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Chapter 1
Mammogram Analysis

With the recent westernization of our life style. the incidence rate of breast
cancer is fast increasing in most of the part of the world. specifically in ad-
vanced countries. Primary prevention seems impossible since the causes of
~this disease still remain unknown. Early detection is the key to improving
breast cancer prognosis. The presence of microcalcification custers (MCC 3)
Is an important sign for the detection of early breast carcinoma. Hence mam-
- mography is one of the reliable methods for early detection of breast carcino-
mas. In this thesis we develop methodologies far detection and classification
of mammograms.

In our mammogram analysis we shall use a neural network based method
for feature selection and then use both neural networks and fuzzy rule based
system for clasmﬁcanon of micro~calcification. \We have made some modifi-
cation of an existing feature selection algorithm and also proposed a scheme
for fuzzy rule extraction that avoids an lmportant problem of exlstlng fuzzy
rule tuning methods.

Here are the contributions made in this thesis: |

1. We modified a neural network based feature selection method using
regularization to improve its performance. |
2. We proposed a method to extract fuzzy rules Wlth hjgher spec:ﬁc:ty
for classification. \
3. We modified an exmtlng method to detect calmﬁcatmn for better per-
formance of diagnostic system. |
4. We applied the feature selection method developed in ( 1) to select
useful features for classification of calcification.

- 5. We applied the fuzzy rule based classification technique developed in
(2) and also neural networks to classify the detected micro-calcification.



- Since these the methods developed in (1) and (2) above are of aeneral
nature, nothing specific to mammogram analysis. we discuss them in C hapter
2 and Chapter 3. In Chapter 4 we discuss an existing method to detect micro-
calcification and propose some modifications to get better results in detection
of micro-calcification. In Chapter 5 we discuss about the classification of the
detected calcification by apph ing the techniques proposed in Chapters (2)
and (3). |

- In the remaining part of this chapter we present basics of I:he mammogram
analysis, followed by different types of calcification. We also discuss how
mammogram results are validate. The chapter is concluded with a very brief
suney of literature, ~

1.1 Introduction

In the past several years there has been tremendous interest in image process-
ing and analysis techniques in mammography. This is because the tactile ex-
amination is insufficient for the correct diagnose of the breast cancer. The
high correlation between the appearance of the microcalcification clusters
and the diseases shows that the CAD (computer aided diagnosis) svstems
for automated detectmn of MCCs will be very useful and helpful for breast
cancer control.

The mammogram analysis for identification breast cancer needs two steps:
(I) Detection of calcification with low false positive rate. |
(IT) Classification of the calcification into Normal,Benign or Malignant class.

Basically breast cancer abnormalities are characterized into three dlfferent.
types:
[a]Circumscribed Lesions.
ib]Microcalcifications
[c]Speculated Lesions. |

These three types of abnormalities are shown in Fig 1.1.

-1.1.1 What makes the Calcﬂicatlon Detectmn dﬂiﬁcult‘?

-Although computer-mded mammography has been studied over two decades,
automated interpretation of microcalcifications remains very difficult. It is

“'mainly due to their I.ZZ)' nature, low contrast and low dlstlngmshablhty o

from their surrounding
(a) Usually it lmnlves object area of mterest a.nd hence Ieads to po-
tential numdennﬁcatuj\ :

(b) Due to Different sizes, various chapes and mnab!e dwtnbutzons of mi- .
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Figure 1.4: Block Diagram of mammography CAD system.

equalization, unsharp masking, spatial filtering. Region-based approach en-
hances the contrast of the mammographic features of ROIs with various
sizes and shapes according to the change of their surroundings. Region-based
method can enhance more anatomical detail without significantly introducing
artifacts. and has demonstrated that it can identify calcifications more effec-
tively in the image of dense breasts where the contrast between calcifications
and breast tissue is quite low [5]. Feature based enhancement techniques can
be performed for mammogram analysis through microcalcification features.
Since mammograms have some degree of fuzziness such as indistinct borders.
 ill-defined shapes, and different densities. sometimes the original images are
transformed into a fuzzified image on the basis of nucmcalmﬁcatmn features
[2 6] and fuzzified image is processed _— |

1.2.2 Segmentation of Microcalcifications

The goal of mammogram segmentation is to obtain the suspicious regions. In
general. segmentation is to divide the i unage [ into non-overlappmg regions
S; such that, o
U S:=1and S; NS; = @where:;éj | Voo

The extraction of objects from the background can be done by image
segmentation. The segmentation can be done by choosing a threshold if the
- background is uniform. However, due to the variations in shapes, sizes and in-
- tensities of nncroca]cxﬁcatmns, lt is djﬁicult to chmse 8 thmhold to segment

the calcification. .  ort S b

- Some possible ways of segmentat:on mclude are reglon gmmng method




and edge detection method.

1.2.3 Micro-aalciﬁcation_detection based on feature ex-
traction

Many researchers use features extracted from mammogram to directly de-
scribe individual micro-calcification. Some of the possible features are: the -
area of the object. average grey level of the object, gradient strength of
the perimeter pixels of the object. contrast, perimeter, compactness, elon-
gation, eccentricity. thickness, orientation, the mean intensity level of the
background, fourier descriptor, low order moment based on shape descrip-
tor and many more. Experimental results showed that the back propagation
neural network could reduce the false detection rate by 42%, and a false
detection rate of 3.15 per image was obtained [13].

1.2.4 Classification of Calcification

It is usually very difficult fo distinguish benign from malignant MCCs be-
~cause of the variability associated with their appearances. The human breast
varies considerably in -composition. and mammographic appearances vary
from relative uniformity to complex patterns of bright streaks or blobs. The
major features used to distinguish normal, benign and malignant MCCs are

eGray scale descriptor.
e Shape descriptor.
e Cluster descriptor. -
The classifier can be of various type: Neural Network classifiers, K-nearest
ne1ghbnr class1fiers Bayesian classifiers, Decision tree...etc.

1.3 Evaluation of Célciﬁcation Detection Al-
gorithms '

A decision for a detection result can be eithbr correct (true) or incorrect

(false). A decision for a detection result, therefore, will be one of four possible
categories as shown in Table 1.1: true positive (TP), true negative (TN}, false
positive (FP), and false negative (FN). FN and FP are two kinds of errors.
A false negative error implies that a true abnormality was not detected, and
. & false positive error occurs when a normal region was falsely identified as .
" abnormality. A TP decision is a correct judgment of an actual abnormality,
and a TN decision means a normal region was correctly labeled.



Table 1.1: A decision for the detection of calcification

CAD ' A cancer Not a Cancer
Claimed a Cancer I True Positive | False Positive
Not Claimed a Cancer | False Nezative | True Negative

The performance of diagnostic systems has been measured with two terms:
- sensitivily and specificity. where sensitivity= TPs/(TPs+FNs) and speci-
ficity= TNs/(TNs+ FPs). There is always a tradeoff between sensitivity and
_ specificity which can be shown in a ROC{receiver operating characteristic)
curve. ROC curve is a plot of operating points which can be considered a plot
of true positive as a function of false positive. For evaluating true-positive
detection, sometimes it is required not only to detect the existence but also
the localization of the calcification. A better method for this case is free-
response receiver operating chdracteristic (FROC) analysis which is a plot of
operating points showing the tradeoff between the TP rate versus the average
number of false positives per image.

1.4 Review of Some Existing Methods

In the literature. various techniques are described to detect and classifv the
presence of microcalcifications in digital mammograms as benign or malig-
" nant: classical image processing techniques [10]|, wavelet-based techniques
12|, statistical techniques, neural networks based techniques [11].

Mascio [10} developed a microcalcification detection algorithm, which op-
erates on digital mammograms by combining morphological image processing
with arithmetic processing. The first analysis emphasizes any detail in the
image that charnges sharply in intensity and is larger than some specific size.
The second analysis emphasizes any detail that is small and textured. Areas
that are common to both analysis are segmented and kept for thresholding.
This resulted in the detection of mlcrocaluﬁtatlons and suspicious areas.

- Wavelet-based techniques have also been used in the detection of micro-

calcifications in digital mammograms. Yoshida [12| developed a system based
on the wavelet transform. In the wavelet transform, all of the wavelets are de-
rived from scaling and the translation of a single function. Yoshida used the
least asymmetric Daubechies wavelets in combination with a difference image
technique. These methods are useful in separating microcalcifications from

Y



normal background tmsue‘a and achieve . {lttFLtIUI'l rate of approximately
Y07

Woods modified the KNN algorithm. stating that unknown test. pattern
s assigned to a particular class if at least k of the KNNs are in that class.
The KNN rule will be more sensitive to microcalcification detection and less
sensitive to non-microcalcifications.

Verma and Zakos [3] have made an attempt to design a CAD(computer |
aided diagnosis) system for digital mammograms based on fuzzy-neural and
teature extraction techniques. They tried various combinations of features to
find important sets of features for classification of micro-calcification.

Automated breast cancer detection has been studied for more than 20
years, the CAD mammography systems for micro-calcification detection have -
gone from crude tools in the research laboratory to commercial systems. Yet
there is well accepted system. |

Although by now some progress has been achieved. there are still remain-
ing challenges for future research. such as: developing better enhancement |
and segmentation algorithms, designing better feature detection and selec-
tion algorithms. integration of classifiers to reduce both FPs and F\Ns.



Chapter 2

On-line Feature Selection with

Regularization usmg Neural
Networks

Feature selection for calcification aims to select a subset of features from the
available feature :,et to obtmn improved performance in classification of the
given pattern set. ﬁ -

Several researchers have emphasized the importance of feature analysis
and proposed methods. But these methods typically use feature ranking
based on some criterion and then use a few top ranked features to design
a classifier. There are few basic problems associated with such a method: (i)
two correlated features may get high ranks, when only one of them may be
enough for the task, (ii) it may not be able to detect the effect of a group
of features together, (iii) it ignores the fact that importance of a feature de-
pends on the problem being solved and the tool used to solve the problem
and thus fail tc capture the subtle interaction between features and tools.
The third point emphasizes the fact that the best set of features, for exam-
ple, for a k-NN classifier may not be the best for a neural network classifier.
So the best strategy would be to use a scheme that can select the necessary
features while learning (constructing) the cla.SSLﬁer We call such methods
Online Feature Selection {OFS) methods [4].

The OFS is a neural network based technique to choose a subset of fea-
tures while learning to classify the data set. In this scheme the inputs to
the network are attenuated by an attenuation function before they pass into
the network.After the training is over, the features may be selected based
on their impartance as reflected by the values of the attenuators associated
with different input nodes[4]. It has been observed that.if there are some
features with very little discriminating power.then if the network is trained

I



long enough. the gates corresponding to those features cet opened. Under
such circumstances it may be difficult to select the top ranked features. That
Is why when the number of misclassilication or the sum of square erfror{SSE)
reduces to some acceptable level in OFS. the training is stopped to select
the features.And the network is then retrained with the selected features.
Although OFS has been successfully applied in several areas based on the
above principle. it would be better. if we can eliminate the above problem.
This may be achieved by using a regularizing term in the learning process,
which compromises between the reduction in SSE(sum of square error)and
the gate opening. \We achieve this by adding a penalty term in objective
function of the OFS method. | -

2.1 Feature selection Method Using OFS .

In a standard multilayer perceptron network. the effect of some features (in-
puts) can be eliminated by not allowing them into the network. i.e., by equip-
ping each input node (hence each feature) with a gate and closing the gate.
For good features the associated gates can be completely opened: On the
other hand, if a feature is bad. then the corresponding gate should be com-
pletely closed. Pal and Chintalapudi [4] suggested a mechanism for realizing
such a gate so that useful features can be identified and attenuated according
to their relative usefulness. In order to model the gates we associate a gate
function to each node in the input layer. A gate function should produce a
value of 1 or nearly 1 for a good feature; while for a bad feature, it should
be nearly 0. To use the gate we multiply the input feature value by its gate
function value and the modulated feature value is passed into the network.
The gate functions attenuate the features before they propagate through the
~net. so we may call these gate functions attenuating functions.A useful gate
function £ : R — [0.1] should have a tunable parameter and should be differ-
entiable with respect to the tunable parameter. It should be monotonic with
respect to its tunable parameter. The sigmoidal function satisfies the above
criteria and in this paper we have used it. Other choices are also possible.
The basic philosophy of learning would be to .l?eep all gates almost closed
at the beginning of the learning (i.e. no feature is important} and then open
- the gates as required during the training. To complete the description in
. connection with MLP, let F; be the gate or attenuation function associated
with the i** input feature. F; has an argument m; |
F{ (m;) be the value of derivative of the attenuation function at ms.
~ B be the learning rate of the attenuation parameter;
N be the learning rate of the connection weights.

12



X be the i** input of an input vector X: X! be the attenuated value of X,

X;=X,F(m). | (2.1)

Let W3 be the weight connecting the j* node of the first hldden laver to the
" node of the input laver; and é; be the error term for the j** node of the

ﬁrst hidden layer. | |

The output of the first hidden layer is O} = f (3, X;Wi‘;) and for other
layers OF = f(T; X;‘“Wé"') for k=2.3..n+1. The wights and the gate pa-
rameters are adjusted to minimiz J_ e using gradient descent on e. where

e = 1/25 (E:)?, whereE; = (T, - ™), (2.2)

In (2.2), T; is the target output from i** output node and O?*' is the
computed output at the #* output node. |
- 'The weights of the network are adjusted exactly in the same manner as
per the backpropagation neural network rule except th,WhICh is modified
by:
AW, = : 0] X, = 08! X,;F(m,), 0" = f(} W307). (2.3)

]

[t can be easily proved that. the adjustment of the attenuator parameter

is done using:
A = pX.F, Z(W}i&} ). (2.4)

As mentioned earlier. for the gate functmn several choices are possible
but we use here the sigmoidal function F(m) = 1/{1 +e~™). The input gate
parameters are so initialized that when the training starts F(m) is practically
zero for all gates, i.e., no feature is allowed to enter the network. As the
gradient descent learning proceeds, gates for the features that can reduce the
error faster are opened faster. The learning of the gate function continues
along with other weights of the network. At the end of the training we can
pick up important features based on the values of the attenuation function.

~ Typically, the training is stopped when the training error or misclassifica-
tion is reduced to an acceptable level. Note that, for different initializations
different feature set may be selected. If this happens. then this indicates that
there are different sets of features that can do the classification job equally
well. One may rank the features based on the extent the gates are opened
and use a set of top ranked features. But note that feature ranking is not
the objective OFS. The algorithm is expected to do a good job because OFS

looks at all the features at a time during the training process.

t3



2.2 Regularization of OFS system

Our goal is not to allow the gates 1o upen corresponding to the features with
low discriminating power. Also: we should prevent use of correlated features
as far as possible. To achieve this. we add a penalty term to the instantaneous
error ¢; = 3 (T, — O7*")?, thus making it: |

C

e = D_(Ti = O} + K, x g(M) (2.3)

In (2.3) K, > 0is a constant and g{M) is a function of the p gate opening
parameters.
M = (my,m,,... mp)T gate opening parameter vector.
p is the dimension of the input. -
- The function g(M) should increase with the opening of the gates.Since
we are using sigmoidal function for the gate opening, g should increase with
m;.So the total error is B = ):f ¢;. Our objective would be minimize E.
To minimize E. preferably one should use batch update rules. However. like
the back propagation learning algorithm. here also we use the Instantaneous
error to derive the learning rule.

As already discussed, regularization during the training of OFS svstem
compromises between the SSE and gate opening. After adding this penalty-
term in the error it can be shown that the learning rule of the attenuator
becomes:

Amy = pX,F, Y (V) - uK, x g'(M)). (2.6)
__ ; _
For not allowing all the gates to open, one of the possible choice of g can be

of the form g(M) = T, ezp~*~™i_ k > 0 is a constant. So the equation for
¢; becomes: | | ‘

- € = Z(,Tl _ O:I+l)2 + K, % Zexp-(k-ml} (2‘7)
i1 : ' {

Here we considered k to be 6 beciuse the gatejopening becomes almost 1
when m; equals to 6. And the learning rule for the attenuator becomes:

Amy = pX.F Y (Vo)) — pK, x exp=k-mi), (2.8)
J

[



2.3 Data Set Description

We prepared three sets of synthetic data. Each set has 200 patterns . with
four features. There are 100 patterns for cach class. Qur third data set is the
Iris data set. | “

Data set 1

The data set 1 has been created with four features. The first two features are
shown in Fig 2.1. where the two classes are displayed with dots and stars.
Then we have added two random components in the range 0-20. So feature
3 and 4 are not useful features.

Data set 2

The data set 2 has been created with five features. The first two features are
shown in Fig 2.1. where the two classes are displayed with dots and stars.
Then we have added two randbm components in the range 0-20. So feature
3 and 4 are not useful features, The fifth component is twice the value of
the first component. So the first and fifth features are strongly correlated
features. | |

Data set 3

The data set 3 has been created with four features. The frst two features
are shown in Fig 2.1. And the third and four features are shown in Fig 2.2,
where the two classes are displayed with dots and stars. Note that here either
(F1, F3) or (F3. F;) can do the classification job. =~ —

Data set 4

Here we considered Iris data set. This is the well-known Anderson’s Iris data
set [8]. It contains a set of 150 measurements in four dimensions taken on Iris
flowers of 3 different species or classes. The four features are sepal length,
- sepal width, petal length and petal width. The dat}a?set contains 50 instances

_of each of the three classes. |

15
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Table 2.1: Results on DataSetl with and without Regularization n =
0.9 and 11 = 0.3,

*

2.4 Results and Discussion

We have used a network architecture with four hidden nodes in a single
hidden layer.We trained the feature selection network with 30000 epochs.
The features are then selected based on the gate opening values.

Data set 1

The data set 1 has been created in such a way that-the two classes can be
satisfactorily separated with only the first two features. This is betause the
third and fourth elements of each pattern have been chosen randomly. Table
2.1 shows the gate opening for three different initializations of the network.
Note that, K, = 0 results in the original OFS network. From Table 2.1 it
is clear that the original OFS method opens the first two gates more, as

i, ] B ] ____Random initialization of network )
Initialization 1 1 Inltlahzatlon Imtla.hzatlan 3 ]
Gate SSE. mis- | Gate | SSE, mis- Gate
opening | classification | opening | classification i
0.0 0.9800 [0.0009.0 0.9846 [0.0012.0 .
1 0.9812 0.9821 0.9800 i
0.0082 | 0.0089 10.0108 |
| 0.2596 0.2525 0.2443
0.0 1 0.1090 | 0.0102. 0 0.1095 [ 0.0101, 0 0.1063 | 0.0097, 0
0.1072 | - 10.1077 | | 1 0.1045
1 0.0008 0.0004 0.0004
0.0001 | 0.0008 0.0008

they correspond to the two dominating features. But the fourth gate is also

open moderately, it indicates that the fourth feature has little discriminating
power. But by applying the penalty with regularization factor 0.5, we find
that, only the first two features have much high discriminating power than
the other two. The other two gates are almost closed. -

This happens consistently for all the three runs. Note that, with regu-

larization, the extent of gate opening for the good features is also reduced
significantly, but even with that the network brings the misdassification to

n



Table 2.2: Results on DataSet 2 /3 features ; vith and without Regularization
=09 and np =0.3.

o

-

Table 2.3: Results on DataSet3 with and without Regularization : p
0.9 and p = 0.3.

K,

0.0

1 2.0

Gate
opening
0.9631
0.9515
0.9587
0.9801

0.1464
0.1160
0.0070

0.0049

0.0060. 0

i, ~ Seed for the random initialization of network
: Inifjalization | _[ [nitialization 2
Gate SSE. mis- - | Gate | SSE. mis- | Gate
| opening | classification | opening | classification | opening
0.0 | 0.0098 |[0.0010,0  [0.0073 |0.0010.0 | 0.00%2
0.9857 0.9842 t 0.9843
0.0082 0.0075 0.0078
0.4779 0.4351 0.4312
0.9535 0.9459 0.9458

0.0010 |0.0060,0 | 0.0010 0.0010
0.1472 | - 10.1470 0.1471
1 0.0011 { 0.0010 0.0010
0.0032 0.0032 0.0033
0.1071 0.1084 0.1085

Random initialization of network

Initialization 1

0.09%8, 0

Initialization 2
SSE. mis- Gate | SSE. mis-
' classification | opening | classification
0.0071.0 .| 0.9644
0.9513
0.9595

| 0.9807

IR

~ Initialization 3
SSE. mis-

classification

0.0010, 0

0.0065. 0

m_-____'__—""_“-_-:ﬁ:_—_--___.__f.-—_

[nitialization 3
Gate
opening

SSE. mis-

—

classification




Table 2.4: Results on Iris data set with and without Regularization :
0.9 and 1= 0.9,

Zero.

i,

| Gate

1 0.9514
1 0.9513
0.9555

2.0 | 0.0005

0.1095

{ 0.0419
0.6203

- Data set 2

The data set 2 has been created in such a way that the first and fifth features
are correlated. So our feature selection method expected to select one of them.
if required; but not both. Table 2.2 shows the result of the OFS method
with and without regularization. And we find that only the second and fifth
features are emphasized by the network with reg'ulanzatlon But t.he original -

OFS, opens three gates.

Data set 3

Initialization 1

SSE. mis-
classification

opening
0.0 | 0.9402 | 4.1850. 2 0.4578

7.4198. 6

Random initialization of network

Initialization 2

Gate

opening

‘_ SSE, mis-
classification

0.7967
0.6969
| 0.8713
0.0002
| 0.1099
0.0190
0.6536

r

'5.003, 2

7.9156, 6

n:

[nitialization 3
Gate | SSE, mis-
opening | classification
5.2710, 3

0.0002
| 0. 1007
0. 0368
0. 6309

7.5775, 6

.ﬂ

The data set 3 has been created in such a way that the two classes can be
- satisfactorily separated with the first two features or the last two features.
Table 2.3 summarizes the results for this data set. From Table 2.3 it is clear
that the original OFS method opens all four gates to get very low sum of
squared error. But using the modified OFS with regularization factor 2 0 we

find that the network picks only the first two features.
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Data set 4

This is the Iris data set. Table 2.4 depicts the results for Iris. data set. Table
2.4 reveals that the original OFS method opens each of the four gates to
a great extent. But the modified OFS with regularization factor 2.0, opens
only the second and fourth features. Row 1 of Table 2.4 suggests all four
features as important while row 2 suggests only features 2 and 4. It shows
that these two features have adequate discriminating power. With usual MLP
all four features result in 2 misclassification and only features 2 and 4 can
get 2 misclassification. For all three cases, the network emphasizes more on
feature four, which is consistent with the known facts.
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Chapter 3

Extracting Fuzzy Rules With
higher Specificity for '
Classification

The fuzzy logic approach is a different conceptual model to classify objects.
[t is based on approximate reasoning. The fuzzy set theoretic framework
provides a degree of support to each of the potential classes. A set of fuzzy
rules is used to define (describe) the class label of each data point. The rules
- are defined on some attributes which are computed for each data point. After
the rule base is obtained. for every data point, the attributes are computed
and the degree of match of these attributes with each fuzzy rule is computed.
The class label associated with the rule having the strongest match defines
the class of the data point.

- The methodology that we are going do discuss consists of three steps: .
generation of the prototypes,conversion of the prototypes into the fuzzy rules,
tuning of the fuzzy rules for the given training set. It has been observed that
if there are some atypical patterns(which are far away from the center of its
class) in the training set then if the rules are tuned for long enough then
the spread of the membership function of the rules may go on increasing.
This is because during the tuning of the rules we want to reduce the error
function E(see section 3.1.3), which depends on the firing strength and hence
on spread of the membership functions. When the spreads of the membership
function increases, the specificity of rules becomes low. This is usually not a
desirable property as it can lead to poor generalization. That is why when
the misclassification or the sum of error reduces to some acceptable level, the .
training is stopped to get the parameters of the fuzzy rules. Therefore, there
is a need to regularize the tuning process, which can compromise between
the increase in spreads and the reduction of error and the misclassification.
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We achieve this by adding a penalty term with the error. which is a function
of the spreads of the rules. |

3.1 Fuzzy rule based classification method

A fuzzy rule based classifier consists of a set of fuzzy rules of the form:
R;:if ry is A;; AND 1, is A;y AND..AND r, is A;, then class is ). Where
Ai is a fuzzy set used in the ¢ rule and is defined on the domain of zi,i.e
defined on-the universe of k** feature.

When a sample data point xeRP is presented to the system for classifica-
tion. the fuzzy rules fire to produce outputs. The magnitude of the outputs
(also known as firing strengths) are used for deciding the class membership
of the sample data z.

3.1.1 Generation of prototypes

We use the k-means clustering algorithm to find few clusters in the data
corresponding to each class separately. Consider a three class training set
Y.\, and Xy such that X = X, U XU X5, XN =@, r#¢=123be
the training data. .Y, be thie training data corresponding to class 9. X C RP.
The number of prototypes for each class may be different. Here we considered
two prototypes ( v; € RP ) for each of the classes.

3.1.2 Fuzzy rule generation from the prototypes

A prototype v; for class k can be translated into a fuzzy rule of the form:
R.: if ¢ is CLOSE TO v; then the class is k.
where the fuzzy set ‘CLOSE TO’ is represented by a multidimensional mem-

bership function:

ax-vid |
ucrosero(x) =exp % (3.1)

where ¢; > 0 is a constant. This above membership function represents
a hyperspherical zone of with center at v;. This abgve function may not per-
form well when different features have different variances. So this £ 'CLOSE
T() v; is written as : ; is CLOSE TO v;; and r2is CLOSE T O v,z and ... and
Tpis CLOSE TO v;. Here v; = (520 Viy -vos r:;,,)r and ¢ = (1}, 1), ...,:rp)T. In
this way we get a set of initial rules. In general. the i** rule representing one
of their classes takes the form : -



i,y CLOSE TO v; and...and r, CLOSE TO v,, then the class is k.

Here p is the number of features and hence the number of atomic clauses.
The fuzzy set CLOSE TO v;; is modeled by a:Gaussian membership function:

Lii(z; : vi;.00;) = exp (-—(.rj- ~ vij)"!,f’cr:-*;).

In this above case each fuzzy rule is characterized by two parameters
vi; and oi;. The v;;s of the rules are initialized be the components of the
prototypes obtained by the k-means algorithm. The initial estimation of o;;
is computed by the standard deviation of j** feature of the i** cluster from
the training set.
For a given data point x, we first find the firing strength of each rule
using the product |
 j=p
n.-(a:) = H ﬂ..'j(Ij . Uij,ﬂ'ij).
=1
Here o;(z) is the firing strength of the i** rule on a data point z. This
gives the degree of match between the data point & and the antecedent of the
th rule. Now class label of the rule having the maximum firing strength de-

termines the class of the data point . Let | = argmaz{a;(z)}, and suppose

the £* rule represents class c. then x is assigned to class c.

3.1.3 Tuning of the fuzzy rules

To improve the performance of the rule base, we now refine the rules to
minimize the training error using gradient descent technique. In this regard,
appropriate learning rules are also derived.

Let x € X be from the class c and R, be the rule from class ¢ giving the
maximum firing strength a. for z.
- Also let R, be the rule from the incorrect classes having the maximum
firing strength a_. for €. We use the error function E to refine the rules:

E=Y (1= adz) + atz))

ze X

. The rules are refined by minimizing E with respect to the centroids (v.;

, U~ ) and spreads (o,; . 0; ) associated with R, and R-.. This may be
v1ewed as refining the rules with respect to their conterts in the feature space.
‘The rule refinement algorithm is given below. -



The rule refinement algorithm
Begin
Choose learning parameters n,, and n,
Choose a parameter reduction factor 0 < ¢ <1
Choose the maximum number of iterations. maziter.
Compute the error E, for the initial rule base R®.
Compute the misclassification M, corresponding to initial rule base R?.
[~ 1

While ( t € mariter) do
For each vector z € X
Find the rules K. and R_..
Modify the parameters of rules and as follows.

For k=1top

et old JE

V= Vg qmavgid
= V3 4 all — e + at)fjg(rk -3
ck
vk = v:ﬁ q'"aiéi
= ufi - n(l — a. + a-¢) ;:;::2 (rx = tii)
Tk
g:*m = G’gid q,b%. )
= 0% +nll 0&:."" ‘11);;3 (zx = tﬁ‘)‘z
ck
ox = o "’ai?g,,
= Jii — (1 -a.+ Q-c);::; (2 — vﬂ)i
—~ck

End For
End 3kl-',-:}r“' S
Compute the error E, for the new rule base R'.
C mnj.mte the misclassification M, for R*.
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If ..1[! > ﬂ'[t-l Or Eg > Ep-;

‘then |
Nm — {1l = 20y
My & (1 - :'-')Us
Rt — Rt-—l

/* If the error is increased. then possibly the
learning coefficients are too large. So, decrease
the learning coefficients and restore the rule base to R! . */

If ( M, <= a threshold (T}) or E, <= a threshold (T5) )
then Stop

t—t4+1

- End while

End

At the end of the rule base tuning we get the final rule base R/ which
Is expected to give a very low error rate. |

3.2 Regularization of Fliz'zy Rules

- The rules extracted by the above scheme or its variants work fine and have
been used in many applications. However, the rules extracted by this method
may have a very low specificity. particularly when the training data set has
a few outlier points. This happens because, to reduce E, the learning process
may increase the spreads significantly. To avoid this problem we add a penalty
for larger spreads. Our goal is to make a compromise between the increase in -
spreads of the rules and the reduction in the error and misclassification. Hence
we add a penalty term in the error equation £ = ¥ g ¢ (1 —a.(®)+a-(z))?.
So the error function changed to: '

E= ) (-i ~ a.(z) + a-(x))* + K, x g(o). (3.2) |
TeX |

In (3.2) K, > 0 is a constant. ‘- } .

We have already discussed about regularization during the training of
OFS system that makes a compromise between the error and gate open-
ing. Here we use a similar concept. Here g(o) is a function of all spreads.
O=(011.012, ...,0up)" the vector of all spreads. n is the number of rules. g(o)
should be monotonically increasing function of . For every data point, since
we adjust only the parameters of the best and worst rules for that data point.
it is enough to find the update rules for (o and o-4) for k=1.2....p. After

25



adding this Regularization-term to the error function it can be easily shown
that the adjustment of spreads (o and o—.; in the tuning algorithm{see
section 3.1.3) are modified to:

netr Id Qe 2 . y .
O =007 +n,(l -, + al-c)cr"”a (zx — 23" + K, x giow). (3.3
| ck |
Q-

ol = 0% — (1l — ag + Qc) =3

Tk
For not allowing the uncontrolled increase of the spreads. one of the pos-

sible penalty terms can be of the form gla)=3,;exp~P=%4) D > 0. So the

equation for new E becomes:

E = Z (1 -a.+ a¢)2 + K, x Z érp"(D"""] (3.5)
¥

IeX

(zk = v2%)° = oK, X g (0-ci) (3.4)

Here D > 0 is a constant. D is used just to-keep the value of penalty
moderate i.e, to scale the value of penalty.

3.3 Results and dbservations

We use the same data sets except data set 2 as discussed in Section 2.3 to
demonstrate the fuzzy rule based system. We do not use data set 2 as for OFS
data set 2 was used to show the effect of correlated features. The parameters
used for the tuning process are 7,, = 0.8, 1, = 0.3 and the maximum iteration
used s 500.

Data set 1

The result is shown the Table 3.1. During the tuning process the sum of
squared error{SSE) is reduced with the increase in the spreads. Row 2 sug-
gests that some of ¢ values go to as high as 22.58. making a rule with very
low specificity. The proposed system checks the uncontrolled growth of os at
the cost of higher SSE. but still it attains zero misclassification. It is observed
that with the higher values of regularization factor A, the increase in spread
is controlled more. |

Data set 3

Table 3.2 shows the result for data set 3. The tuning process reduces the sum
of squared error(SSE) with the increase in the spreads. But by applying the
penalty the uncontrolled growth of as has been checked at the cost of higher
SSE. but still it attains zero misclassification.
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- Table 3.1: Result on Data Set I with and without reqularization n, =
(0.3 and Nm = 0.2

Fuzzy sets o and mu

| :__ L spread(o}
[nitial 1.311 | 1.522 [ 5.5310 | 6.583
Rules 1.511 { 1.350 | 5.359 | 5.878
1.416 | 1.435 | 5.541 4.632
- 11.499 | 1.421 | 5.5396 | 5.373
Tuned 7.248 | ¥.324 | 20.677 | 22.5380
Rules 7.091 { 7.134 | 20.380 | 21.304 |
7.081 | 7.160 |} 20.765 { 18.798
7.257 | 7.161 | 20.708 | 20.373
kr =035 | 6.973 | 7.057 | 14.045 | 16.348
Rules 6.845 | 6.713 | 14.627 | 15.304
* 6.780 | 6.866 | 14.901 | 13.321
6.950 | 6.881 | 15.076 | 14.534
ke = 1.3 6.819 | 6.585 | 14.069 | 15.373
Rules 6.700 | 6.535 | 13.776 | '14.535
l 6.600 | 6.700 | 14.020 | 12.728
6.782 | 6.696 | 14.243 | 13.694
Data set 4

- 17.849

protoype (v)

17.694
2,754

2.629
17.755
17.781
2.651
2.486

[ '17.315
2.682
17.634
2.049

17.886 | 2.098

17.777
2.68]

2.917 |

17.438
2.586
17.690
2.069

10.481
10.237
10.692
9.509

10.461
10.019

- 10.694

9.459
10.497

| 10.118

10.717
9.405

9.821

10.363
10.500
11.355
9.903

10.159
10.333
11.341
92.919

10.334
10.396
11.584

SSE. mis-

classification
165.5373. 0

10.631. 0

18.97L. 0

The result on Iris data is shown the Table 3.3. During the tuning process the
sum of squared error(SSE) is reduced with the increase in the spread. In this
case also regularization leads to rules with higher specificity. Note that, for
Iris, the number of rules can be easily reduced. but we did not try to optimize
the number of rules. Here our objective is to demonstrate the effectiveness

of regularization.



Table 3.2: Result on Data Set 3 with and without reguianzat:on N, =
0.3 and n,, =0.2

Fuzzy sets o and mu - | SSE. mis-

‘spread(a| protovpe (v) classification
[nitial 1 1.369 | 1.357 [ 2477 [ 2439 | 17.292 | 17.470 | 10.380 | 10493 | 161,384 0
Rules | 1.638 | 1.455 | 2.402 [2.480 | 2257 | 2,950 | 10.212 | 10.089
1.434 | 1.287 | 6351 |6.828 | 17.506 | 3.070 | 14.161 | 12.387

1.523

T

T

6.018 1 5.884 | 2.156 | 17.305 | 13.568 | 14.176

Tuned | 7.169 0| 12,636 | 12.839 [ 17448
Rules | 7.832 | 7.175 | 12.355 | 12.845 | 2.13¢ | 2. . 12
| 7.346 | 6.871 | 22.605 | 22.969 | 17.596 | 2.962 | 13.535 | 12.154
7.289 | 7.18]

21,486 | 21.395 | 2.041 17.106 | {3.005 | 13.716

Rules 7.333 | 6.988 | 12.078 | 12.538 | 2.126 | 2.826 | 10.177 | 10.133
. .382 1 6.892 § 20.71 2D.TI4| 17.599 | 2,966 | 13.604 | 12.141

017304 ] 16.204 | 16.194 | 2.011 17.423 | 13.054 13.714 | '
1| 7.290 : . T.437 022 " 387 | 13.5187, 0




Table 3.3: Result on [ris Data set with and without _regularizution s =

0.3 and n,, = 0.2

! Rules

} Initial

Tuned
Rules

0.236
0.212
0.307
0.360
| 0.395
0.457
1'1.426
0.279
| 1.041

1.954
1.368
0.241
‘ 0.218

0.310
0.372
0.398
0.459

' 0.537 |

Fuzzy sets ¢ and mu

spread(o

1.470
(J.148
1.140
0.683
0.616
1.121

' ().991
0.006
1.292
0.654
0.432
1.189

0.136

0.250
0.517
0.460

!

P

0.119 | 5.256
0.060
0.149

4.713
3.933
6.308

0.269 | 6.168

7.123
5.004
4.621

0.332 { 5.644

0.499
0.623

6.741
4.869

1.035 § 6.964

protoype (v

3,440
2.909
| 2.660
3.091
2,633
3.126

' 1.448
1.160
4.025
4.665
4,922
9.937

0.289

0.191 |

1,183
1.458

1 1.943

2.132
0.251
0.007
1.208
1.488
1.990
2.151

SSE and mis-
classification

119.6803. 3

30.8614. 3




Chapter 4

Detection of
Micro-calcifications

Now we get back to our original problem, detection of micro-calcification. As
we already discussed that the identification of breast cancer needs two steps.
detection of micro-calcification and classification of the calcification into one
of the three class. normal.benign or malign.

Here we start with one of the approaches from the literature to detect
micro-calcification. We first analyze the fuzzy logic based micro-calcification
scheme by Heng-Da Cheng (2] and then we propose some modification of this
method to get more accurate result with less computational complexity-

The rest of this chapter is organized as follows: The next section presents
the steps used for micro-calcification detection by Heng-Da Cheng. In the
following section we suggest to use S-function instead of II-function for the
fuzzification of image for enhancement of mammogram. We also propose an
easy way of thresholding for the segmentation of mammogram to detect the
micro-calcification.

4.1 Detection of Micro-Calcification 2]

In [2] authors used fuzzy logic techniques for micro-calcification detection.
- Micro-calcifications are first enhanced based on brigf'ntnm and non-uniformity.
Then. irrelevant breast structures are excluded by a curve detector. Finally
microcalcifications are located using an iterative threshold selection method.
The major advantage of this method, as claimed by author. is its abﬂm- to
detect micro-calcifications even in very dense breast MamMmograms.

. The proposed method follows five major steps:image fuzzification. image
enh incement, irrelevant structure removal. segmentation. and image recon-
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Figure 4.1: The system diagram of the proposed algorithm.
struction. These steps are shown in the Fig 1.1

Common assumptions usually made in mammogram analysis

Here are few assumptions that are considered valid for mammogram analysis.
(1) In digital mammography the suspicious areas are brighter than their sur-
rounding tissues.

(II) The intensities of microcalcifications are higher than the average inten-
sity of the breast tissues.

(IIT) The regions of microcalcifications are usually not homogeneous.

4.1.1 Mammogram Fuzzification

- This technique emplovs fuzzy sets theory to increase the contrast of micro-
calctfications. The mammogram is fuzzified by using a 7-function shown in
Fig 4.2. The value of the 7 represents the degree of the closenem of the grav
value g to ¢.The =-function equation is defined as:

0 B -~
: Sig:r.y,z2) = 2(E 295y
1-2(&2) y<g<a
1 gLz
}

S{g;c—b.c-b/2.¢) tfg<c

m(g:b.c) = { 1-5(g:c.c+b/2.c+b) otherwise

- The selection of the points ¢ and b could be viewed as an object-background

classification problem. The point c is selected using an entropv thresholding
method.
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Figure 4.2: A 7 function for image fuzzification.

¢ = Argmaz(Hy(t) + Hy(t)) for k<t< N (4.1)
L= |

Where

Hy(t) and H,(t) are entropies of object and Background regions.
t is the value of the threshold.

b=max(c-k.N-c).

K is the mean gray value of breast tissue.

N is the maximum gray value of the image.

The areas containing microcalcifications (i.e., ROI) are usuallv inhomo-
geneous and the variances of these areas would be larger than those of tis-
sue background regions. Therefore. a threshold can be used to separate the"
microcalcifications from the breast tissues according to nonuniformity. This
threshold is computed from the local variance occurrence function equations
(4.2) and (4.3) and is determined by a minimum error thresholding tech-
nique. Here the objective is to find out the threshold of the local variance to
classifv the micro-calcification and background tissues. The optimum thresh-
old T is found corresponding to the minimum value of the minimum-error

thresholding criterion function.

1 A -
Hov = YT x M ;g”" (42)
JR . A TR
'a B Mx M j=1 Joy = Hay | .



Y. |

Ve, = r IfJIy < r
i . .

] otherwise

4.1.2 Image Enhancement.

The image after enhancement is obtained by:

F

9oy = T(g; b.C) X vy X N, (4.4)

where N is the maximum gray value of the image.

 4.1.3 Irrelevant Breast Structure Removal

Most of the irrelevant breast structures are found to exhibit line-like or curve-
like patterns after the microcalcification enhancement. A curve detector is,
therefore. employed to remove these irrelevant breast structures. Whether a
pixel is considered a microcalcification or a curve-like pattern is determined
by the ratio of its tracing length and width. The curve detector traces the
length and width of the detected micro-calcification in the enhanced image
to decide whether pixels are in a curve or not.

The traced object is said to be a curve if one of the following conditions
holds.

Length
Width ~ h. (45)
Length > T;. (4.6)

If the above conditions are not satisfied it will be considered a calcifica- °
tion. B

4.2 Proposed Modifications

4.2.1 Use of S-function instead of [I-function for image
fuzzification )

When we are using the x-function for the image fuzzification, it can be easily
observed that the gray values of the pixel greater than c¢ is reduced from
its actual value.Similarly, the gray values of the pixels that are less than
¢ will also be reduced. So it will not intensify the contrast in a desirable
manner. But. the pixels with gray value ¢ will become prominent, So, if ¢ is
the intensity level for micro-calcification then this will work. This is shown
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Figure 4.3: Result of 7 function image Enhancement.

1
0.5

0.0
c-b c¢c-b/2¢c 5

Figure 4.4: A S-function for image fuzzification.

in the Fig 4.2. Since usually the intensities of the microcalcification is higher
than the intensity of the breast tissue and it is brighter towards the center
of the calcification. the m— function often creates a black patch inside the
calcification during the enhancement of the mammogram. Fig 4.3 shows an
image before and after the enhancement of the calcification using the method
in [2].

This problem can be solved by using a S-function instead of x- function.
By using a S-function for image enhancement the pixel value above ¢ ( see
Fig 4.4 ) will remain as it is. This is because the S-function gives a value of 1
after the point c. The comparison of the result between 7 and S-function for
- image enhancement is shown in the Fig 4.5. Note that, 7-function creates a
black patch inside the classified area which is absent with S-function.

4.2.2 Setting of Threshold on Local variance for Non--
uniformity of calcification

[n {2} we have to compute two threshold values. one is c(cross over point for
fuzzification) and T(optimum threshold for non uniformity of calcification).
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- Calcification with 7-function and S-function

Figure 4.5: Comparison of = and S-function enhancement.

As discussed earlier, Cheng proposed two methods for these. The value of
¢ is tound maximizing entropy of the segmented image. But, histogram en-
tropy thresholding tries to find a threshold that often makes the object and
background class of comparable sizes. So it may not produce the desired
threshold.

- It is observed that the enhancement algorithm gives higher values to the
pixels with gray values nearer to ¢ when their local variance is greater than
T. And it assigns gray value almost zero to the pixel with gray value out side
the range c-b to c+b. where b=max{ c-k.N-¢ }. Clearly N-c is dominates
the other one. With a considerable amount of experiments we found that a
threshold of 150 is good enough for the background gray value for a pixel to
be calcification. Since, for a given application mammograms are taken with
‘the same machine, such a threshold can be used with a high confidence. '

Again we found that the threshold for local variance T, is always between
10 15. This is found to be very low for local variance of the calcification
pixel. Hence in the image enhancement equation (4.4), this T has very little
contribution. So based on our extensive experiments we have fixed a threshold
value of 25 for the local variance of a pixel to be calcification.

We have seen that these above two cutoff values do not degrade the
performance of the calcification detection. But using these thresholds we
achieved a good amount of decrease in computational complexity.

4.3 Calciﬁcation Detection method

We have followed the following method for the detection of calcification.
¢ Threshold the image with local variance greater than 25 and less than 900
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and background pixel value greater than 130).

e Remove the irrelevant curve like structure.

e Remove the unnecessary isolated components.

e Remove all the components from the outside of the breast tissue.
e [ind out the calcification clusters and predict the circle around it.

4.4 Results and Discussion

For this experiment we considered 30 mammograms from the MIAS data-
‘base: 10 normal cases, 8 Benign cases and 12 malign cases. These 30 images
generate 178 suspected calcified areas. Qut of these 10 normal images. for 3
images, the proposed system detected (false positive) calcified areas. Out of
the 20 images with calcification in 6 images it. could not detect the actual
calcified areas. Note that, the false positive cases may be correctly classified
by the classification stage.

Using the method in {2], the number of false positive cases increases a lot,
but it reduces the number of false negative cases to four.

Fig 4.6 and 1.7 depict the resuits with one of the difficult images.



Chapter 5

Classification of
Microcalcifications.

We have already discussed that, we need to classify the detected calcification
into one. of the three classes: normal, benign or malignant. According to
the class to which the calcification belongs. we can predict the presence or
absence of the carcinoma in a mammogram. |

- The major problem to classify the calcification is mainly due to its fuzzy
nature. low contrast. and low distinguishabilitvy from their surroundings.
In this chapter we discuss about the classification of the detected micro-
calcifications. In the first section. we deal with feature selection for calcifica-
tions using the neural network based feature selection method discussed in
Chapter 2 and use the selected features to classifv micro-calcification. And in
the following section we discuss about fuzzy rule extraction for classification
of micro-calcification.

5.1 Classification of Micro-Calcification us-
ing OFS

Here we considered ten features." These are size of the calcification, cluster
size. contrast. mean gray value of the calcification. compactness{9], linear-
ity. irregularity. homogeneity, mements(9], distance of the calcification form
the center of the calcification cluster. We applied the neural network based
feature selection technique with regularization to select the major features
for classification of micro-calcifications. In OFS technique the features are
selected based on their importance as reflected by the values of the atten-
nators associated with the input nodes. Table 5.1 shows the gate opening
for three different initializations of the network. From Table 3.1 we find that
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the original OFS method opens most of the gates to achieve a low sum of
square error and low mis-classification. By applyving a regularization factor
1.5 we found that the network emphasizes on five features in all the runs.
Hence we considered these features to be useful features for classification of
micro-calcification. These features are cluster size. contrast, mean gray value
of the calcification. linearity, and distance of the calcification form the center
of the calcification cluster. |

The network is trained for 30000 iterations, with the parameters n =
0.9 and p = 0.9. Note that for the second.and third initializations we get a
better classification performance indicating that OFS with reqularization does
a good job of feature selection.

Classification of Calcifications using Neural Networks.

In the 30 images. there are 178 suspected calcification areas. Of these 178
cases, we use 110 for training, 30 for validation (of neural network) and 38
for testing. We use only the five selected features and train 3 networks each
with 5 nodes in the hidden layer. Table 5.2 shows the classification rate on
the training and test data set. Table 5.2 reveals that the selected features
result in an excellent performance.

5.2 PFuzzy rules for Micro-Calcification Clas-
sification

The result of fuzzy rules on the training data is shown the Table 5.3. During
the tuning process the sum of squared error(SSE) and misclassification are
reduced with the increase in the spread. By this method we find that the
mis-classifications reduces to 9. Hence the classification rate is 93.5%. With
regularizing constant of (.5, the reduction in the spread is not much here.
It could be because of the data are sparsely distributed as reflected by the
high initial spreads for 3 of the features. Table 5.4 displays the performance
. of the training and test data sets. Comparing Table 5.4 with Table 5.2 we
find that neural networks marginally perform better than fuzzy rules. It is
observed that with the greater value of regularization factor A, the increase
in spread is controlled more. Hence the specificity of the fuzzy increases
by applying the regularization to the tuning process. The misclagsification
can further be improved by optimizing the number of rules that we {ould not
investigate due to lack of time. |

The fuzzy rules have two distinct advantages: it is readable tﬁ\ human
beings and it is not likelv to give poor generalization.
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The comparatively poor performance by the fuzzy rules mav be attributed
to the fact that the feature set that we used mav not be the best for fuzzy.
rules. The feature set is selected bv an online feature selection scheme using
neural networks. so it may not be the best set for a tuzzy rule base classifier. -

Because the utility of a feature depends also on the tool used to solve the
problem.
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Table 5.1: Results of Mammogram data set (10 features) with and rzthout
chulanzat:on n=09and n=10.9.

(. " Random initialization of network
‘Initialization 1 Imtlahzatlon 2 Imnahzatmn 3
Gate | SSE, mis- | Gate SSE, mis- | Gate ] SSE. mis- |
| opening | classification | opening classification opening _Elass_LEcatlon [
0.010.024 10.0084. 2 0.957_[:3.008, 2 0.945 120111
10.999 | 1.000 | 0.999
1 0.994 | 0.996 1 0.998 |
0.919 0.083 | 0.966 | |
0.996 | 0.991 1 0.990
1 0.939 0.697 | 0.703
0.433 0.022 | 0.686 |
0.994 . 0.905 0.013
0.891 0.869 0.799 |
~{0.999 l | 0.999 0.999 |
1.5 [0.001 [6.272,5  [0.064 [0.396.0 0.001 [0.478942, 0
0.514 0.357 0.435 |
| 0.275 0.222  0.252
0.262 0.155 0.196 |
0.090 0.073 0.001
0.141 0.117 0.099 |
0.001 0.000 ' 0.026
0.001 | 0.076 0.000
0.066 1 0.091 | -1 0.074
1 0.253 0.197 0.300 |

Table 5.2: Result of classification of calcifications by neural networks using 5

selected features : np = (.8

Network

Initialization

b

100%[110/110]
96.3%{106,110]

11

Classification rate

02.1%(35/38] | -
* -’ 89.4%[34/38)
96.3%(106/110] | 92.1%(35/38]




Table 5.3: Resuit on Mammogram Training set with and without requlan:za-
tion ny = 0.3 and n,, = 0.2

-

_ Fuzzy sets o and mu SSE. mis-
B spread(c) protoype (v) ) | classification |

[nitial | 232 6.832 1693046 | 6.95 | 3.68 | 2.21 | ir1.41 ] 0.90 | 5..9 | 78.32. 27
Rules {3.17 ~ 26.52 | 17.34 | 0.83 { 3.97 | 3.50 | 10.30 | 197.75 | 0.49 | 10.10 |

424 . 1022 | 11.04 {086 | 0.03 ! 725 | 14.48 | 192.23 | 0.55 | 13.46

440 . 431 |98 [0.70]|6.84 {630 | 1251 | 17.741049 (977

[ 10.68 . 961 | 30.15 | 0.73 | 28.99 | 12.30 | 12.54 | 188.61 | 0.63 | 26.71 |

001 7.4 | 1650 | 0.60 | 0.01 | 42.00 | 14.31 | 180.97 | 0.55 | 00.36
“Tuned | 5.17 6.5 | 18.66 | 1.10 | 8.86 | 4.05 ] 1.28 | 1°151 1096 | 537 | 51049
Rules 208 - 26.80 { 1724 (224|290 (309 |98 |19783]0.78 | 11.70 |

284 1222 | 1415 363 | 1081 | 8.12 | 14.67 | 191.94 | 0.60 | 1479

L4 T35 | 1214 (277 | 748 | T35 | 12,58 | 1T1.96 { 0.42 | 10.39

9.4 1107 | 32,04 | 2,60 | 30.31 | 15.90 [ 12.01 | 18843 | 0.70 | 28.37

0.01 11.35 | 19.57 | 2.87 | 0.01 | 42.00 | 14.51 | 181.02 | 0.56 | 2036

.=05] 504 6.6l 531.44, 10

Rules 2092 2667 | 1716 { 222 1 2.81 | 307 | 991 |197383}0.78 | 11.70

281 1220 13.02 | 3.59 | 10.76 | 8.12 | 14.65 | 191.95 | 0.60 | 14.77

399 TA6 [ 1198 (269|736 | 7.32 | 12.60 | 172.02 | 0.42 | 10.34

10.05 11.06 | 25.26 | 2.56 | 24.00 | 15.81 | 11.99 | 188.32 | 0.69 | 23.49

0.01 112711969 | 284 1 001 | 42.00 | 14.51 | 181.01 | 0.56 | 20.56

“‘“m—_ﬂ_—m

Table 5.4: Resuit of Classification of calcifications by fuzzy rules with 5 se-
lected features : 7= 0.8

Classification rate
Initial Rules 80.7%(113/140}
Tured Rules 93.5%[131/140}
Regularized Rules | 92.8%(130/140

RiLe base
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Chapter 6
- Conclusion

" Automated breast cancer detection has been studied for more than 20 years.
Although by now some progress has been achieved, there are still remaining
challenges for future research.

In this thesis we first proposed two general purpose methods: feature
selection using neural networks and extraction of fuzzy rules with higher
specificity. The proposed modification of the neural network based feature
selection method is validated with three sets of svnthetic data and iris data.
- We found, by applying regularization to the OFS that can avoid the selection
of features with low discriminating power and correlated features. The pro-
posed method to extract fuzzy rules with higher specificity for classification
is validated with two sets of synthetic data and iris data. It is observed that
by applving penalty for higher spreads of membership functions the increase
of spreads is controlled.

We then critically analyzed an existing method for detection of micro-
calcification, found some of its problems and suggested some easy solutions.
Finally. we classified the detected calcifications using neural networks and
fuzzy rules. The neural network method selects only 5 features form a set of
10 features which are found to produce better results than that by all the
features. Our fuzzy rule extraction scheme finds rules with hlgher specificity
that are interpretable by human beings.

To demonstrate the effectiveness of the system we need to do more ex-
periments. We did not try to optimize the number of rules, which should be
done to improve the performance of the system further. We considered only
10 features for classification of micro-calcification and hence there is mough
opportunities to improve the performance of the system by expanding the
feature set.
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