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1 Introduction to Problem

1.1 Introduction

Proteins are the most structurally complex macromolecules known. They are
long chain of molecules. They can be regarded as necklaces of 20 different
amino acids that are arranged in different order to make chains of up to
thousands of amino acids. The result is an extreme variety of proteins, each
type with its own unique structure and function. In order to carry out their
function, each protein must take a particular shape, known as its fold. When
a protein is put into a solvent, within a very short time it takes a particular
3D shape. This self assembling process is called folding.

Sometimes the proteins misfold (i.e. do not fold correctly) and they can
aggregate. Aggregation of misfolded proteins is believed to be the cause
of some disorders such as Alzheimer’s diseases, Parkinson’s disease, prion
disease (e.g., “mad cow” discase) and some cancers. The diverse range of
diseases that results from protein misfolding has made this a subject of in-
tense investigation: learning how proteins fold will teach us how to design
protein-sized “nano-machines” that can do similar tasks and it will help us to
prevent or reverse diseases in which proteins have departed from the correct
folding route. However, it is very time consuming to find the 3D structure of a
protein using X-ray Crystallography or Nuclear Magnetic Resonance(NMR)
imaging. Hence, researchers are working on finding computational methods
for protein fold prediction. In this thesis we shall propose some methods to
predict 3D structures of proteins from its amino acid sequences exploiting
statistical information available in proteins with known 3D structures. In
particular we made the following contributions.

1. We proposed a mechanism for generation of self-organizing map for
structures called Structural Self-Organizing Map(SSOM). This nu'-tlu)d
can be apphﬁd in areas other than protein folding also.

2. We 1}1‘0[)05{11 a modified form of mountain clustering called Structural
Mountain Clustering Method(SMCM) that is very effective for the prob-
lem understudy and is simpler.

3. The Structural Self-Organizing Map is then augmented by two subclus-
tering methods resulting in two schemes for building block generation.

4. We applied these three new methods to find representative hexamers
from a given data base and compared performance of the proposed
schemes to an existing method.



5. We then used the extracted hexamers to reconstruct some proteins.
The results are quite good. |

1.2 Proteins

Proteins form the very basis of life. They regulate a variety of activities in all
known organisms, from replication of the genetic code to transporting oxy-
gen, and are generally responsible for regulating the cellular machinery and
consequently, the phenotype of an organism. Proteins accomplish their task
by three-dimensional tertiary and quaternary interactions between various
substrates such as DNA and RNA, and other proteins. Thus knowing the

structure of a protein is a prerequisite to gain a thorough understanding of
the proteins’ function. |

Proteins make up about 15% of the mass of an average person. They
carry out vital functions in every cell and are essential to us in an enormous
variety of different ways. Muscles, cartilage, ligaments, skin and hair are
mainly protein materials. Proteins play also a vital role in keeping our body
working properly. Hemoglobin (that carries oxygen to our tissues), hormones
(such as insulin, that signals our bodies to store excess sugar), antibodies and
enzymes are all examples of proteins. Amino acids are the molecular units
that make up proteins; they are organic compounds, formed fromn carbon,
hydrogen, nitrogen, oxygen, and sulfur (with sulfur only present in R, the so

called residue or side chain). All amino acids have the same general formula
shown in Figure 1.

Proteins are macromolecules constructed from one or more chains of

amino acids (i.e. they are polymers) that encode their 3D structure. To
form a protein, the amino acids are linked by peptide bonds; that is why the
chain of amino acids (protein) is known as a polypeptide (see Figure 1). To
synthesize proteins, “machines” called ribosomes string together amino acids
into long, linear chains; this process is called translation and only 20 amino
acids are normally used. These chains loop about each other in a variety
of ways (they fold), but only one of these many ways allows the protein to
function properly. In other words, when a specific protein is synthesized in
a living system, that protein rapidly assumes a configuration specific for its
‘type and its function depends primarily on its configuration rather than on
its specific amino acid sequence. A typical protein contains 200-300 [2] amino
acids but some are much smaller and some much bigger (the largest is fitin,
a protein found in cardiac muscle: it containg more than 26920 amino acids
in a single chain).
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Figure 1: (a) General formula of amino acids. R is called residue or side
chain and it is made of various combinations of C,H N,O and S. (b) Peptide
bonds link amino acids. They are formed via a dehydration synthesis reaction .

between the carboxyl group of the first amino acid with the amino group of
the second amino acid.

More than half a century ago, Linus Pauling (Nobel prize, 1954) discov-
ered that a major part of most proteins’ folded structure consists of two
regular, highly periodic arrangements of amino acids, designated “a” and
“6”. The key to both structures is the hydrogen bond, that stabilizes the
structures. The “a” structure is now called a-helix (Figure 2). 1t is a spiral
configuration of a polypeptide chain stabilized by hydrogen bonds between
the CO group of one amino acid at position n and the NH group of the amino
acid which is four residues away (n+4).

The “b” structure is now called B-sheet (Figure 3). It is an essentially
flat 2D structure of parallel or anti-parallel 8 strands; each 3 strand consists
of two polypeptide chains that are (almost) fully extended and hydrogen-
bonded to each other. All other local arrangements that are neither a-helix
nor f3-sheet are described as random coil: they are random in the sense that
they are not periodic.

Proteins have multiple levels of structure:

1. Primary structure: Linear structure determined solely by the number,
sequence, and type of amino acid residues ().

2. Secondary structure: Local structure determined by hydrogen bonding
between amino acids and non-polar interactions between hydrophobic
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Figure 2: Spiral configuration of the a-helix structure. Hydrogen bonds be-
tween the C'O group of one amino acids and the NH group of another amino
actd hold a-helices together.

regions. These interactions produce, in general, three secondary strue-
tures: helix(Figure 2), 3 sheet (Figure 3), and random coil.

3. Tertiary structure: It results from various interactions (inainly hy-
drophobic attractions, hydrogen bonding, and disulfide bonding) of
the amino acids side chains (R) that pack together the elements of

the secondary structure. The result is a 3D configuration of proteins
(Figure 4).

4. Quaternary structure: 1t is characterized by the interaction of two or
more individual polypeptides (often via disulfide bonds) and the result
is a larger functional molecule (hemoglobin, Figure 4)

1.3 The protein folding problem

In the early 1960s, Anfinsen (3], [4] showed that proteins actually tie themn-
“selves: if proteins become unfolded, they fold back into proper shape, no
shaper or folder is needed. It is a self-assembling process. Sometimes a pro-
tein will fold into a wrong shape. Partially folded chains can exist but don’t
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stay that way very long; they become fully folded chains in a fraction of a
second. The protein folding process raises many difficult to answer questions.

e What rules govern the rapid folding into the so-called native state, that
is the energetically stable, 3D configuration?

e Given a polypeptide, the number of possible (folded) configuration is
enormous: hundreds of millions of possibilities. So how can a com-
pletely unfolded protein find the correct path?

o How many different folding routes exist, and what are their relative
- probabilities?

e If a particular protein always assumes the same configuration in a living
system (its “native configuration”), and if that configuration represents
some sort of energy minimum for the polypeptide chain, how does the
protein find that energy minimum within nanoseconds?

e Does the protein pass through every possible configuration state until
the energy minimum configuration is discovered?

e |s there a critical intermediate partially folded configuration? Are there
constraints that reduce the number of possible configurations?

Figure 5 depicts a schematic representation of the protein folding problem.
Proteins organize themselves (i.e. fold) into specific 3D native structures

through a myriad of conformational changes, the stability of wlmh is defined
by innumerable forces between atoins.

Once a protein sequence has been determined, deducing its unique three-
dimensional (3D) native structure is a daunting task. Experimental meth-
ods to determine detailed protein structure, such as x-ray diffraction studies
and nuclear magnetic resonance (NMR) analysis, are highly labor intensive.
Since it was discovered that proteins are capable of folding into their unique
functional 3D structures without any additional genetic mechanisms, over 25
years of effort has been expended into the prediction of 3D structure from
sequence. Despite the large amount of effort expended, the protein folding
or protein structure prediction problem, as it has come to be known, remains
largely unsolved.
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Knowing the structure of a protein sequence enables us to probe the fune-
tion of the protein, understand substrate and ligand binding, devise intelli-
gent mutagenesis and biochemical protein engineering experiments that ini-
prove specificity and stability, perform rational drug design, and design novel
proteins. Understanding structure has potential applications in the various
genome projects being undertaken, such as mapping the functions of pro-
teins in metabolic pathways for whole genomes and deducing evolutionary
relationships. The protein folding problem is, therefore, one of the most fun-
damental unsolved problems in computational molecular biology today. The
following section describes methods for protein structure prediction.

1.4 Theoretical Methods

There are three major approaches for predicting the structure of proteins:
comparative modeling, fold recognition, and ab initio prediction.

1. Comparative modeling

Comparative modeling exploits the fact that evolutionary related pro-
teins with similar sequences, as measured by the percentage of mateh
-between sequences based on an optimal structural superposition, have
similar structures. Comparative modeling is based on the hypothesis
that two similar sequences are likely to have similar structures and

functions. Comparative modeling usually works fine with homologous
proteins.

The process of building a comparative model is conceptually straight-
forward. We start with a set of sequences whose structures are known
(determined by experimental methods). This set is called {raining set.

Then an alignment is performed between each sequence in the training

set and with the sequence to be modeled (the target). The fold of the
best IIlEltCl’lei:l' sequence can be assigned to the target.

Instead of computing explicit match between sequences: the inher-
ent characteristics of the training set can be implicitly modeled using
computational systems like neural networks [5]. The trained neural net-
works can then be used to predict the folds of new protein sequences.

In this method we predict the fold, but do not find the actual 3D
structures. .

2. Fold recognition or “Threading”



Threading uses a database of known three-dimensional structures to
match sequences without known structure. This is accomplished by the
aid of a scoring function that assesses the fit of a sequence to a given
fold. These functions are usually derived from a database of known
structures and generally include a pairwise atom contact and solva-
tion terms. Threading methods compare a target sequence against a
library of structural templates, producing a list of scores. The scores
are then ranked and the fold with the best score is assumed to be
the one adopted by the sequence [6]. The methods to fit a sequence
against a library of folds can be extremely expensive computationally.
Such threading processes may involve dynamic programming, Gibbs
Sampling using a database of “threading” cores, Simulated annealing,
Monte Carlo method and branch and bound heuristics, or as “sim-

ple” as using sophisticated sequence alignment methods such as Hidden
Markov Models.

3. Ab initio prediction

The ab initio approach is a mixture of science and engineering. The
science is in understanding how the three-dimensional structure of a
protein is attained. The engineering portion is in finding the three-
dimensional structure from a given the sequence. The abh initio folding
process can be broken down into two components: devising a scoring
function that can distinguish hetween correct /good (native or native-
like) structures from incorrect (non-native) ones, and a search method
to explore the conformational space. In many ab initio methods, the
two components are coupled together such that a seareh function drives,
and is driven by, the scoring function to find native-like structures.

Currently there does not exist a reliable and general scoring function that
can always drive a search to a native fold, and there is no reliable and general
search method that can sample the conformation space adequately to guar-
antee a significant fraction of near-natives (< 3.0 Angstroms RMSD from the
experimental structure).

Some methods for ab initio prediction include Molecular Dynamics (MD)
simulations of proteins [7]; Monte Carlo (MC) {8] simulations that do not use
forces but rather compare energies, via the use of Boltzmann probabilities;
Genetic Algorithms [9] which tries to improve on the sampling and the conver-
gence of MC approaches, and exhaustive and semi-exhaustive lattice-based
studies [10] which are based on usjug a crude/approximate fold representa-
tion (such as two residues per lattice point) and then exploring all or large
amounts of conformational space given the crude representation.

()



1.5 What can structure prediction do for us?

Given the large volume of genes being sequenced, the rate of discovery of new
protein sequences is growing exponentially relative to the rate with which
protein structures are being solved by experimental methods. In many sit-
uations, even a crude or approximate model can help an experimentalist
significantly in guiding his/her experiments. Thus even though the current
methods are still in their infancy, prediction of structures for all protein se-
quences of complete genomes in conjunction with experimental work is a
realistic goal. Structural analysis of proteins is in great demand for further
mutagenesis, substrate and inhibitor design, and for enhancing function and
stability. Methods such as molecular dynamics simulations use structural
data and methods for structure prediction to probe protein and organiza-
tional function and evolution. It can help in predicting functions of a pro-

tein. It may also help in designing patient specific genetic drugs for different
. difficult disorders.
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2 Approaches to Predlctlon of Proteins Struc-
ture

Understanding the relationship between the three-dimensional structure of
proteins and their one-dimensional amino acid sequence is still one of the -
most fundamental unsolved problems in physical biochemistry. Much atten-
tion has been given [11}, [12], [13], [14] to the relationship between structure
and sequence of short oligopeptides.The idea is to see to what extent identical
or similar sequences imply similar structures.

In 1] an algorithm has been proposed for analyzing and ultimately pre-
dicting protein structure, defined at the level of C, coordinates. Our inves-
tigation Is primarily motivated by the method described in [1]. We analyze
hexamers (oligopeptides of six amino acids residues) and show that their
structures tends to concentrate in specific clusters rather that vary continu-
ously. Thus, using a limited set of standard structural building blocks taken
from these clusters as representatives of the repertoire of observed hexamers,
one may be able to construct 3D structures of proteins. After replacing each
hexamer by a standard building block with similar conformation, approxi-
mate reconstruction of the actual structure can be done by smoothly joining
the overlapping building blocks into a full protein.

Specifically, we re-address the three following questions in [1]:

1 Is it possible to divide a given set of hexamers obtained from a set of
proteins into a reasonable number of really different structural shapes?

Whether the conformations of hexamers vary continuously or can he
separated into disjoint clusters.

2. Can the library of these different shapes, which are called lrulldmg
blocks, be used to reconstruct the structure of proteins?

3. Do the building-hlwcks carry some sequence specificily that will enable
us to assign. building blocks -from sequences, and thus use them in a
three dimensional prediction Stﬁ:hﬂme?

In this thesis our {JbJectlve is to develop mechanisms for finding proto-typical
hexamers from a set of proteins whose 3D structures are known. These pro-
totypes will then be used to construct the 3D structure of proteins with un-
known structures. In this regard, we propose a new Self-organizing map algo-
rithm for structures and shapes. We call it Structural Self-organizing(SSOM).

11



T'able 1: Refined Brookhaven Peptides.

IAPR  1BP2 1CC5 ICCR ICPP ICPV ICRN ICTF
IECA 1FB4h IFBJ] 1FC2d IFDX |1GAPa IGCR  IHIP
IHMQa 1INSa  2INSb  ILHI  ILZ] ILZT IMBD INXB
IPCY 1PP2r 1PPD IPFT ISBT 1SN3 ITGSi 2ABXa
2ACT  2ALP  2APP 2AZAa 2CAB 2CCYa 20DV 2CTS
2CYP 2ESTe 2FD1  2GN5 2INSa 2LHB 2LZM - 20vo
2PABa 2PKAa 2PKAb 2RHE 2SGA 2SNS 2SODo  351C
3C2C - 3DFR  3ICB  3PGM 3PTP 3RP2a 3RXN 3SGBe
3TLN 4ADH 4APE 4ATCa 4ATCb 4CYTIr 4DFRa 4FXN

4HHBb 4HHBc 4HHBd 4SBVa 5CPA 5LDH 5PTI  5RSA
JRXN  7CAT

We also propose a modified version of Mountain Clustering Method called
otructural Mountain Clustering Method(SMCM). We compare performance
of our methods with methods in [1]. Before describing the methodology we
first describe the data set used.

2.1 Database

Our structural data base was taken from the Brookhaven Protein Data Bank,
as released in January 15, 1987 (354 polypeptide chains, 61,064 residues).
This data set was used by the authors of [1]. The retained structures are

only those structures for which X-ray data had been collected to 3.0 A or
higher resolution, and which had been refined against the observed X- -ray
data to an R factor of less than 30%. Finally we use a library of 82 peptides
(12,973 residues), which are referred to as the refined Brookhaven cata base
(see Table 1) Actually, all 82 structures had been solved to a resolution of
2.8 A or higher of which 68 structures had a resolution of 2 A or better.

2.2 Deﬁning'-thé distance between protein structure

The distance (or similarity) between two structures is not easy to define.
We used the following well-accepted definition. The RMS deviation distance
between two structures s and t is measured by first aligning them to the
greatest possible extent using the BMFE (best molecular fit) algorithm of
Nyburg [15] or Kabsch, [16], [17] and then calculating the difference in the
positions of the corresponding Cy, atoms as a normalized root. mean square

12



c)

Figure 6: The RMS distance between (a) and (b) is larger than the distance
between (a) and (c). But, the shape of (a) is more similar to (b) that to (c).

deviation.

S lles — etz
RMS = , i
n— 2 | (1)
where r? is 3D coordinate of ** atom in molecule s 'md n denotes the number
of atoms in molecule. -
One must keep in mind that this definition does not always capture the
intuitive notion of similarity.

e First, it is highly scale dependent, i.e., two slm(.,tuws with a sumlm
shape but different sizes will show no sunllarlty

e Second, it is not sensitive to the geometrical and topological propertics
of the structures, see for example Figure 6.

e Third, and possibly the most important, it is sensitive to insertions
and deletions since it is based on the distance between corresponding
atoms in the two structures.

However, for short structures such as hexamers, the RMS distance seems to
be a good measure of similarity.



2.3 Measuring the random distance between protein
structures

In order to evaluate the statistical significance of our results, we need a
framework of measurements of random distances between protein fragments
of various lengths. We defined random distance [1] as the expectation of the
RMS distance between a pair of fragments, of given length, drawn at ran-
dom from our refined library. This distance is calculated by choosing a few
sample proteins of different types, extracting all of their overlapping frag-
ments, and calculating the average distance between them. In this study,
we used four proteins: 4HHBb (human deoxyhemoglobin, p-chain), 5PTI
(bovine pancreatic trypsin inhibitor), 1BP2 (bovine pancreatic phospholi-
pase A2), and IPCY (oxidized poplar plastocyanin), with total length of 426
residues. These structures had been very accurately determined, and they
represent different structural classes of proteins. |

2.4 Methods for selection of building blocks

Throughout this analysis hexamers(fragments of length 6) are used, which

appear to be long enough to carry structural meaning. T'he detailed reasons
for the selection of this length will be elaborated in the discussion.

¢ T'wo Stage Clustering Algorithm (1]

We describe the algorithm in [1] as we shall comnpare our method with
this one. In this approach, a cluster is defined as a set of structures
with the property that the RMS deviation between mentbers, or al-
ternatively, from some typical member, is less than some fixed value.
Since 1 A [1] seems to be the separation point between similar and
not similar hexamers, 1 A was selected as tle threshold value for the
clustering process.

The same four sample proteins were used. Eachprotein was divided
into overlapping hexamers; thus, for a protein of length N there were
N-5 hexamers, and for these four proteins a total of 406 hexamers. The
RMS distance between each of the 82,215 pairs of hexamers was calcu-
lated (this number is simply [K(K-1)1/2] for K=406). The clustering
procedure consisted of two stages. In the first stage, a variant of the
K-nearest neighbor clustering algorithm is used. A hexamer is selected
to be the first niemnber in the first cluster, and all other hexamers closer
to this first member than the 1 A threshold value are assigned to the
same cluster.. Each member of the cluster thén serves as a new source

14



to add all of its sufficiently close neighbors to the cluster. This “annex-
ation” process is repeated until no further hexamers can be added to
the cluster. A new hexamer is then selected as the fivst, member of the
next cluster, which is constructed in the same way. The procedure is
terminated when all the hexamers have been assigned to clusters. This
part of the algorithm is deterministic, i.e., the assignment to clusters
is independent of the order in which the hexamers are used, and it has

a run-time complexity that is quadratic in the number of elements to
be clustered.

In the process described above, the diameter of a cluster (i.e., the
greatest distance between any pair of members) can grow significantly.
Consequently, in the second stage of the procedure a second algorithm
to obtain a finer subclustering assignment is applied. For dividing each
cluster into subclusters, each of which contains a memher whose dis-
tance [rom any other member is not more than a threshold value, and
again 1 A is used. This member is called the center of the cluster. Opti-
mal clustering, in the sense that the number of subclusters is minimal, is
computationally very expensive so a heuristic procedure is applied: For
‘each cluster, the member having the maximum number of neighbors is
chosen as the center of a new subcluster containing those neighbors as
members. The process is repeated for the other unassigned hexamers
until all the hexamers of the cluster are assigned to subclusters.

Structural Mouliltaili Clustering Algorithm We now propose a modifiec
form of a clustering method due to Yager [18].
Mountain Clustering Method

— The first step is to form a discretetization of the object space R°
by forming a grid on R®°. The intersection of the grid lines, which
occurs at what are called the vertex or node points, will provide
our desired discretetization. The finite subset of 5 consisting of
the vertices is denoted as V. The set of points in V constitutes
the candidates for cluster centers. Thus the degree of approxima-
tion of final centers is very sensitive to the fineness of the grid.
The finer the grid the less approximate is' the result but, more
calculations are needed. The grid need not be uniform through-

out the space R°; different parts of the space may have a different
resolutions of the grid.

+

— The second step is the introduction of the data and construction
of the mountain function. The mountain function denoted by

15



M is defined on V oand is constructed as follows. For each picee
of data, x;, an amount is added to the M value at ench point
v € V. The amount added depends on the distance of v from
X;; the closer the two the more is added. In this way after all the
data points are considered we get a function on RS, actually V,
which looks like a mountain range reflecting the distribution of the
data. The next step is the selection of the cluster centers. This
I8 accomplished by the destruction of the mountains. We find the
point in V, ¢;, which has the greatest value for M, the peak of
the mountain range, this becomes our first cluster center. For all |
points v in V' we subtract from their M value a quantity dependent
upon its distance from c; and the value M(c,). The effect of this
subtraction is to reduce the mountains. We next look for the new
peak. This becomes our next cluster center, c,. We now use C

and its value to further reduce our mountain function. This is
continited in this manner untit the mountain function is virtually

destroyed. For high dimmensional data, to get quality prototypes,
computational overhead of Mountain Clustering Method becomes
very high. To overcome this, Chiu[19] suggested the Subtractive
Mountain Clustering Method, where each data points is used as a
potential cluster center instead of the grid points. Next we discuss
our proposed Structural Mountain Clustering Method.

2.5 Structural Mountain Clustering Method(SMCM)

The Structural 'rMountai'n Clustering Method is a modified form of Sub-
tractive Mountain Clustering Method [18]. The data set used is:

- "IY.]:.{xli"'ﬁxN}; xlem}j; z’: 112!"'*N‘

In SMCM each data point is considered a potential cluster center, For
each piece of data, an amount is added to the M (mountain potential)
value at every data point including itself. The amount added depends
on the structural similarity of x; from x;; i # j the structural similarity
is obtained after aligning the data points using Best Molecular Fit
Routine(BMF), the. closer the similarity between the two the more is
added. In this way at every data point we compute .the mountain
potential M using all other data points. The next step is the selection
of the cluster centers. Like MCM we find the hexamer, ¢y, in the data
set, which has the highest value for M. This becomes our first cluster
center. We form the clusters using the cluster center and assigning

16



members to clusters which are having RMS distance less that 1 A.
Note that, in MCM we do not do that, but we discount. the poteutial
and find next cluster center. We then eliminate all members in the first
cluster from our data set. We now recompute the potential and look for
the new peak. This becomes our next cluster center, c,. We now use
C, and its members to further reduce our data set. This is continued
in this manner until all points in the data set are assigned to clusters.

The algorithm is as follows:
Given the data set |

X ={x1,...,Xn}; xieﬁi"’; t=1,2,..., N,

We use the best Molecular Fit Algorithm between every pair
(xiixj); 3#.}1? — 1:2:-" 1N;

to compute .

IEMLS‘LJ, V?,J

- Repeat while all hexamers are not assigned to clusters

1. Calculate the potential at each hexamer x; using the formula,

ﬁJ(X;) — Z ﬂx.p("-'ﬂl’. ‘ .RAJS,;J)

b xjij‘?gt

where RM S;.5.18 the Root Mean Square distance between x; and
x; after alignment, o is a positive real value; a > 0

2. The hexamer which has the highest potential is chosen as the final
butlding block and a cluster is formed by adding the butlding block
and hexamers which has RMS 1 A from the building block. The
hexamers added to cluster are removed from the hexainers list.

Choice of v may have eflect on the clusters extracted. We experimented
with different choices of a. |

Variant of Self Organizing Feature Map

The SOM method is a kind of vector quantization algorithm whicl
has been widely used as a statistical tool for investigating data struc-
tures due to its excellent visyalization properties for high dimensional
complex data sets [20]. The SOM gives a mapping from the high-
dimensional input data space R" into a low-dimensional (usually 1-
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dimensional or 2-dimensional) grid of units preserving neighborhood
relations in the input space so that data points lying nearby each other
in the input space are mapped onto nearby-map units. In other words,
SOM preserves the topology of input on the map. SOM also has
the property of density matching. Every unit has a reference vector
m; € ®*. An input data vector x € R" is compared with all m; typi-
cally using Euclidean distance; the minimum of the Euclidean distance

Ix — my;|| defines the best-matching unit for the input data vector x,
which is signified by the subscript b: |

Ix — my|l = min H_x — my|| (2)

In this way, x is mapped onto the unit b. The relerence vectors myg
and its neighbors m; are adjusted by a learning process as follows:

m;(t -+ 1) = my(f) 1 p(t)he: () (x(t) — my()), (3)

where ¢ is the discrete time index and hpi(t) is a neighborhood function.
Of the various choices, the Gaussian function is most popular one.

| a2 |
hy:(t -+ 1) = exp ( Hrgaz(;" ), (4)

is widely used, where rp and r; are the positions of hest matching unit b
and its neighboring units on the grid, 7(t) is the learning rate, and o (¢)

defines the width of the kernel. a(t) and o{t) decrease nmonotonically
with time as follows:

.
o(t+ 1) = Uuexp(— *"‘)&

-
- 5
where g is the value of ¢ at the initiation of the SOM algorithm, and
71 is the time constant. | |
| t | |
n{t + 1) = noexp ( — —)1 (6)
o T
where 7}y is the value of 1 at the nitiation of the SOM algorithm, and
75 18 another time constant.

The SOM Algorithm randomly selects a training data point and ap-
plies 3. This is called a step, When the algorithm is repeated enough
number of steps, the map is expected to preserve topology of input
data. Although SOM has been used in numerous application, it is not
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useful for applications that need quantization of structures or shapes.
In other words, if we want for example, helix structures of different
orientation to map to the same node on the feature map, usual SOM
will not work. So we propose a modification.

2.6 Structural Self Organizing Map (SSOM)

We shall illustrate and describe the algorithin using hexamers, although it
can be used in other applications. |
Algorithm SSOM: Input vector is a hexamer which is of dimension p =

6 * 3 = 18 consisting of 3D coordinates of C,, atom 0f six residues.
Consider a net of P x () = [ neurons

1. Initialization. The algorithm can be initialized by randomly generated
I vectors from the smallest hyperbox in RP containing the training
data. For a quicker convergence and better results the net can also be
initialized by randomly selecting the welgllt vectors {m;(0)}}_, from
the available set of input vectors {x;}, for j = 1,2, ...,1, where T
the number of neurons in the lattice and N is the uumber of inputs.

2. Sampling. Draw a random sample hexamer x from the input data; the

vector x represents the activation pattern that is applied to the net of
neurons.

3. Sunilarity Matching. Find the (best-matching) (winning) neuron i at
time step ¢ by using minimum RMS (equation 1) distance criterion.

1 = arg min{ KM S},
| j

i

where RM S; is the distance hetween the aligned x(t) and my,j =
1,2,...,1

4. Updatzng Adjll‘it the synaptic weights vectors of all neurons within a
spatlal neighborhood of the winner by using the update formula

my(t 4 1) = m,(8) + n(t)hse(8) (K(E) — my(6))

where x(¢) is aligned version of x(t) corresponding to m;(¢) using BMF L
routine, where ¢ is the discrete time index and h;;(#) is the neighbor-
hood function. WP use the Gaussian function

| C— .l .

204(t)
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where r; and r; are the positions of the winner neuron ¢ and the neuron
j in its neighborhood. Like usual SOM #(t) is the learning rate, and o(t)

defines the width of the kernel. aft) and o(t) decrease monotonically
with time as following

a(t + 1) :agexp(——j—), - (8)

71

where og is the value of ¢ at the initiation of the SOM algorithm, and
71 18 the time constant.

n(t+ 1) :?jgexp(— _), (9)

where 7p is the value of 5 at the initiation of the SOM algorlthm and
72 i8 another time constant.

5. Continuation. Following a suggestion by Kohonen [20], The updating
of weights is continued for 500 times the number of neurons(500 x P x

Q steps).

6. For finer refinements, the network is trained for some steps with only
winner update strategy.
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'3 Application of SSOM to Protein Data
3.1 Characteristics of SSOM

SSOM can find interesting clusters that can be useful directly to pattern
recognition type application. But here we have an additional constraint. We
want to limit the quantization error for each hexamer in the training data to
1 A. So we used a second stage to recluster a cluster obtained by SSOM, if
the dispersion in the cluster is more than what is desired.

It consists of two stages, in the first stage SSOM algorithin is applied to
get major clusters, and in second stage subclustering of the major clusters is
done by using SMCM on each major cluster which has members with RMS
deviation more than 1A. We have also used the two-stage clustering of [1] for
subclustering of the major SSOM clusters.

4 Reconstructing proteins by standard build-
ing blocks

4.1 Méthod of Reconstruction

Following [1] we use the following procedure: First, we replace each original
hexamer of the protein by its closest (in terms of RMS distance) standard
building block. Tlien, since the building blocks overlap, we align every two
consecutive building blocks by using the BMFE algorithm, Onto the suflix
(the last five residues) of the first building block we fit the prefix (the first
five residues) of the next building block. Thus, the 3D position of the last
residue of the latter hexamer is determined and is added to the growing chain.,
This process is repeated until the whole protein is reconstrueted.
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5 Results

5.1 Performance of Bliildingl Blocks

In order to egtimate how well these building blocks represent hexamers found

in proteins, we tested each of the 12,973 hexamers in our refined Brookhaven
data base. We enumerate our findings below:

1. Two Stage Clustering |1] The 406 hexamers were first clustered into
55 distinct clusters. These clusters were then further subdivided as
described earlier to give a total of 103 subclusters. The central hexamer

- of each subcluster was selected to be a standard building block. 76%
of hexamers had a distance of less than 1 A from at least one of the
standard building blocks, and 92% had a distance of less than 1.25A
from one of them. The average distance between a hexamer and its
closest building block (including the 24% of the hexamers whose closest
building block was at a distance greater than 1 A) was 0.74A. Table 2
depicts 30 most popular building blocks found and the corresponding
number of hexamers which are at a distance of less than 1 A.

2. _Stmctuml Mountain Clustering Method
Using a = 3.3, we got 105 clusters. Using these 105 building blocks
we find that 77.1% of hexamers had a distance of less than 1 A from
at least one of the standard huilding hlocks, and 92.6% had a distance
of less than 1.25A from one of them. The average distance between
a hexamer and its closest building block {including the 23.9% of the
hexamers whose closest building block was at a distance greater than
1 A) was 0.74 A. The top 30 building block found by [1] can model
7716 hexamers(see Table 2) while the top 30 building blocks obtained

by SMCM can model 9515 hexamers(see Table 3) So SMCM perfors
better than the method in {1].

3. Structural Self Orgamzmg Map |
Applying SSOM, the 406 hexamers were first cluqteml into 49 major
clusters. The number of clusters depends on the number of neurons in
the lattice. The fact that our SSOM algorithm did not produce a small
number of large clusters showed that indeed the structure of hexamers
does not vary gradually and they are readily separable into distinct
clusters. These clusters were then further subdivided using SMCM to
give 130 subclusters. The central hexamer of each subcluster was se-
lected to he a standard building block. In this case 81.3% of hexamers
have a distance of less than 1 A from at least one of the standard build-
ing blocks, and 94.3% had a distance of less than-1.25 A from one of
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Table 2: 30 Most Popular Building Blocks obtained from Two Stage Clus-
tering {1] |

No. | Protein | Residue | Sequence | No. of occurrences |
1 [iBP2z | 104 | ICFSKV 2908
2 | 1BP2 80 NEITCS 901
3 | 5PTD 31 QTEFVYG 403
| 4 | 1BP2 57 KLDSCK 319
5 | 1BP2 108 KVPYNK 286
6 | 1BP2 74 SYSCSN 283
7 { 4HHBb H4 VMGNPK 226
8 | 4HHBb 2 HLTPEE 194
9 | IPCY A0 VEDIDS 151
10 1 ANHBL . VI TP 1 48
11 | 4HHBb 82 KGTFAT 145
12 | 4HHBb 16 GKVNVD 135
13 | BPTI 30 CQTFVY 135
14 | 1PCY 85 SPHQGA 132
15 | 1BP2 18 PLLDEN 132
16 | IPCY 86 PHQGAG 119
17 | IPCY 10 GSLAFV 116
18 | 5PTI 27 AGLCQT 100
19 | 1BP2 84 CSSENN 99
20 | 1BP2 61 CKVLVD 95
21 | 5PTI | .. 5 CLEPPY 91
22 | 4HHBD 32 LVVYPW 88
23 LIPCY | 72 VALSNK 88
24 | 1PCY 2 DVLLGA 88
h | 1IPCY 66 KGETFE 86
6 | 1BR2 30 GLGGSG 85
27 | 1PCY 7 ADDGSL 893
28 | 1BP2 56 KKLDSC 73
29 | 4HHBb 95 KLHVDP 72
30 |1IPCY | 53 SKISMS 63
R | 7716
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Table 3: 30 Most Popular Bulldmg Blocks obtained from Mountaln Cluster-

ing
No. | Protein | Residue | Sequence [ No. of occurrences
1 1BP2 50 NCYKQA 2849
2 1BP2 80 NEITCS 902
3 1PCY 71 EVALSN 661
4 oPT1 20) RYFYNA 540
5 oPTI 28 GLCQTF 340
6 | 4HHBb 49 STPDAV 288
7 1PCY 17 SEFSIS 247
8 | IPCY 20 VDASKI 234
9 | S5PTI 39 RAKRNN 227
10 | 41THBL 53 AVMGNP 21
11 HP'I'] 33 FVYGGC 199
12 | 4HHBb 91 LHCDKL 197 -
13 | 4HHBb 118 FGKEFT 194
14 | 1PCY 23 PGEKIV 192
15 1BP2 82 I'TCSSE 179
16 | 1PCY 28 VFKNNA 177
17 | 1PCY 86 PHQGAG | 172
18 | 1PCY 49 GVDASK 157
19 1 SPTI 14 CKARII 154
20 | 1PCY 86 SPHQGA 149
21 | SPTI 7 | EPPYTG 139
22 | 1BP2 85 SSENNA 133
23 | 4HHBb 05 KLHVDP 129
24 | 4HHBb 30, PWTQRF 128
20 L 1PCY | 2 DVLLGA [23
26 Y oK YCSIPII) 123
27 | IPCY | 91 | GMVCKV 123
28 | IPCY 11 SLAFVP 116
29 | 1PCY 10 GSLAFV 116
30 | 1PCY 65 AKGETF [16
| | 9515
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them. The average distance between a hexamer and its closest building
block (including the 18.7% of the hexamers whose closest building block
was at a distance greater than 1 A) was 0.69 A. So the performance of
the building blocks are much better than those by {1] and SMCM. One
may argue that, it uses more building block and hence better result.
Analyzing Table 4, which shows the perfornnance of top-30 building
blocks, we find that they can model 41929 hexamers, which is much
higher than the performance of top 30 building blocks obtained in 1]
or SMCM. This indicates that there are some very good: prototypes
and there are some poor pmtotypes/bulldmg blocks genecrated by the
- SSOM based system. This may be attributed to the density matching
property of SOM. In a high dense area, it places more prototypes giving
better quantization, and after applying 1 A threshold few points may
be left out which are treated as prototypes.

We also applied the two-stage method of [l] for subclustering of
SSOM clusters. The performance of the top 30 building blocks found

by this method is shown in Table 5. Performance of this system is also
much better than |1].

5.2 Performance of Reconstruction

Evaluating the performance of reconstruction procedure is not a trivial task,
following the methods in [1] only the first 60 residues of each protein were
used in order to-liave a standard (not too long) protein length on which to
test our approach. From the refined Brookhaven data base, all of the proteins
(71) of length greater than 60 are used and only their first 60 residues are
used. One of the simplest ways to measure the similarity between the original
and reconstructed structure is to calculate the RMS distance between then.
These distances were compared {o the average “random” distance between
strictures, which we toek 1o be the average distance measured hetween any
pair of truncated proteins in our library. ‘Thus, we had 2485 pairs (from the
71 proteins of length 60) with average distance of 12.85 A and SD of 2.12 A.

1. Two Stage C'lmiﬂring /1] The average distance between the original
proteins and the reconstructed ones is 7.3 A, which is 2.6 SD lower
than the random average. Of the proteins 28% had been reconstructed

with an RMS of less than 5 }\ but 26% had RMS distances greater than
9 A -



Table 4: 30 Most Popular Building Blocks obtained from SSOM after sub-
clustering by SMCM

No. | Protein | Residue | Sequence | No. of occurrences
1 1BP2 104 ICFSKV 2908
2 | 4HHBb 125 PVQAAY 2881
3 | 4ITHBb 134 VAGVAN 2809
4 | 4HHBb 126 VQAAYQ 2853
5 | 4HHBb 133 VVAGVA 2850
6 | 4HHBD &9 SELHCD | 2849
7 { 4HHBb 65 KKVLGA 2847
8 | 4HHBbL 137 VANALA 2823
9 | 4HHBhL 128 | AAYQKV 2819
10 | 4HHBb 19 NVDEVG 2805
11 | 4HHBb 114 LAHHFG . 2074
12 1 SPTI 2 PDFCLE 1419
13 | 1PCY 94 GKVTVN 989

14 | 1PCY 93 VGKVTV 885

15 1 1PCY 20 KIVFKN 882
16 | 4AHHBb 38 TQRFFE 748
17 | 4HHBb 99 DPENFR 730 .
18 | IPCY 36 PIINIVF 540
19 1 1PCY. 18 | KFSISP 536

20 | 4HHBbL 139 NALAHK 484

21 | 1BP2 72 NYSYSC 462

22 | 5P 32 TFVYQG 444

23 | 51T |7 RIIRYIS P

24 | 1PCY | 8l SFYCSP 420

25 | SPTI | Bl | CMRTCG 405

26 | HPTI 15 KARIIR 381

27 | S5PTI 28 | GLCQTF 340

28 | 1PCY 56 SMSEED 226

29 [ SPTI | 38 CRAKRN 216

30 | 4HHBb 1 VHLTPE 212

| ' 41929
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Table 5: 30 Most Paopular Building Blocks obtained from SSOM after Sub-
clustering by method [i]

No. | Protein | Residue | Sequence | No. of occurrences
1 [ 4HHBb 89 SELHCD 2849
2 | 4AHHBL 65 KKVLGA 2847
3 | 5PTI 49 PDOMRT 2843 .
4 | AHHBb 86 ATLSEL 2840
5 | 5PTI 50 | DCMRIC 2831
6 |4HHBbL | 128 | AAYQKYV 2819
7 | 4HHBhL 19 NVDEVG 2805
8 | AHHBbL | 114 LAHIFG 2674
9 |4nmBL| T FSDCGLA 2666
10 | 5Pl ) PDICLIE 1119
11 | IPCY 94 GKVTVN 989
12 | 4HHBbL 38 TQRFFE 748
13 | 1PCY 71 BVALSN 66
14 | 1PCY 18 | BFSISP 536
15 { 4HHBb 139 NALAHK 484
16 | 5PTI 32 TFVYGG 444
17 | 1PCY 80 YSFYCS A3T
18 | 5PTI 31 QTFVYQG 408
19 | BPTI 51 CMRTCG 405
20 | 5PTI 15 KARIIR 381
21 | SPTI | .46 | KSAEDC 326
22 | 1PCY 17 SEISIS QAT
23 | 4TI 14 LWGKVN AT
24 | 1BP2 | 79 NNEI'TC 246
25 | 1PCY 5 | LGADDG 235
26 | 41HBL ] 54 | VMGNPK 228
27 | 5PTI 39 | RAKRNN 997
28 | IPCY | 56 | SMSEED 226
29 | 5PTI | 38 CRAKRN 216
30 | 4HHBbD 1 VHLTPE 212
| 34496




2. Structural Mountain Clustering Method |
The average distance between the original proteins and ‘the recon-
structed ones is 7.2- A, which is 2.64 SD lower than the random av-
erage. Of the proteins 32% had been reconstructed with an RMS of

less than 5 A .but 24% had RMS distances greater than 9 A. So SMCM
marginally outperforms {1]. | -

3. Structural Self Organizing Map
The average distance between the original proteins and the recon-
structed ones is 6.9 A, which is 2.9 SD lower than the random average.
- Of the proteins 35% had been reconstructed with an RMS of less than
5 A but 20% had RMS distances greater than 9 A. Thus, SSOM out-
performs both methods in [1] and SMCM. |

6 Conclusion and Discussion

6.1 Conclusion

We proposed two new schemes named the Structural Self Organizing Map

method and Structural Mountain Clustering method for finding building blocks
or prototypes in a database of structures. The two proposed methods are

tested .on bench mark data sets and are found to produce good prototypes

than the Two Stage Clustering Methoed {1]. The Structural Mountain Clus-

tering Method is simple and finds prototypes in one stage, unlike 'T'wo stages

of clustering method. The Structural Mountain Clustering Method yields
prototypes that match to more members in database of hexamers within

threshold of 1 A. The prototypes extracted also produce good veconstructed

protein 3D structure, Similarly, the huilding blocks extracted by the two
SSOM based schemes are also quite good both for representation of database

and reconstiuction of protein structure.

One of the aim of this thesis was to show the existence of a manageable-
sized set of standard building blocks that has sufficient expressive power to
replace most of the oligomers in known structures. We can thus answer
first question in the aflirmative; the fact that near aboul 50 disjoint clusters
were forimed indicates that the known hexamers can be divided into distinct
structural motifs. These structural motifs include the well-known types of
secondary-structure elements with finer resolution, and many standard units
that connect, them.  The classification itito a set of a few dozen building
blocks seems to be more meaningful than the crude classilication to very
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few secondary-structure elements. It is stressed that building blocks are not
secondary structure elements. Even if the secondary structure assignment of
a protein is known, it is not clear how to assign three-dimensional structure to
the protein. However, because our building blocks reflect three-dimensional
information (for example, the direction of a turn after a helix) they easily
lend themselves to the reconstruction process. Thus, we can give a positive
answer to the second question: The simple reconstruction algorithm that we
applied yields good results in simulating the original proteins. -

6.2 Discussion
6.2.1 Why hexamers?

In this thesis we concentrated on an analysis of hexamers as building blocks.
It is clear that there is no magic in the number six. We considered hexamers
as a starting point for our research for the following pragmatic reasons:

o Kabsch and Sander [11] observed that the same pentamer sequence
can be found in totally different conformation in different proteins.
Thus, pentamers by themselves seem to be too short to carry structural
stability. The length of secondary structure elements is usually in the
range of 4-16, e.g., the length of a turn is usually 4-6 amino acids;

helices and.sheet have larger ranges but they are still usually less than
16 residues. |

¢ When using longer oligomers, their sequence dependency seems to fade
out. Hence, longer building blocks may be less sequence specific, and
we should use as short fragments as possible.

6.2.2 Prediction of 3D structures of Proteins with Unknown 3D
structures

Each building block is associated with a sequence distribution matrix. This
matrix can be obtained simply by counting, for all of the hexamers in the
cluster represented by this building block. The matrix gives the distribution
of amino acids at each one of the six positions along the hexamers. These
matrices can be normalized against the distribution of the different amino
acids in the data base. These matrices reflect the sequences of the hexamers
that are represented by each building block. They can be used to assigh a
hexamer sequence to its corresponding huilding block. The sequence of cach
hexamer is inatched against these matrices and assigned to the building block
whose matrix it fits the best. Then the construction procedure described in
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Lhe section Reconstruction ol Protein Structure can be applied oy the protein
sequence with unknown 3D structure to predict its 3D structure.
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