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Abstract

In this dissertation, neural network based methodologies are developed for the de-
tection of corner points in both binary and gray images. For a given binary/gray
image, each pixel in the image is assigned with some initial cornerity (our mea-
surable quantity) which is a vector repensenting the direction and strength of the
corner. These corneritis are then mapped onto a neural network model which is-
essentially designed as a cooperative computational framework. A pair of neurons
In the network model corresponds to a pixel in the image. The cornerity at each
pixel position (i.e., at each pair of neurons) is updated according to the corneritis at
the surrounding locations (i.e., the neighborhood 1nformat10n) The actual corner
points are obtained after the network dynamics settles to stable state. Theoretical
Investigations are made to ensure the stability and convergence of the network. It
is found that the network 15 able to detect corner points even in the nolsy 1Mages
and for open object boyndaries. The dynamics of the network 18 extended to ac-
cept the edge 1nf0rmat10n from gray images also. The effectiveness of the model is
experimentally demonstrated in synthetic and real-life binary and gray images.
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Chapter 1

Introduction

1.1 Introduction

Detection of suitable feature points in images is an important problems in object
recognition, scene analysis, stereo matching, and many other image processing, and
computEr vision tasks [18], [16). Corner is consPidered to be one of the important
image features, and the detection of corner points plays a significant role in many
vision problems in¢luding shape analysis, object recognition and stereo matching,
A corner is theoretically; defined as the point of discontinuity in the curvature on
an arc. In digital image_é, the points with high curvature values are considered to
be the corner points. Early attempts to find the corners or high curvature points
or the dominant points include the methods developed by Rosenfeld and Johnston
9], Rosenfeld and Weszka [10], Freeman and Davis [5] and many others [11, 1]. The
basic approach in these attempts is to detect the dominant points directly through

the measurement of angle at the prospective corner points, resulting in computa-

tionally expensive algorithms. Piecewise linear approximation to digital arcs has

been used in [8, 4], and the points of intersections of the adjacent linear segments
! .

are detected as corner points. In another approach by Wang et al. {13], a bending

value tor every point on a digital arc is computed. The bending value at a point, in

turn, provides a measure of curvature and thereby the cornerity at the correspond-
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ing point. In this method, direct computation of angle between adjacent segments
15 replaced by the estimations of bending value which involves only addition and
subtraction operations, leading to faster computation. These algorithms have sev-
cral disadvantages. First, they accept closed object boundarics onuly. However,
It may not always be possible to find out the closed object boundaries of objects
in a gray level image by edge/line detection algorithms. Secondly, the algorithms

developed for binary images are not extendible to gray images. This means that
the computational framework is not uniform for both binary and gray images.

Neural networks [19, 17], composed of simple processing elements (neurons/nodes)
with local computation, provides an adaptive computational framework with fast
and parallel computational ability, exhibiting graceful degradation performance
under noisy environment. Neural networks has also used to detect the corner
points (12], where a multilayered perceptron (MLP) network is trained for this

purpose. The MLP based approach [12] also has the same dispdvantages as the
other algorithms mentioned before.

Here we developed a method for detecting the corner points in binary and gray
images using neural network. In the network model, a pair of nodes corrosponds
to a pixel in the image. The output of the pair of nodes represent the corner
vector of the corrosponding pixel. Each pair of neurons is laterally connected
over a neighbo,rhoc;d, amf:l the node activations are updated by the neighborhood
information. Initial iconerity information of each pixel is assigned to each pair of
nodes, and the final COI';IGI‘ points are obtained after the network converges to a
stable state. Here no explicit information about the entire object boundary is
required, and only the local information can update the output of each node. As
a result, the network is able to find out corner points from open object bounderies
also. The network exhibit robust performence against the presence of noise. The
dynamics of the network is then extended to accept the m‘euty information from

gray images by embeding the edge strength information. A gracetul performance
by the network is observed for the gray images.



1.2 Organization of the Report

The rest of the dissertation is organized as follows. Chapter 2 elaborates the
proposed method for detecting the cornef points in binary images. The basic ideas
behind the algorithm is given in section 2.1. The network model is described in
section 2.3, The initialization procedure for the network is clarified with exainple
an in section 2.1. The convergence of the network is given in section 2.4. The

convergence of the network requires certain restrictions on the choice of the network
parameters and thay are analytically derived in section 2.5.

In chapter 3 we mainly concentrat on the extension of the network used for the
binary images in order to accept gray level images. For gray level images the
network accepts the edge/line information. The edge detection scheme is described

the edge detection algorithm. - The initialization procedure is described In section

3.2. The network model is then described in section 3.3 along with the convergence
of the network in section 3.4. |

Chapter 4 demonstrats the effectiveness of the neural network model for both
binary and gray Images. The experimental simulation of the network is described
In section 4.1. The experimental results obtained for two tone images and gray
lmages are given in section 4.2 and 4.3 respectively.

Finally chapter 5 provides the overall conclussions and the scope of future work.



Chapter 2

Corner Detection in Binary

Images

2.1 Overall Methodology

Here we assumed that the given image consists of only the boundary mformatlon
the boundary not necessarily being a closed one. The required input image may
be obtained after: the boupdary detection of a segmented image, or even after
edge/line detection dlrec_,:tly from the gray image [3]. However, presently we do not
consider the edge/line ﬁtrength and the 'edge/line direction associated with each
pixel. The input image (e.g. Figure 4.1) consists of black and white pixels, black
pixels representing edge/line boundary points. The cornererity (which is a vector
representing the direction and strength of each corner) at every point on the digital
arc 1s initialized considering only a small neighborhood (here in this case it is a
3 X 3 neighborhood). The way we initialized the corner vectors is described in

-section 2.2. Note that, in discrete domain, in a 3 x 3 neighborhobd only sixteen '
different types of patterns [2] are possible.
‘-_

Here the measurable parameter, cornerity is a vector, the magnitude of which gives

the strength of corner and the direction gives the direction of the corner at that



point. The updating process is such that the cornerity vectors are enhanced at
the true corner points and get suppressed at the other points. The corner points
can then be identified by finding the local maxima in the magnitude of cornerity
vector 1n a local neighborhood. The enhancement or suppression of the cornerity
of a point during the updating process, depends on the cornerity direction at the ..
point of interest and that of the neighboring points. The way of suppression or .

enhancement of the of the cornerity vectors is performed 1s exemplified in Figure
2.1 and Figure 2.2 respectively.

Figure 2.1: Suppression of corners in a juggled edge.

Figure 2.2: Finer deta:il of the juggled edge.

Let us have an edge segment (line bdundary) as shown in Figure? I and the corner

18 to be detected at P. The initial corner vectors at each point are shown in the

Figure 2.1. If we consider a larger scale space, l.e., a coarse description of the



edge/boundary segment then it appears to be a smooth one. On the other hand,
a finer description of the same gives rise to jagged nature of the segment. If we
provide a coarse description then P should not treated as a corner point. This
can be obtained by adding the cornerity vectors of the neighbors wilth that of P,

resulting in a zero (or very close to zero) cornerity vector at P.

The cornerity vector at each point is updated by the neighborhood cornerity infor-
mation, i.e., the vector sum of the cornerities of the neighboMring points. The size
of the neighborhood has an important role in determining whether the description

of the edge segment is a coarse one or a finer one. As in Figure 2.1, if we select
a larger neighborhood around P, then the vector sum of the cornerities will be

closed to zero, i.e, the segment appears to be a smooth one. On the other hand
for a small neighbourhood size no oppositely directed corners in the neighborhood
affect each other. If we consider a small neighborhood, the segment around P can
be represented as shown 'in Figure 2.2. In Figure 2.2 although Q does not have
any initial cornerity, it will get some induced cornerity value frem P. The induced
vector has the same direction as the corner vector at P. The induced cornerity.
value at @, in turn, gives some induction to P, resulting in an enhancement of the
cornerity at P. Thus in the updating process the true corners points (i.e., a corner

point without any neighboring oppositely directed corners) are enhanced.

The neural network model consists of 2m X 2n neurons for an m X n image. A pair
of neurons (nodes) corréSponds to a single pixel. The pair of neurons correspond-
ing to a pixel are of different type. The activation of the pair of neurons together,
represinting the cornerity vector at the corresponding pixel. Each neuron, in the
pair, individually represints a component, of the cornerity vector (Note that, here a
cornerity vector is represented by two coi'nponents, horizental and vertical respec-
tively.). Each node is connected to its surrounding neurons over a neighborhood.
- The connections are only between neurons of same type. Each node has a negative

self-feedback. The negative self-feedback helps to eleminate noise. The initial cor-
nerities are assigned considering th% boundary points in a 3 x 3 neighborhood. The
input to the model is, therefore the initial corner information of very small digital

arcs (over only 3 x 3 neighborhood). The output of each node is the modified COI-
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Figure 2.3: Two typical casesof Initializing the cornerity vector

ner vector at the corresponding point for a certain detail of description. Initially,
the state of the neurons are clamped by the input (corner vectors) from the input

image. The state of the neurons are then updated according to the neighboring

mformatmn After initialization, the external input is no more required.

2.2 Initialization of Corner Vectors

I 1
i I
) I'-

Initialization of the neurons in the networks is very important in the sense that the
neurons in the network updates there states starting from there initial cornerity
vectors only. The initial corner vectors represent the cornerity corresponding to

a edge/line segment in a 3 x 3 neighborhood. These initialized vectors should
reflect the appropriate direction and the magnitude of the corner vectors for small
‘edge/line segments. For example, the point which lie on a straight line ‘segment
should have zero initial vector. On the other hand a boundary pomt with its two
arms separated by a small angle should get high initial cornerity. Considering a

3 X 3 neighborhood the center pixel can have at most two neighboring points on a



single pixel thick boundary. The resultant vector of the relative position vectors of
the neighboring points with respect to the center point, gives the direction of the
cornerity at the center point. The magnitude of this resultant vector is a nmeasure
of the strength of the cornerity. This is illustrated in Figure 2.3 which illustrates
the two typical situations. In Figure 2.3 black dlobs répresent the boundary pixel
positions. The center pixel is denoted by P, and the neighboring pixels are denoted
by A and B respectively. The angle between two arms at I’ is small in the case
shown in the right side of Figure 2.3 than that in the case showln in the iel‘t stde of
Figure 2.3. This implies that the initial cornerity vector is larger in the case shown
in the right side of Figure 2.3, than the other. In 2.3 1_3@ represents the initialized
vector which is the resultant of PA and Iﬁ The resultant cornerity vector P-C.,)}
can then be represented by two components, horizental and vertical respectively;
- Mathematically let (2,7) be a boundary pixel in an object and (i + {4, 5 + ki)
and (7 + {3, 7 + ky) be the two neighboring boundary pixel positions in a 3 x 3
neighborhood where {1, /,, k; . k2} € {~1,0,+1}. Then the horizental and vertical
components of the initial cornerity vector at the pixel position (i, j) is given by

and

2.3 Network Model

As mentioned in section 2.1, there are two neurons of different type for each pixel.
Each neuron is connected with the other neurons of the same type over a neigh-
boorhood. The lattice structure of the nodes of a given type is shown in Figure 2.5.

The other type of nodes also have the similar structure. Since the interaction is

restricted only between the neurons of the same type, we will use only pixel index
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Figure 2.5: Lattice structure of a given type of nodes.



to represent a neuron, the appropriate type being implicit. The connection be-

tween two pairs of neurons corresponding to two different pixels is shown in Figure

2.4. The output of two types of nodes are denoted by ¢, and ¢y and their internal

states are denoted by u and v respectively. ¢, ; and ¢y, represent the horizental
and vertical components respectively of the corner vector at the 7 pixel. Node
7 is connected to its neighborhood nodes (denoted by index %) of same type with

weight w;; if node 7 is within a given neighborhod N (7) of j. The interconnec-
tions weights are symmetric in nature, 1.e., w;; = w;;. The state dynamics of the
processing element j is given by

di.
;J = Z (wﬁcmi) —wacmj (21)
b ieNG)
or p
v, .
"&TJ = Z WyiCy. — 'lU,Cyj : (2.2)
teN(j) .

The output of the node j is given by
Cx; = g(u;) (2.3)
or

Cy; = 9(v;) (2.4)

respectively. ¢(.) is a ramp function (Figure 2.6) given by

m ifx>m
glx)=4{ —m ifz < —m

z otherwise -

where m is the saturation level of the ramp function. The second term in (2.1)
and (2.2) are negative feedback terins used to eliminate the noise points. w;, is the -

weight of the negative feadback. N(7) is a neighborhood of 7% neuron in which

the outputs of the neurons affect each other.

10



uory

Figure 2.6: The ramp function at the output of each node

11



The neighborhood chosen here is a circular one. The radius r of the neighboorhood |
decreased with time, i.e.,

for &, >t > t3... > ¢,

r(t1) <r(t2) < r(ta)...r(t,).
The shrinking of the neighboorhood size, in effect, fesults in higher interaction
between the nearby nodes as compared. to that between the distant ones. If r
is decreased very fast then the nodes will not interact properly and the desired

smoothing of the boundary segment may not be obtained. On the other hand a

very slow decrease in r may smooth out the true dominant points on a boundary.
Here r is decreased such that [15]

lim r(¢) =0

¥ r(t) - .

In this model the radius r follows a schedule, given by

k -
— 2.
1+ bt (25)

The parameteré kand b are positive constants determining the initial radius of the
neighborhood, and the rate of decrement of the radius.

r

The weights w;; and w; are also proportional to the radius of the neighborhood,
l.e.,

Wi; X T (26)
Wi X1 - (27)

2.4 Convergence of the Network

!

The size of the neighborhood of every processing element decreases with titne. As

the radius of the neighborhood reduces to zero, the process of updating the states

12



of ‘the processing elements stops. Since the self-feedback is proportional to the
radius of the neighborhood, the self-feedback also reduces to zero as the radius
decreases to zero, i.e,, the neighborhood region shrinks to a point. If the network

converges for a neighborhood of fixed radius, then evidently the network must

converges for shrinking neighborhood also. The proof of convergences for a fixed
radius of neighborhood is as follows.

Consider a Lyapunov (or the energy function) of the network as

E—--——fz Z WijCx, Ca; + wsz%l—--—z Y wijcycy, + wHZc (2.8)

25 JEN(3) t JEN(i)

Therefore %2 is given by

39
==Y 2 wijeq, - ,Cmi) d;:i )3 E WijCy; — W acu) dtﬂ% (29)
i \JEN@) i \JEN()
From 2.1 and 2.2 we get
R T I

! 1 1

From 2.3 and 2 4,

——zg*l e (22 ) -3 () (d) 2.11)

¥

where g~ is the first derivative of the of the inverse of g~ (.}, which exists and is
an increasing function, provided —m < u < m and —m < v < m. The parameters
are selected in such a way that this condition is satisfied. The way of selecting the
parameters is described in the next section (i.e., in section 2.4}, Since, in the given
range ¢~ ' is an increasing function, i.e., g‘lf is positive, and (5]‘—-"‘“;-’55L)2 and (i.,_";;%i-)2 are:

always nonnegative,

dE | ;
iy t> 0. | 2.12
dt"‘o Vi 2 (2-12)

13



E(t) is bounded, 2 — 0 as t — oo and therefore d;?— » 0 and %ﬁ —0ast — oo

for'all i. As a result, the output values of all processing elements converge.

2.5 Selection of Network Parameters

To find the bounds value of the link weights and the parameter values we consider
the state dynamics of a node as given by (2.1) and (2.2). The analysis in this
section, is done considering only ¢, components only. The same arguments are
valid for ¢, component also. Let us use the notation ¢; instead of ¢;; in the sequel.
Let up be the maximum initialized value of c;, 8 is the threshold of the resultant
cornerity value such that if the magnitude of cornerity vector is less than 6 for some

node j after the convergence of the network then the corner at j is eleminated, and

m is the saturation level of the ramp function.

Theoretically, a noise point is one which initially have some cornerity but dose not

get support from the neighborhood. Then the differential equation satisﬁed by a
noise point (from (77 is
d;
dt

Assuming that the value of u; is within the saturation limit of the ramp function

(Figure 2.6)? we replacej ¢; in (2.13) by u;. Therefore from (2.7) and (2.13),we get _

= "—’wst - (213)

,'
I.I'
du v

o = TWary; . (2.14) _

It is required that after convergence of the network,the cornerity at the noise points
should less than & so that thay can be eleminated. Let us consider a noise point

with maximum initialization up. Now from (2.5) and (2.14)},

(2.15)

where B is a constant given by

14



B = (wk)/b. (2.16)

Since we stops when r < 1 (let at time instant ¢ = tm), the value of u,(t) in (2.15)
should satisfy the inequality

uj(tm) < 8. (2.17)
Again, from {2.5) r = 1 implies that |

1+ bt, = k. (2.18)
From (2.15), (2.17), and (2.18),
' U
E% <6 (2.19)
Therefore,
B > log, %9- - (2.20)

This equation gives a lower bound on B, i.e., weight of the self-feedback ( from
(2.186).

In order to get a bound in the value of the weight of the links between the nodes

let us consider the updating rule (2.1) once again which is given as
L= ) Wi - W
iEN ()
Replacing w;; by w,r where wy is a constant (2.7), and u; by ¢; assuming u; does
not exceed the limit of the ramp function, we get

ds.
—dt? = ) WITU; — Wol U (2.21)
1EN({F)

In the updating process, in order to find out the maximum level of activation that

can be attained by an individual neﬁron, let us assume that each neuron has got a
maximum Initial activation up. Again, according to (2.21), the network behavior

1S 1sotropic, i.e., the activation of all nodes grow symmetrically. This means that

15



the each node gets the same contribution from its neighborhood. Thus the internal

state u; 1s independent of index j, ie., u; = u;. There.fore, the dynamics of the

node j can be written as

duj | |
— = (;(1 2.22
where
Gj(t)z Z WiTU; — WaT'U;. (223) |
1EN(j)
[From (2.22) we get
t . t (Y.
/ W3 4t — / G5 g1
0 'u.j 0 'Uj
or, |
t G,
log u; — log ug =[ —=dft. (2.24)
0 Hj

Now using the expression of G; from (2.23),

G; 1
~L = — 3" (wyry;) — wor
Ui UienG)
Since we assumed that all the nodes in the network grow in the same way, and

their initial activations are same (i.e. ug), we can infer that at any time instant ¢,

Gi _ Y (unr) — wyr. (2.25)
Yoo ieng)

For a boundary point the number of points in the neighborhood is proportional to
its radius r and say the constant of proportionality is p. Then,

G, '

— = pwnr? — wyr. (2.26)
U;

On an avagage, we can assume that p is equal to 2.

From (2.24), (2.5), and (2.26), we get,

t { 2w k2 wok
log u; (¢ =f t + log™. .
ogu;(t) = | ((1+bt)2 1+bt)d +log” (2.27)
|!l .
ie., |

1
1+ bt

log u;(t) = A (1 ) ~ Blog (1 + bt) + log ug (2.28).

16



where,

A = (2w, k%) /b. | (2.29)

From equation (2.28) it can be shown that u; Increases for small values of t, reaching

maximum at some point of time (58y t = t,nqz) and the decreases to zero. The
value of ¢,,,; can be found out by setting (du;/dt) = 0,

1+ btyay = -g- o (2:30)

The maximum value of u; can be found out from (2.28) and (2.30), which is

B B
(uj)1+bt=(A/B) = €Xp (A (1 A) B log ;1- + lOg ug) (231)

If m is the saturation level of the ramp function then it is required that

(u; )1+bt=(A/B) S m.

1.e., |
A (1 i) Blog(A/B) + logug < logm
or,
A-BlogA < B~—BlogB+ldg(in—-) (2.32)
| 0 |

Again we need that network dynamics should stop before the time when uJ reaches

its maximum. Since our algorithm stops when 1 + bt = k

A

1+ bt = 72k _ (2.33)

¥

The (2.33) gives the lower limit of A.

We should ensure that the for a giiren set of parameters (k, m, ug. ) there always
exists at least one value of A such that {2.32) and (2.33) satisfied. In the inequality
in (2.32), the left hand side increases with A for a given value of B. Therefore,

from (2.33), the minimum value of the left hand side of (2.32) can be obtained by
considering A = kB, i.e.,

17



Bk — Blog(Bk) < B — Blog(B) + log(m /ug)

l.e.,

log(m/ug) s
<. - . .
B"k-—l—logk - (2:34)

From (2.20) and (2.34) we get,

log(uo/0) _ _log(m/uo)
logk T k—1-logk

(2.35)

As mentioned before, the parameter 6 is a threshold such that if the node activation
decreases below @ then the corner at the corresponding pixel is eleminatted. ¢ can

be choosen to be small fraction of the initial activation uy. Let

d = auy (2.36)

where o < 1. Then from (2.35), we can write

k—l-—-]ugk)
g < ma'  logk

(2.37)

In other words, for a given m and af(j 1), if the initial radius of neighboorhood, k,

increases then ugy needs to be decreased.

Again from (2.20), f
| | ug
| . B> log %

~ logk
Since B = wqk /b (Equation (2.16)), o is a constant and if we consider w; to be a
constant then

b klogk. - (2.38)

The conditions for selecting the parameters are given below. For a given a given
1. . .

image first we select the initial radius of neighborhood k which is essentially driven

by the requirements of the higher level recognition system. The saturation level m

is fixed and it can be considered as the characteristics of the individual nodes. The

18



parameter « is specified by the user (normally it is < 1}. Then first 1, is selected

from (2.37). After selecting ug, B is chosen in the range

log(ug/ 9) <R < log(m/ug)

2.39)
logk ~— T k-1-logk ( )
Then A is selected such that

A

> .

B2k | (2.40)
and

A — BlogA < B — BlogB + zog(gf) (2.41)
- Uo

satisfed.

From (2.16) and (2.29) we select w, and :tul. The way of selecting, w; and wy, and
ug 18 examplified below. Example: Let m = 6.0 and k = 5.0. Let the parameter
« be 0.3. Then from (2.37) we can select u, = 0.25. Therefore from (2.39) we
can choose B = 0.708. If we choose A as 5.0 then the conditions given in (2.39),

(2.40), and (2.41) are satisfied. Therefore from (2.29) ancd (2.16), w; = 0.050 and
wq = 0.071 for b = 0.5. |

2.6 Conclusibns

In this chapter we developed a neural network framework to detect the corner points
in binary images. The initialization of each node in the network has been done
using the information about the spatial distribution of the object boundary pixels.

The network used here have the structure of two dimensional lattice (Figure 2.5).
" Each node in this network gets information from its neighborhood and updates its
state. Fach node has a ramp transfer function. In order to satisfy the convergence
of the network, the output of the nodes should be within the limits of saturation

level of the ramp function. To satisfy this restriction the conditions for selecting the

19



network parameters are also derived which in turn helps in designing the network.

The effectiveness of this network in hnding the corner points is demonstrated in
chapter 4.

20



Chapter 3
Corner Detection in Gray Images

In the present chapter we consider the case of gray munages. In a gray image the
image boundary may not be well defined as in the case of binary images. Therefore,
the initialization of the cornerity vectors at each point is not straight forward. This
problem can be taken care of by finding the edge strength and the direction of edge
at each point of the gray image. Then the initialization of the corner vectors can
be performed according to the edge strength of the points in a neighborhood of

the point in concerned.

3.1 Edge Detection

For detecting edge points, we used the Sobel operator [6which uses a mask as

shown below

<1 | 22 | 23
24 Z5
26| 27 | 28

The horizental and vertical components of the edge strength is given as

21



a:ﬂtrength - (21 + 2 * 24 + zﬁ) — (23 -+ 2 * <5 + Zg) (31)

and

Ystrength = (zl + 2 % 25 + 33) - (zﬁ + 2 % 27 + Zﬂ) (32)

To limit the these values within unity these edgeg strengths are normalized.

3.2 Initialization of the Corner Valués

The cornerity vectors are initialized as

Ci= Y |€llsind;|py - (33)
JEN(1)

where pPj; is the unit vector in the direction from pixel i to pixel j, €j is the edge
strength vector, perpendicular to the edge at pixel position 7, and 6;; is the angle
between the edge vector € and pi;. The equation (3.3) based on the fact that
an edge gives maximum induction along the direction perpendicular to its edge
strength vector direction {2]. Unlike the case of binary images, in gray images, the
neighborhood for initialization is not 3 x 3 neighborhood, instead here we used a

circular neighborhood of size k. The parameters k has same meaning as in the

binary case (chapter 2)

3.3 Network Model

The corner detection algorithm for gray images is the same as that of the binary
images, the only difference is that the contribution from the node i to the node j is

muitiplied by a factor e;e;, where e; and e; are the edge strengths at the respective

pixel locatins. This is because of the fact that unlike binary images, in a gray image

we can not get well defined boundary and there will be many pixels with low edge
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strength (noise points) along with the actual boundary(high edge strength) points.-

Thus the dynamics of a node j is given by the equations

du;
J . [ ]
= Z WjiCr; CiCj — WCq, (3.4)
' 1EN{j)
Ol
)
R .. P . -
ral Z W;iCy, €€ — WsCy, (3.0)
’ iEN(4F)

and the output of the node 3 is

Cg; = g(u’.}')
or
Cy; = 9(v;)

where g(.) have the same meaning as in binary case (Equation {2.3) and (2.4)).

3.4 Convergence of the Network

The Lyapunov of the network is again same as that of the network for the binary

images except for. the fa.ctors e; and e;. The Lyapunov is choosen as

1 _
E = Z Z wue,qcmlcm -—wSZcI‘ - = Z Z W;;€;€;Cy, Cy. + 5 Ws Zczi
i

t JEN(I) i JEN{()

(3.6)
Since both e; and e; are nonnegative and have constant values, they can be treated

as constant multiplication factor of w;;. The rest of the proof is the same as that
in section 2.4.

3.5 Conclusions

In this chapter we concentrated on the extension of the network for binary images

to accept gray images. For this we initialized the cornerity vector at each point
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in the image considering the edge strength vectors of the neighboring pixels. The
performance of the network depends on the perforinance of the edge detection and
the initialization procedure. The bounds on the parameters is same as that in the
case of binary images. The effectiveness of this network in identifying the corner

points is demonstrated in chapter 4.
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Chapter 4

Experimental Results

Here first we provide outline of the experimental simulation of the networks. Then

the experimental results for binary and gray images are provided in section 4.2 and
4.3 respectively.

4.1 Simulation of the Network Model

To simulate the methods developed in chapter 2 and chapter 3, we use linear

approximation. of the;-"equations (2.1), (2.2), (3.4), and (3.5). The approximated
updating rules for the binary images are

Hi(t + At) € ”U,,(t) + ( E WiiCy, (t) — wscmj (t)) At | (41)
tEN(5)
’Ui(t + At) — ’U,;(t) -} ( Z W;iCy, (f) — WyCy, (t)) AN (42) | .
tEN(4)
and the same for the gray lmages are
|
’U,i(t +- &f) - Ui'(t) + ( Z wﬁcri(t)et-ej — ’Eﬂsﬂmj (t)) AN (43)
tEN(3)



vi(t + At) « v;(t) + ( ) WjiCy, (f)eie; — wscmj(t)) At (4.4)
1€N(H)

respectively. At is a small parameter denoting the increment in time. The param-
eter At has to be small enough in order to get good approximation of the original
differential equations. To perform the experiments we used the the value of At
as (.06 for the binary images and 0.05 for the gray linages. The other paraineter

values are given along with the corresponding figures in the following two sections.

4.2 Results for Two-tone Images

The results for two-tone imnages are shown in Figures 4.1-4.5. The detected corner

points are marked by black dots. The parameters (k, b, ug, 6w, , wy) are given along
with each results.
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(b) -  (c)

Figure 4.1: (a) Original binary image. (b)Detected corner points (k=5, b=I,

up = 0.25,0 = 0.08, wy = 0.100,w, = 0.141) (c) Detected corner points(k=10,
I|

b=1, up = 0.1, 8 = 0.035, w; = 0.025, w, = 0.045)
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(b) (©

Figure 4.3: (a) Original binary image. (b)Detected corner points {(k=8, b=1,
up = 0.1,6 = 0.05, wy = 0.039, wq = 0.042) (c) Detected corner points(k=12, b=1,
up = 0.09, 0 = 0.05, iw,; = 0.017, wy = 0.020)
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(b) (9

Figure 4.4: (a) Original binary image. (b)Detected corner points (k=3, b=.5,
ug = 0.25,60 = 0.08, w; = 0.139, wz'= 0.173) (c) Detected corner points(k=5, b=1,
up = 0.2,8 = 0.05, wy = 0.088, w, = 0.172)
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Figure 4.5: (a) Original binary image. (b)Detected corner points (k=10, b=0.2,
ug = 0.1, 8 = 0.05, w, = 0.020, wq == 0.030) (c) Detected corner points(k=12, b=1,

|

0.006, 8 = 0.003, w; = 0.012, wp = 0.023)

1
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4.3 Results for Gray Images

‘The results for gray images are shown in Figures 4.6-4.8.
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(c) (d)

Figure 4.6: (a) Original graylevel image. (b)Edge Iinage (c)Detected corner points

(k=5, b=0.2, up = 0.5, 8 = 0.25, wy = 0.015, wp = 0.034)(d)Detected corner points
1,
(k=9, b=1, ug = 0.24, 6 = 0.1, 1w, = 0.022, w, = 0.088)
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(d)

Figure 4.7: (a) Original graylevel image. (b)Edge Iinage (c)Detected corner points
(k=5, b=0.2, ug = 0.5, 8 = 0.25, wy = 0.015, w9 = 0.034)(d)Detected corner points

(k=9, b=1, up = 0.1, 8 = 0.04, w; = 0.021, w, = 0.093)
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(c) ' (d)

Figure 4.8: (a) Original graylevel image. (b)Edge Image (c)Detected corner points
(k=5, b=1, ug = 0.5, § = 0.25, Wy = 0.077, wy = 0.034)(d)Detected.mrner points
(k=9, b=1, up = 0.24, # = 0.1, w;, = 0.022, w, = 0.088)
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4.4 Discussion and Conclusion

‘The results are dependent on the initial size of the neighborhood. Smaller the
neighborhood size, less the interaction among the distant points. This resuits in
finer detail of the boundary segment. The finer detail disappear as we increase the
neighborhood size. The method performs in noise environment and open boundary

segment. The performance of the network for gray images depends on the proper
detection of edge strength vectors.
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Chapter 5

Conclusions and Scope of Future
Work

We developed a corner detection algorithm in a connectionist {frainework. This
framework has the advantage of having local computation for the nodes in the
network. The convergence of the network has been proved with some restrictions
on the link weights, maximumn initialization value for the nenrons, noise threshold,

and initial size of the neighborhood. These restrictions are helpful for a suitable
design of the network.

The performance of the proposed algorithm is dependent on the initial selection
of radius of neighborhood. For a smaller initial size of the neighborhood, a finer
description of the dominant points can be obtained. On the other hand, for a larger
neighborhood, a coarse description will be performed. Hence the methodology
provides us a flexibility to obtain different resolution depending on the subsequent

higher level visual task to be performed. The algorithm also performs in a noisy

environment with open object boundaries.

The network used here does not use any learning procedure. In gray images, the
performance of the algorithin depends on the edge detection scheme. We used the

edge strength vectors over a neighborhood to initialize the cornerity vector at a
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