M. Tech. (Computer Science) Dissertation Series

DEVELOPMENT OF
A SOFTWARE

FOR
TWO DIMENSIONAL PARAMETRIC-SHAPE
GENERATION AND
MANIPULATION

a dissertation submitted in partial fulfiliment of the
requirements for the M. Tech. (computer Science)
degree of the Indian Statistical Institute

By

Banikumar Maiti

Under the supervision of

Dr. Probal Sengupta

ACKNOWLEDGEMENTS

I would like to acknowledge Dr. Probal Sengupta (System Analyst, Computer
Vision & Pattern Recognition Unit) Jor providing me invaluable support throughout this

project. During the course of this project he has always given me helpful suggestions
whenever I was in trouble.

I would also like to thank Mr. K. Rajesh Babu , my classmate, for his numerous

valuable suggestions regarding Object-Oriented Design. Finally, 1 would like to thank all

my classmates for their moral support throughout this project.

Banikumar Maiti

Certificate Of s4pproval

This is to certify that the dissertation work entitled "Development of a Software

Jor Two-dimensional Parametric Shape Generation and Manipulation” , submitted by

Banikumar Muaiti, in partial fulfillment of the requirements for M. Tech in Computer

Science degree of the Indian Statistical Institute is an acceptable work for the award of

the degree.
Date : 3'/ '}/ 1§
/ '
| _.]'Wa. c(;. A s 6 A
(Stw{m-/) (External ami:fﬁ)/

Contents

Sl. No - Topic Page No
1. Abstract S
2. Introduction | 7
3. Model Description 9
4. Method Used 10
J. A Better Design 14
6. Algorithms 17
7. Evaluation Of The Method 19
8. Discussion 20
9. Scope Of Further Improvement 21

10. References 21

ABSTRACT

The aim of this project is to develop a Software (named as

‘DrawContour”) for easy generation and manipulation of 2-dimensional
"Shapes”. This manipulatian
camplex shapes fraom metal -sheets, before they are actually done The
beauty of the software is that it can store the whole shape in a

of Shapes is a simulation of cutting out

archive of very small Space, compared to bitmap storing. It can also
export the data of the shape (however camplex it might be) in a

convenient text format. The Software is also supposed to parse a
"Shape” presented to it,

in a specific text format, and can draw the
"Shape” accordingly.

:

N EeH
i

Pt

5 p]
s

...x.:
Ee R iy k)
AL AT
Ry
A e A
N ..ﬂ...n.n..
P

et e
SRS,
L, v e
{.....r..#v

s
A ST
Tl

HE P o:...........u....
ot S e
R R e ST

B iy L A L bl PR L - 0
R R e e R

R e
e

e R s e
..
o H 5

Hh
st

..,....f i
PERER R e

] o

: e St
P e s S e e il b Tl

e S s

.... ar}s }_..,.ﬂ.s . .

naananesa e
L

FEY Skl R e e

T,

.;ﬁ%&%ﬁ%
-
ﬁffwﬁgﬁ%ﬁﬁ;

o

+
. +_._........H...
. i b i ;
L e e : :) S
HEREE e aaﬁﬁwm S a?ﬁpf&% :
H . A TH L
A e e

..E....}.,.
ﬁ: .?ﬁ.ffs;i.-{,ﬁa
o SN o o 5 3 ; - e et .. Lo I CN P b
e S emea A i

FHi bt S
R
AT

e
e
o A
o

fud
S
:

o o

T

SRS

e
b r e
S
T R i
A
LA f S EEredy
R

s.
prE
A
et

TR, e
i

T,

......:.
. 0 EHLY .r....
R
o L I A
I
L ey
S

"

-

= -] o
..u.....nﬂ..ru.h....ﬁmn

a
T

- angles. Vertices those are encircled are fixed or non-movable vertices. The
edges which are arcs, have got their own centers, radii and arc-lengths.

- Besides, an arc-edge may also be of fixed length. We will say that, e.g.,
edge 5-1 makes a fixed angle with previous edge 4-5, in contour B, in
vector sense; i.e. the concerned fixed angle is measured from ray 4-5
towards ray 5-1. The vertices are subjéct to movements, as clicked-n-
dragged by the user, ofcourse obeying all the interrelationships provided

by him/her.

Vertex no. | in each of the contours, is called the Origin of the
corresponding contour. These are assumed to be fixed vertices. This
special vertex is the starting point in course of drawing a particular
contour.

There 1s also a concept of another particular type of vertex, called
Joint Vertex. These are the vertices formed dynamically if need arises to
break-up a fixed vertex, to maintain the sanity of the figure. Each such
vertex has two component-vertices, one fixed and another movable. The
link between these two components behave like a rubber-band, and in some -
way measures the deviation of the current configuration from the actual

~one. In the above figure, in contour A, we show such a vertex 3a-3b.

¥ Model Description :

I he project work deals with the development of a Software,

which can let the user create, add constraints on the

constituting segments and contours, and subsequently manipulate a

“Shape”. The constituting segments of a contour may be either a line

segment or a circular arc.

When the user creates a new document, he has to start with a

Skeleton Contour, which is either a square or a triangle. Later on he/she

may go on :

o Inserting more vertices between two end vertices.

e Changing a line segment to a circular arc, assuming the end

vertices to be fixed for the time being.

® Specifying restriction (i.e. fixed/variable) on the segment

lengths.

e Specifying relations among the adjacent segments, e.g. fixing the
vector angle of a line with the previous line.
e Specifying restriction, in case of arcs, on the radius.

» Fixing some of the vertices.

* And finally, drag a vertex(“handle”) to an arbitrary point on the
drawing paper, to see the possible new shape. In case there doesn’t exist
any possible shape with the current relationships, the user is informed

about the failure and with possible suggestions.

,:
R T
S N

+.

o it .,ﬂ,.f

BaLSLRTR
ST

q

e HH ..n.mﬂ,.n,..

e A o R HH
L LD HRaeHH
G S

bt i
RO T

L e o

TR R A e
o e A e e
preed e
A] xxﬂﬁ;ﬁuﬂ#x{ o .n...u.r,."..;,,.. ,m........
- o
i 3
i : e
e
St e e
T

] ol
PRt e IR I
R :

T

ey : i
SRR A Jﬁ%ﬂ%,_.._".n.....“...#

e
s

.l..
P .-....M..H.
e H

A L S A e i
.ﬁﬁﬁhf%&fﬁ.%ﬂ?ﬁh&f;wf ﬁ.,f. S R N
" SRR, T e
A iRt R

,~

A H A R A T .ﬁ.....:.
enEa ;W%wﬁ?ﬂﬁﬁﬁa&%f

H L .

p R i e

e o - L
e e -

4/.,..w
A REEEEAEN T S -

e
e e st H Eo e

HH e oy s s S L
... & i, e A e A A A A e R R
L .n........:...."...."....,............:. f.,ﬂ..,.,....s.,. e et .+.f..u.+..n.,..,r.1 SRR +.;.|
S ST S R S e : : x/v.

- Y] - o) = o] pyri :

FRL T, SN n A T S ...,.........M.u. FiLi ;

...
St i-.......n.:..... R R e T .,....n.n... e i o

WM.R.;MW.. % S R 2 ..._.#J._..........,.ﬂ....... i o ffﬁﬁf D

o T e e B et LR T

% R i

e e

...5
e
i
R
o

The class “CDrawObj” is the base class for all sort of drawing
objects. From it, the classes “CDrawRect” and “CDrawPoly” are derived.
The CDrawPoly class is mainly the class for creating “Shapes”. This class
has got some specialty in that it consists of both line-edges and arc-edges.

Below, I show the member-functions and data-members of this class -

' o I

AddPoint() :

. COrawPaly(const CRect & position) |
-~ @ CDrawPoly()
- @ ~CDiawPoly)

- @ ChangaToCicle()

- @ CreateAndT estThisRgni)

1
"
i
f
1
(
|I
I
f
:
[
],..
L. @ CieateArcRgn|)
{

| :; ® CreateThisRgn()
;"
l'
1
1
!
l
r
]
r
}
{
1
™
i
£

: iy
]

[

- @ DeleteEdge()
~ @ Drawl)
~ @ DrawE ditE dge()
-« @ DrawFixedVertices()
-~ @ DrawMarker()
~ @ FindLocusNextT o]
-~ @ FindLocusPrevT of)
- @ FixedAngle()
. FmedLelt(]

I ‘ chl:llghl[]

! 9 GetHandle()

r ® GetHandleCount()
N ® GetHandleCursor()
- @ InseitNewVertex|)

- @ |ntersects()
’ IsCrossintersecting()
@ IsCrossintersecting{CPolygon & myPolygon. int nHandle. CPaint point)
&P 1sSelfintersecting{CPolygon myPolygon, int nHandle, CPoint point}
- @ 1sSelintersecting|)
- @ MoveHandleTof) 1
-~ @ MoveTof) f
- @ OnEditCircleProperties()
- @ OnEditProperties()
- @ RecalcBounds()
- @ Serialize()

-~ @ SimulatePseudoPolygon({CPolygon & myPolygon, int nH andile. CPoint pcnnt]
-+ SmulatePseudoPolygoniint nHandie. CPoint oldPoint) -

T . e e rre——————

rrrrr

i el R T TR YT HOE R L T L e s

—-hh—illli.m“qm
- - ,
.]

5
[

A — L " A ik e el Sy S vl S, S R s -k s s, s, wuleln, S, SO, S e, sl .

-
-
- ———

contd...

11

1 @ m_bFixedLengths
-4 4@ m_bFixedVertices

-4 @ m_bOniyFistTime

|
| 1 @ m_bObjectChanged

+| ¢ m_bRejectedByAic

~| ¢ m_nAllocPoints
=t @ m_nPoints
-1 @ m_DldNoOflnnerRgns
- ¢ m_pDrawQObj
- ¢ m_points
- ¢ m_pOdObj
~ & m_pRgninner

Among the other main classes, the most useful in manipulating two-

dimensional geometric shapes, are :

CPolygon
CNode
CVertex
Point

CEdge

The “Point” & “CEdge” classes are very frequently used, as and

when there is need to change or check properties of the segments of a

contour. The member functions of these classes are extensively called to

implement the member functions of the class CDrawPoly. Even when

dealing with arcs, they proved to be very useful. These classes, I think,

constitute the heart of the software. I would like to mention the data-

members and member functions of these two classes, in this context. |

suppose, the function names are themselves explanatory.

12

Point
[@ Classify{CEdge &)

-~ @ ClassityPoint & Point&) +] | ® AngleWith]

- 4 Distance() 1l |- @ CEdge()

-~ @ |sFootOn() | @ CEdge{Point & 0. Point & d)
| ;

= ® Length() - E!nss[]

L. % operator +() - @ Flip(}

- @ GetPomt()
i @ Intersect(]
Lo @ [sVerhical(}
i @ Length(}

L. @ operator ={)

- @ operator -{) :
}
E
- @ operator =={)
|
|
|
|
|

|

i - @ operator =()
l ® opeiator ==(]
T
i

-« 4 Point(Point &) ;
~~~~~ ® Point(double x1 = 0, double y;
----- ¢ Point{int x1, int y1) ‘
@ Point{CPoint &) i

i @ Rot)

- 4 Slope()
o Al

¢ dest

1. . org

- @ PolarAngle()
~ @ RotateThrough()

@ ¥d
- & vd

For checking whether any contour ( which is basically a CDrawPoly
object ) overlaps with any other one, I took help of the standard “CRgn”
class of MFC. Still, as the contour is not simply a standard polygon, it
took some pain to construct the region corresponding to the contour,

especially corresponding to the arc-region.

| 3



= A Better Design :

ﬁ fter undergoing this project work, at this point it seemed to us

that there could have been a better object diagram through

which the same functionality would have been achieved. We

now proceed to give description about that one.

The proposed class-hierarchy is :
(Pﬂiﬂ[ >

Yertex

CLine VArc
VMajorArc VMinnr;

Segment

ArcSegment

MajorArcSegment

MinurArcSe@

The generalized-polygon class “GPolygon”, can be considered as an

aggregale of “Vertex”.

14



The attributes and operations defined on these classes are, somewhat

as described below

class Point

class Vertex

class V6iine

class VArc

class VMajorArc

class VMinorArc

class Segment

{ A typical 2-D point }
// This class can be derived from standard
/I MFC CPoint class & added with
// capability to store “float” coordinates.
m_index : integer;

// Stores the unique index

/1 of this Vertex inside the

// GPolygon object.
IsFixedLength();

// 1Is the next edge is of fixed
// length ?

IskixedAngle();
// Is the next edge has fixed
// angle wrt. previous one 7
/1 attributes & operations specific for
/! line-segments.
// attributes & operations specific for arcs.
/leg. m_center : Point;
// Note : This is an abstract class.
// extra attributes ( if any ) &
// VArc operations overridden, for arcs of
// length > half-perimeter.
// extra attributes ( if any ) &
/Il VAre operations overridden, for arcs of
// length < half-perimeter.
m_JStartPoint , m_EndPoint : Point:
// Stores the two endpoints.

// Note : This is an abstract class.

15



class LineSegment :: // extra attributes ( if any ) for lines &
// Segment operations overridden.
class ArcSegment :: // extra attributes ( if any ) for arcs &
/l Segment operations overridden.
// Note : This is an abstract class.
class MajorArcSegment :: // extra attributes ( if any ) &
// ArcSegment operations overridden, for
/7 arcs of length > half-perimeter.
class MinorArcSegment - // extra attributes ( if any ) &
/l ArcSegment operations overridden, for

/I arcs of length < half-perimeter.

The “Document” is basically a list of one or more GPolygon
objects, and of the list, the first one is for the outer contour and rests are
for inner ones ( if any ).

Through the “View” class, events as requested by the user, are
registered. This class then cross-checks with the Document to decide, on
which GPolygoen object the necessary action is to be taken. Once found the
desired object ( may be NULL ), the corresponding Event-Handler of that
object is invoked. This Event-Handler takes care of the desired action on
that particular object or on some particular Vertex or Segment of that

object.

16



= Algorithms :

, classifying a point w.r.t. a line segment

, classifying a line
Segment w.r.t. another one, etc. sound

SO much trivial, it took some

efficient manipulation with the data structure. It would be rather wise to

skip the details for these algorithms here.

T'he only algorithm that would need some discussion, is about

simulation of the move of a vertex. Once the user clicks-n-drags a handle,

the software had to find out the new configuration ( 1.e. the new positions

of other handles ) . keeping intact the old relationships.

The algorithm proceeds as follows :

1. Suppose point P is tried to be moved to point P’. We first try to check if

at this new position of P, whether there is

need to move both of P., and
P+[ . ].f

that is the case then we don’t allow user to move that point,

For the above example, as PP doesn’t bear constant angle with

P,P_, the effect of moving P to P’ is not transferred in backward

direction.

17



2.Now If we find that effect of moving, is in no way transferred to

any of the directions, and the constraint IS maintained between

the edges P.;P and PP,, then we can
3.1f effect

simply accept that new point.

ts transferred in only one direction, ( in our example,

G

in forward direction, and it can happen only in case of violation

of the restricted angle between P’P,; and P,iP.> ) then allow the

move only in cases like :

* X is fixed and only W is fixed, out of both W & Z.
* X is fixed and only Z is fixed, out of both W & Z

This can be put in a simple form as :

Allow move if ( X A(W®Z))is TRUE.

18



= Evaluation Of The Method -

In this topic we will try to explain the problems faced during the
course of the software development. First of all, Windows Programming
was like an ocean to me. So the initial couple of months were spent just to
learn how to swim across. Then came the idea of Document/View
architecture. In Parallel, | was carrying out the algorithm portions. As
time passed by, I gradually felt confident to dive into the work of Object
Identification & Interactions between them.

After starting implementation, it was found that life was not that
much easy. Thanks to MFC and Microsoft Developer Studio and their
visual tools like App Wizard, Class Wizard, Resource Editor etc.

Manipulating with regions was a bit troublesome job and it was
overcame them with the use of static CRgn object members inside class
CDrawPoly.

It also was a hard time while drawing dres different segments (

cspecially arcs ) of a contour. in the CDrawPoly::Draw() function.

19



= Discussion:

T'he software finds its uses in the design of parametric shapes. Once
designed the figure can be fed to Some automated cutting machine to cut
out the portions as designed, from a metal/rubber sheet, to get the desired
shape.

Parametric shapes are sort of shapes those can be pParameterized, i.e.
the shape can fully be described by a fixed no of parameters. Only just
varying the parameters one can get different instances of the shape. For
cxample, consider an ‘L’ -

It can fully be represented by 4 parameters a,b,x,y. Only just varying

these parameters we get different ‘L’ shapes, but all are ‘L’s.

Thus if we can parameterize any shape, then we can create different
instances of that shape in future, only by adjusting the parameters. It js

also of convenience in that we can store the whole shape in a very

condensed format.

20



= Scope Of Further Improvement :

One can extend this dissertation work for 3-dimensional cases.

And that is a more real life case, rather than the 2-dimensional one.

= References :

. Laszlo, Computational Geometry in C+ +
2. Peter Norton, Windows Programming using MFC

3. Rambaugh & Others , Object-Oriented Design

21



