For some variable z, d,(z) > 3.
Suppose three such gates be A, B and C. Clearly, none of them can be the output gate,
since otherwise by fixing an appropriate constant for z (0 if the gate is A-type and 0
or 1 if it is —-type) the circuit output can be forced. These gates cannot feed among
themselves since 4 is simplified. So, these gates must feed to some other gates.

Case 1.1. Each of A, B and C feeds distinct gates (fig. 4.1).
Among A, B and C at most one can be a —-gate (suppose it is C). So A and B are
N-gates. We assign 0 to z. So A, B, D, E and C can be deleted since they output
constants. F can also be deleted and its other input is directly connected to the fanout
lines. Note that if d,(2) = 1, then 2 cannot feed A, B, C, D, E or Fin 4. Otherwise,

31

0 © ¢
& ® ©

Fig 4.1

by choosing the right value for £ we can make the output of ~ independent of z and
this is a contradiction as n > k+ 1. Thus, we get C(6) = C(v) — 6 and d,(8) > di(#) as
required. If each of A, B and C is of type A, we can prove in a similar fashion.
Case 1.2. A and B feed the same gate D (fig. 4.2).

Clearly, D cannot be the output gate since in that case by fixing a 0 at z, <y can be
forced. Thus D must feed another gate (F). Assume that F and F are distinct. So by
fixing 0 value at x all 6 gates can be eliminated. Now consider that £ and F are same.
C cannot be — since 4 is already simplified. So C is an A-gate and thus F must feed
some other gate. So, here also by putting x = 0, 6 gates are eliminated. Also, d; cannot
decrease (for similar reason as described previously). Thus the lemma holds in this case.

Case 2. For any variable =, d,(z) € 2 and farthest gate from the output is an A-
gate fed by variables x and y.

The outdegrees of = and y must 2 (since if it were less we could have assigned a value

to one of them and make the output independent of the other and if it is more it will
fall under Case 1).

Case 2.1. At least one among x and y (say z) feeds to a ~-gate having multiple fanout
(fig. 4.3).

32

Since 7 is simplified £ and F must be A-gates and none of them can be the same gate as
D. We put z = 0 to delete A, B, D, F and F. If for some variable 2, d.(z) = 1, z cannot
feed D, E or F. Also ds(y) = 1. Therefore, C(8) < C(4) — 5 and d;(6) > di(v) + 1, as
required.

Case 2.2. d,(B) > 2 (fig. 4.4).
This case is similar to Case 2.1.

Case 2.3. B feeds a ~-gate (F) (fig. 4.5).
F must be of type A since # is simplified. Assume first that F'is chﬂ'erent from A or D.
In this case the lemma holds by putting « = 0 since if for some variable z, d,(z) =1 it

cannot feed ¥. If F'is same as either A or D, we put y = 0 and the lemmma holds in that
case.

Case 2.4. B feeds an A-gate (E) (fig. 4.6).

A or D cannot be E or F as « is simplified. So by putting £ = 0 the lemma holds in
this case.

Case 3. The farthest gate from the output is a =-gate B fed by variable z.
If d,(B) = 3, we can handle in the same manner as Case 1. So we now consider the
case where d.(B) < 2. Since B is farthest from the output, the gate fed by it (say E),

33

34

which must be of type A, is fed either directly by an input node y having fanout 2 or
by a —-gate that is fed by another variable y (if it is an A-gate we have already handled
it in Case 2.).

Case 3.1. Eis fed by a variable y and outdegree of z is 2 (fig. 4.7).
If number of fanouts of B is 2 or more, we can put z = 1 and can easily show that the
lemma holds. By putting y = 0, 5 gates can be eliminated (B, G, F, Hand B). If G
and H is the same gate the gate fed by it can be eliminated. Also, ds(z) = 1. Thus
increase in the count of d; is at least 1. So, the lemma holds in this case.

Case 3.2. Outdegree of = is 1 and E is fed by a variable y. (fig. 4.8).
B must have multiple fanout otherwise y can force the circuit to become independent
of z which is not possible. This case can be handled in a similar fasion as Case 2, by
considering B as a variable taking complementary values to that of z.

Case 3.3. E is fed by another —-gate which in turn is fed by a variable y (fig. 4.9,
4.10, 4.1, 4.12).
Clearly in the first 3 cases (fig. 4.9, 4.10, 4.11) the lemma can be shown to hold by
setting y = 1. For the remaining case, we can handle in an analogous fashion as Case 2.
So in each of the subcases we obtained a circuit that satisfes the conditions required
by the lemma and thus the proof is complete. i

39

Similar result can also be proved over the complete basis {Vv, -}.

Lemma 4.3 Let § be a circuit over the complete basis {V,-} that computes a

Junction f € MN,i(n) for n > k+ 1,1. There exists a circuit § which computes a
function f' € MNg(n — 1) and satisfies [C(6) — d,(6)] < [C(B) — d;(B)] — 6.

The following lemma is similar to a result in [58].

Lemma 4.4 (58] If f € My(n) and B is a simplified circuit computing f, then
di(B) < k. ' |

Proof. Suppese on the contrary that dg(z;) = ... = ds(zx) = 1. If x; feeds an A-gate
denote it by A;, otherwise if it is a ~-gate denote the unique gate fed by this gate by
A; (it must be of type A since 8 is simplified) for i < k. Since 8 is a simplified circuit
the second input of A; is not a constant. Denote by V;, the set of variables on which
this second input depends. Since by assigning appropriate values to the variables of
V; we can block z; and thus obtain a constant restriction, we immediately get that
|Vi] > n — k+ 1. Thus each V; contains at least one variable from the set {z1,..., 2z}
Denote one such variable by z,,). For each 1 < i < k there exists a directed path in 8

from z.y) to A; and therefore also from Ari) to A;. But this is a contradiction since it
implies a directed circuit in 3. |

36

Theorem 4.2 If f € MN(n), then C(f) > 6(n~m) + (m — k) over the basis {n,—}
as well as {v,~}, where m = max{k+ 1,1} is fized.

Proof. We prove by induction on n that if 8 is a circuit which tomputes f € MNg(n)
thea [C(8) ~d1(B)] = 6(n — m) + (m ~ k).

The basis for; n = m is settled by the fact that C(8) > m — 1, di(8) < k (by Lemma
4.4).

The induction step follows immediately from Lemma 4.2. | |

4.2 Using the communication complexity approach

4.2.1 Graph connectedness function

In this section we present a simple upper bound of monotone depth complexity of a
monotone function using the framework of communication complexity:.

Problem 4.1 GRAPHCON : Given the adjacency matriz af an undirected graph
G = (V E), with n vertices, test whether G is connected or not (a graph is said to
be connected if between every pair of vertices there exsits a path).

Theorem 4.3 d..(GRAPHCON) = C(R™[GRAPHCON)]) < ([logn])* + 2 - [logn].

Proof. We present a protocol for R"[GRAPHCON). Clearly, minterms correspond to
spanning trees and maxterms correspond to V; x V; for some partition of Vinto two non-
empty sets Vi and V;. Assume, at the beginning of the game, both the players choose
a fixed vertex s. Player-II now identifies in which partition (V] or V3), s lies (suppose
it is V1) and sends the identification of any vertex ¢ from the other partition (here V)
to player-I. Since there are n nodes in the graph, this communication requires [logn]
bits. After this, we follow the protocol presented in [23] for st-connectivity function.
Player-1I now considers the maxterm as an (s,t)-cut and assumes a coloring q : V —
{0,1} where q(v) = 0iff v € V;, while player-I identifies the (s, t)-path from the minterm.
An edge in the intersection between the (s,t)-path and the (s, t)-cut is just a bichromatic
edge. When the two players agree upon this bichromatic edge the game stops.

The players now perform a binary search for this edge along the (8, t)-path. The
protocol consists of [logn] stages. Player-I sends the identification of the middle vertex
v in the current portion p of the (s,t)-path using [logn] bits. Player-II responds with
the color of v. The current path for the next stage is the portion of p where a bichromatic
edge is ensured to exist. When the path is a single edge the protocol terminates. N

37

4.3 A combinatorial lemma

Alon and Boppana|4] showed that the number of AND gates and OR gates in a mono-
tone circuit can always be somewhat balanced without increasing the complexity of the

circuit. In this section we show that a similar result can be proved for circuits over some
complete basts.

Lemma 4.5 Let f be a function of n Boolean variables and suppose there exists a
circuit with snput literals from {x,, T, ..., 2,, %} and gates from {A,V} computing
f and contains k A-gates (V-gates). Then there exists a circuit computing f
contatning k A-gates (V-gates) and at most (k+1)(2n—2) + (**1C;) +k—n V-gates
(A-gates).

Proof. We consider a straight-line program for computing f and suppose fi,..., fi be
the k-outputs of the k A-gates (V-gates), in the order of computation. We first prove,
by induction on i, that there is a circuit that computes fy,..., f; containing i A-gates
(V-gates) and at most i(2n —2) + (*C;) + (1 — 1) V-gates (A-gates). For i =1, f, is and
AND (OR) aof two operands, each of which is dither a constant or an OR (AND) of a
subset of {z1,%7,...,%x,Zn}. These two operands can be computed by at most (2n — 2)
V-gates (A-gates). So the basis case is settled.

In the induction step, the function f; is an AND (OR) of two operands, each of which
is either a constant or an OR (AND) of a subset of {z,%7,...,2., T U {f1,..., fi-1}.
These two operands can be computed with at most 2n + i — 2 V-gates (A-gates). and
since (i —1)(n —2) + ('C)+ (i —2)+ (2n+i—2) =i(2n—2) + (*C,) + (i — 1), the
induction step is proved.

So f1,.-., fr can be computed with a monotone circuit containing k A-gates (V-gates)
and at most k(2n — 2) + (*C;) + (k — 1) Vv-gates (A-gates). The function f is either a
constant or an OR (AND) of a subset of {z,%7,...,%,, T} U{f1,..., fi} which can be
computed by at most n+k—1 additional V-gates (A-gates). Hence the result follows. B

It is to be noted that similar results can be proved over the bases {A,~} and

{V, —:}_

38

Chapter 5

Conclusion

We have presented a brief survey on circuit complexity and some of our results related
to this area. In the survey, we have focussed on the different approaches for proving
size and depth lower bounds. The approaches described are mainly of two types: Top-
down and Bottom-up. In the Top-down approach progress of computation is measured
from the output down to the inputs, while in the Bottom-up approach it is viewed in
the reverse fashion. The gate elimination method, the approximation method and the
method of random restrictions are of Bottom-up type. An example of Top-down method
is the communication compléxity approach. The fusion method, which borrows ideas
from the model theory, is an exception and views the computation in a more global way.
We have not described the works in the following areas of circuit complexity : Rela-
tivization and complexity hierarchy, Parallel random access computation, Synchronous,
planar and probabilistic circyit model, Arithmetic circuits, Branching program model
etc. The book by Wegener[55] may be referred for getting acquainted in these topics.

39

Bibliography

[1] M. Ajtai, Xl-formulae on finite structures, Ann. Pure Appl. Logic 24 (1983) 1-48.

(2] M. Ajtai and M. Ben-Or, A theorem on probabilistic constant depth circuits, in:
Proc. 16th Ann. ACM Symp. on Theory of Computing (1984) 471-474.

[3] M. Ajtai, J. Komlés and E. Szemerédi, An O(nlogn) sorting network, in: Proc.
15th Ann. ACM Symp. on Theory of Computing (1983) 1-9; revised version in
Combinatorica 3(1) (1983) 1-19,

[4] N. Alon and R.B. Boppana, The monotone circuit complexity of Boolean functions,
Combinatorica 7(1) (1987) 1-22.

[5] A.E. Andreev, On a method for obtaining lower bounds for the complexity of
individual monotone functions, Dokl. Acad. Nauk SSSR 282 (5) (1985) 1033-1037
(in Russian); English translation in: Soviet Math. Dokl. 31(3) (1985) 530-534.

6] A.E. Andreev, On a family of Boolean matrices, em Vestnik Moskov. Univ. Mat.
41(2) (1986) 97-100 (in Russian); English translation in: Moscow Univ. Math.
Bull. 41(2) (1986) 79-82.

[7] A.E. Andreev, On a method for obtaining more than quadratic efective lower
bounds for the complexity of m-schemes, Vestnik Moscov. Univ. Mat. 42(1) (1987)
70-73 (in Russian); English translation in: Moscow. Univ. Math. Bull. 42(1)
(1987) 63-66. -

8] R. Barua, Restrictions of Boolean functions and Ramsey property, Proc. of 1st

National Seminar on Theoretical Computer Science (ed. P.S. Thiagarajan)
(1991).

[9] S. Ben-David, M. Karchmer and E. Kushilevitz, On ultrafilters and NP, in: Proc.
of the 9th. Ann. Symp. on Structure in Complerity Theory, (1994) 97-105.

[10] S.J. Berkowitz, On some relationships between monotone and non-monotone circuit
complexity, Tech. Report, Comput. Sci. Dept., Univ. of Toronto, (1982).

4()

[11] N. Blum, A Boolean function requiring 3n network size, Theoret. Comput. Sci.
28 (1984) 337-345.

[12] R.B. Boppana, Amplification of probabilistic Boolean formulas, in: S. Micali, ed.,

Advances in Computer Research, Vol. 5:Randomness and Computation, JAI
Press, Greenwich, CT.

[13] R.B. Boppana and M. Sipser, The Complexity of finite functions, in: The Hand-

book of Theoretical Computer Science, (J. van Leeuwen, ed.), Elsevier Science
Publishers B.V., (1990) 759-804.

[14] A.K. Chandra, L.J. Stockmeyer and U. Vishkin, A complexity theory for un-

bounded fan-in parallelism, in: Proc. 29rd Ann. IEEE Symp. on Found. of
Comp. Sci, (1982) 1-12.

[15] S.A. Cook, The complexity of theorem proving procedures, Proc. of the 3rd. Ann.
ACM Symp. on Theory of Computing (1971) 151-158.

116] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progres-
sions, in: Proc. 19th Ann. ACM Symp. on Theory of Computing (1987} 1-6.

[17] P.E. Dunne, Lower bounds on the monotone network complexity of threshold func-
tions, in: Proc. 22nd Ann. Allerton Conf. on Communication, Control and
Computing (1984) 911-920.

18] J. Edmonds, Paths, trees and flowers, Canad. J. Math. 17 (1965) 449-467.

19] M. Furst, J. Saxe and M. Sipser, Parity, circuits and the polynomial time hierarchy,
Math. Systems Thoery 17 (1984) 13-27.

20] J. Hartmanis and R.E Stearns, On the computational complexity of algorithms,
Trans. Amer. Math. Soc. 117 (1965) 285-306.

[21] J. Hastad, Computational limitations of small-depth circuits, ACM Doctoral Dis-

sertation award winner, originally presented as author’s Ph.D thesis, MIT
(1986), The MIT Press, Cambridge, Massachusetts.

[22] B. Kalyanasundaram and G. Schnitger, The probabilistic communication complex-
ity of set intersection, in: Proc. of the 2nd. Ann. Conf. on Structure in Com-
plexity Theory, (1987) 41-49.

123] M. Karchmer, Communication complexity : A new approach to circuit depth, ACM
Distinguished Doctoral Dissertation award winner, originally presented as

author’s Ph.D thesis, Hebrew University (1988), The MIT Press, Cambridge,
Massachusetts.

41

[24] M. Karghmer, On proving lower bounds for circuit size, in: Proc. of the 8th Ann.
Symp. on Structure in Complexity Theory, (1993) 112-118.

[25] M. Kar¢hmer and A. Wigderson, Monotone circuits for connectivity require super-
logaritlihic depth, in: Proc. of the 20th Ann. ACM Symp. on Theory of Com-
puting, (1988) 539-550.

[26] M. Kar¢hmer and A. Wigderson, Characterizing non-deterministic circuit size, in:
Proc. af 25th Ann. ACM Symp. on Theory of Computing, (1993) 532-539.

[27] M. Karchmer and A. Wigderson, On span programs, in: Proc. of the 8th Ann.
Symp. on Structure in Complezity Theory, (1993).

(28] R.M. Karp and R. Lipton, Turing machines that take advice, Enseign. Math. 28
(1982) 191-209.

[29] V.M. Khrapchenko, A method for determining lower bounds for the complexity of
II-schemes, Mat. Zametki 10(1) (1971) 83-92 (in Russian); English translation in:
Math. Notes 10(1) (1971) 474-479.

[30] M. Klai'e, W.J. Paul, N. Pippenger, M. Yannakakis, On monotone formulae with
restrictad depth, Proc. of the 16th Ann. ACM Symp. on Theory of Computing
(1984) 480-487.

[31] E.A. Lamagna and J.E. Savage, Combinational complexity of some monotone func-
tions, in: Proc. 15th Ann. IEEE. Symp. on Switching and Automata Theory
(1974) 140-144.

(32] Lupanov, A method of circuit synthesis, lzv. VUZ Radiofiz, 1 (1958) 120-140.

[33] K. Mehlhorn and Z. Galil, Monotone switching circuits and Boolean matrix prod-
uct, Computing 16 (1976) 99-111.

[34] D.E. Muller, Complexity in electronic switching circuits, IRE Trans. Electronic
Computers 5 (1956) 15-19.

[35] D.E. Muller and F.P. Preparata, Bounds to complexities of networks for sorting
and switching, J. Assoc. Comput. Mach. 22(2) (1975) 195-201.

[36] W.J. Paul, A 2.5n lower bound on the combinational complexity of Boolean func-
tions, SIAM J. Comput. 6(3) (1977) 427-443.

(37} N. Pippenger and M.J. Fischer, Relations among complexity measures, J. Assoc.
Comput. Mach. 26 (1979) 361-381.

42

[38] J. Radhakrishnan and S. Saluja, Interactive Proof Systems (Lecture Notes), Tech-
~ nical Report No. TCS-95/4, TCS Group, TIFR Bombay, (February 1995).

[39] R. Raz and A. Wigderson, Monotone circuits for matching require linear depth, in:
Proc. 2Bnd. Ann. ACM Symp. on Theory of Computing (1990).

[40] A.A. Razborov, Lower bounds on the size of bounded depth networks over a com-
Plete basis with logical addition, Mat. Zametki 41(4) (1987) 598-607 (in Russian);
English translation in: Math. Notes 41(4) (1987) 333-338.

[41] A.A. Ragborov, A lower bound on the monotone network complexity of the logical

parmanent, Mat. Zametki 37(6) (1985) 887-900 (in Russian); English translation
in: Math. Notes 37(6) (1985) 485-493.

(42] A.A. Ragborov, Lower bounds for the monotone complexity of some Boolean func-
tions, Dpkl. Ak. Nauk. SSR, 281 (1985) 798-801 (in Russjan); English translation
in: Sov. Math. Dokl. 31 (1985), 354-357.

[43] A.A. Raonrov, Lower bounds on the size of switching-and-rectifying networks for
symmetric Boolean functions, Math. Notes of the Academy of Sciences of the
USSR, 48(6) (1990) 79-91. |

[44] A.A. Razborov, On the method of approximations, in: Proe. of 21st Ann. ACM
Symp. on Theory of Computing, (1989), 167-176.

[45] N.P. Redkin, Proof of minimality of circuits consisting of functional elements, Sys.
Th. Res., 23 (1973) 85-103.

[46] J.E. Savage, Computational work and time on finite machines, J. Assoc. Comput.
Mach., 19(4) (1972) 660-674.

[47] C.E. Shannon, The synthesis of two terminal switching circuits, Bell Systems
Tech. J. 28(1) (1949) 59-98.

[48] M. Sipser, On polynomial vs. exponential growth, Unpublished manuscript, 1981.

[49] M. Sipser, A topological view of some problems in complexity theory, Collogquia
Mathematica Societatis Jinos Bolyai 44 (1984) 387-391.

[50] M. Sipser, The history and status of the P versus NP question, in: Proc. of the
24th Ann. ACM Symp. on Theory of Computing (1992) 603-618.

[51] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit

complexiity, in: Proc. 19th Ann. ACM Symp. on Theory of Computing (1987)
77-82.

43

[52] P.M. Spira, On time-hardware complexity tradeoffs for Boolean functions, in: Proe,

4th Hawaii Symp. on Systems Sciences (Western Periodicals Company, North
Hollywood, 1971) 525-527.

(53] L.G. Valiant, Short monotone formulae for the majority function, J. of Algorithms,
5 (1984) 363-366.

[64] 1. Wegener, Relating monotone formula size and monotone depth of Boolean func-
tions, Inform. Process. Lett., 16 (1983) 41-42.

[65] 1. Wegener, The Cémplezity of Boolean Functions, Wiley-Teubner series in Com-
puter Sdience (Teubner, Stuttgart/Wiley, Chichester, 1987).

[56] A. Wigderson, The fusion method for lower bounds in circuit complexity, Com-

binatorics, Paul Erdos ts Fighty, (Vol 1), Miklés, Sés and Szényi (eds.), Bolyai
Math. Soc. (1993), 453-468.

[57] A.C. Yao, Separating the polynomial-time hierarchy by oracles, in: Proc. 26th
Ann. IEEE Symp. on Foundations of Computer Science (1985) 1-10.

[58] U. Zwick, A 4n lower bound on the combinatorial complexity of certain symmetric

Boolean; functlons over the basis of unary dyadic Boolean func:tmns SIAM J. on
Computing, 20(3) (1991) 499-505.

44

