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ABSTRACT

Given a large graph, stored on disk, there is often need to 'perform a search over this
graph. Such, a need could arise, for example, in the search component of a data-intensive
expert system or to solve path problems in deductive database systems or simply, to
search on the web-graph. In tﬁis dissertation, we present a novel graph compression. and
data structuring technique on the compressed graph and show that the search algorithms
can use this data structure to prune the search space, thereby improving the efficiency.
We_advocatc the use of labeling scheme proposed by H.V.Jagadish [1] combined with
our data-structure, for modeling this type of graphs in-order to efficiently answer the
queries such as ancestors, desceﬁdants, and ieast common ancestors Whiph usually
require costly transitive closure computations. We also prbvide algorithms for finding all

common ancestors, all common descendants and all paths between any two given nodes.
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Chapter 1

Introduction

Many present day applications like, modeling of biological pathways, social networks,
and digital libraries use graph based data structure for representing their data. So, the
research community 1s also showing increasing interest towards developing methods for
storage and processing of large graphs. Surprisingly, a large portion of such modeling
efforts involve directed acyclic graphs (DAG). For example, terminology graphs of the
Gene Ontology Consortium [13] induce DAG-structured sub graphs through is-a and part
of edges. One of the largest DAG-structured terminology graphs 1s the classification
system of the US Patent and Trademark Office [14}, which has several hundred: thousand

categories to date. Another very important arca of modern day application is the
formation of Digital Library consortium that uses DAG as the basic data structure. So,
special study needs to be made to develop efficient mechanism for processing queries on-
DAG struéture. A recent work [8] has addressed the problem of pattern matching for
DAG_—structured data which exist in many scientific and ontological databases. By
utilizing auxiliary data structures to hold partial solutions and exploiting the temporal
properties in node processing, it has generalized the original PathStack and TwigStack
algorithms to be applied to DAGs. However, his research effﬁrt basically extends the
‘'seminal work of Holistic twig joins [9] primarily meant for XML pattern matching. Some
applications like social network, digital library consortium etc. are pri_marily interested in
path based searching and efficient path search i1s more important than twig pattern

matching.

The present work is ihe outcome of an effort to model social network applications [2] mn
order to handlé ; large directed graph representing a social community. The graphs in
somal network are directed graphs. So, by graph we mean directed graphs unless
otherwise specified. A graph compression technique has been usg:d to fuse each strongly
connected component to a hyper-node, turning a graph to a DAG. So that, further

processing can be done on the DAG.



Since the application area under study mainly demands path-based queries, two different

approaches may be taken to handle them:

. Either by creating paths from the edges against a query, or
. By generating all paths a priori and then selectively retrieving them against a
query. '

However, a real life graph would involve hundreds or even thousands of nodes. A social
network application usually involves a part of the web graph as data. In a DAG of
hundreds of nodes and edges, computation of paths against queries will make query
processing very slow. So, the first approach will be time prohibitive. However, storing all
the pre-computed simple paths of different lengths, indexing them and then accessing

them against queries may not make the query processing more efficient. This would also

need too much of space. So, a trade-off is necessary, where a few paths and sub-paths
will be pre-computed and stored and all the simple paths of the DAG should be
computable from fhem. This process has been called as Path Normalization to draw
similarity with the corresponding effort taken in the well-known relational data model.

The present work describes the normalization process in detail and considers it to be

minimal and complete.

Here, minimality signifies that in the normalized path set, an edge of the original graph
will appear only once. On the other hand, completeness ensures that through appropriate
procedure, all simple paths of the original graph can be reconstructed from the

normalized pathset without generating any extra path.

The main advantages derived from the present work are:

a) Depending on the query and the corresponding search, existing paths in the
normalized pathset may suffice to answer the query. 5o, no new paths are

generated during query processing.

b)- In case new paths need to be generated, only the mipimal number of paths

necessary over the existing normalized pathset will be gencrated.



The most common queries raised by the users of social networks have been collected.

The efficacy of the path normalization procesé has been studied by developing algotithms

to handle these queries for directed trees and DAGs. The queries are:

a)
b)

g)

Reachability queries.

Finding all ancestors of a node. During this prdcess of finding ancestors, the

structural information of ancestors can also be obtained.
Given any two nodes, finding all common ancestors.

Given any two nodes, finding the least common ancestor.
Finding all descendants of a node.
Given any two nodes, finding all common descendants.

Generation of all paths between two nodes.



Chapter 2

Path Nornialization

The network based real life applications considered for our study are represented as
digraphs. After the fusion of the Strongly Connected Components as hyper-nodes, the
augmented network is represented as a DAG. The DAG can be stored as adjacency lists.

The paths of the graph are computed from the adjacency lists. A path is a sequence of

nodes. The applications under consideration mainly involve path searches, such as

“Find all paths passing through nodes 1, and ng”

One simple way for such path determination is to generate all complete paths. A
complete path is defined as a node sequence from a Source (node whose in-degree is 0) to
a Sink (node whose out-degree is 0). These complete paths may be stored and indexed
with proper ids. Now, find the paths containing the nodes n, and ny, If we achieve this by

storing all complete paths, the followings things may happen, if two complete paths are

considered,

e They may either be isolated or

e The two paths have a common sub-path that can be obtained by the intersection of the

corresponding node sequences.

Storing all complete paths will lead to many redundant node sequences corresponding to
the common sub-paths. Normalization process should ensure that only non-redundant

paths and sub-paths are generated and stored.

A special kind of node called anchor node plays a very important role in the
normalization process. An aﬁchor node is a non-source node with out-degree greater than
| or a non-sink node with in-degree greater than 1. The anchor nodes and their
corresponding in-degrees or out-degrees determine the cardinality. of the set of non-
redundant paths and sub-paths generated during normalization. -I.n the next section we

discuss how to generate normalized set of paths.



2.1 Generation of Normalized Set of Paths

First, let us consider the problem informally. If any three nodes of a DAG are considered, they

can be connected in only three ways. We call them Chain, Cap and Cup.

the Chain structure, as shown in Fig 2.1, is a sequence of three nodes where two
consecutive nodes are directly connected. So in this structure, the DFS tree generated
from node n; in the graph is inevitably a part of the DFS tree generated from ny,
Similarly, the DFS tree generated from node n; in the graph is a part of the DFS tree
generated from n; and hence of n;as well. So, the DFS tree from node n; will generate all

the possible paths from n;and will cover all the paths starting from nand ns.

Fig 2.1 Chain Structure

-

Fig 2.2 Cap Sti;ucture | Fig 2.3 Cup Structure

The Cap structure, of Fig 2.2, shows two nodes n; and n;3, linked to a root node n; giving
it a cap-like structure. Hence, the DFS tree generated from n; will totally cover the DFS
trees generated from both n; and nis. So, the paths generated .from n; and n; are all

contained in the paths generated from n,.



The Cu;': structure, as shown in Fig 2.3, exhibits two nodes n; and n; linked to a node n,
giving it a cup-like appearance. Here, the DFS tree under n, is a part of the DFS tree
starting from either n; or n; because both covers node n;. So if the paths are generated
from both n; and n3, paths from n; will appear twicé. So, in order to avoid such
redundancy, if paths from n; are generated then from n; only the sub-paths between n3 and -
n; need to be generated.

Once again according to the earlier discussion, in the Cup structure, as shown in Fig 2.3,
if both node nl and node n3 are natural roots, all the complete paths from both nl and n3
will be generated and stored. However, all the paths from node n2 will be sub-paths for

both sets of complete paths. Path normalization process should avoid this redundant

storage of sub-paths.

So in the path normalization process, if the path generation starts from node nl, all the
complete paths from nl are generated and stored. In case of node n3, only the edge
(n3, n2) is stored, since the paths from n2 have already been considered as sub-paths of
the complete paths generated from node nl.

Similarly, if the path generation starts from node n3, all the complete paths from n3 are
generated and stored. Here, in case of node nl, only the edge (nl, n2) is stored, since the

ppaths from n2 have already been considered as sub-paths of the complete paths generated

from node n3.

So depending on the starting node, the normalized set of paths in above two cases are

different.

Informally speaking,
o The normalization process generates and stores non-redundant set of paths only, and

e The resultant set of paths obtained out of the normalization process is not unique.

So, path normalization results in a set of paths for the graph that contains complete paths



(node sequence from a Source to a Sink) as well as sub-paths shared by two or more
complete paths. Using the normalized set of paths, all the complete paths of the graph can

be generated. Reconstruction process of generating all complete paths from these

normalized paths has been proposed.

2.1.1 Algorithm for construction of Normalized Paths

The standard DFS algorithm controls the search process by assigning appropriate colors

to the nodes. The different colors are,

WHITE: A node that has not been visited yet. Initially all nodes are white,

GRAY: A node that has béen traversed at least once but all paths out of it have not

been traversed.

BLACK: A node is made black when all paths out of it are traversed.

In the algorithm, V(G) denotes the set containing all the nodes of the graph G, w(u)

denotes the predecessor of node u and Adj(u) denotes the set containing the adjacent
nbde_s of u. DFS function has the Graph as input whereas the DFS_VISIT function has a

node as the input and traverses the Graph recursively.

The standard DFS algorithm is modified to generate the normalized set of paths. The
hmodiﬁed algorithm is given below:

DFS (G)
begin
for each {fenex u € V(Q)
do begin
- color [u]l«~ WHITE
7(u) <« NIL
eﬂd; |
for each vertex v € V(G)
if in-degree(v)=0 then DFS_VISIT(v)
end;



DFS VISIT (v)
begin
if Adj{v] # ¢ and color[v] # BLACK
then begin
color[v] = GRAY
for each vertex x € Adj[v] do
if color[x] = WHITE or GRAY
then begin
color[x] = GRAY
path = path U (v,x)
DFS VISIT(x)
end,;

else begin
path = path U (v,x)
store path with new-id
path = ¢
end;
end;
else begin
color{v] = BLACK
store path with new-id
path = ¢
end,
color[v] = BLACK

end;

The modified algorithm recursively generates the normalized set of paths from each

Source (i.e. node with in-degree 0). The salient features of the algorithm are:



e In the normalized set of paths generated from this algorithm, the starting node of

any member path (complete path or a sub-path) is either a Source or an Anchor

node that is already a member of another path but still has successors.

e Any member path in the normalized set of paths either terminates at a Sink or at a |
node which has already been colored BLACK (i.e. all its successor nodes have

already been visited).

o If path generation is done for Source nodes only, standard DF S algorithm will
generate only the complete paths with all redundant edges repeated. The modified
algorithm will consider an edge only once in the normalized set of paths. Both the

algorithms are applied on the graph shown below.



Fig 2.4 Example directed acyclic graph

10



Following the modified algorithm, the normalized set of paths is:

PI: [1,'1] {a,b,c,d, e f g h}
P2: [0, 1] {e, h, i}

P3:10, 1] {c, J}

P4: [0, 0] {c, k, |, f}

P5: [0, 0] {1, m, h}

P6: [0, 1] {m, n}

P7: [0, 0] {k, 0, m}

P8:[1, 0] {p, q, ¢}

However, the query processing may demand the reconstruction of all the complete paths
from the normalized set of paths. For the purpose of such reconstruction, some additional

information is associated with each normalized path. The normalized paths are

categorized in 4 types as shown in the square bracket associated with each path.

. If a normalized path starts from a source node and ends in a sink node, it is
a[l, 1] path.

‘. If a normalized path starts from a source node but ends in an anchor node, it is
‘a[l, 0] path.
. If a normalized path starts from an anchor node and ends in a sink node, it is
. ~a [0, 1] path. | .
’ If a normalized path starts from an anchor node and also ends in an anchor node,
it is a [0, 0] path.

The reconstruction process is equivalent to the join process available in the well-known

relational system.

Considering the way we have generated the normalized paths, the normalized paths for a

DAG are not unique.

11



For example,

Fig 2.5 Example DAG
Normalized path set 1: Normaliied path set 2:
P1: {a, c, d} Pl: {a, c, e}
P2: {c, e} P2: {c, d}
P3: {b, c} P3: {b, c}

In this DAG Fig 2.5, we have presented two normalized set of paths, precisely there are 4
such paths. |

From the above discussion of cup, cap and chain structures itﬁ is evident that the number
- of paths containing a source node (R;) is equal to it’s out-degree, for a sink node (L;) it is
equal to it’s in-degree and for any other node (N;) it is equal to in-degree (N;) + out-
degree (N;) - 1. Since, an intermediate node remains as an intermediate node in one path,
it will appear as én end node in in-degree (N}) — 1 paths and as a start node in out-degree
(N;) - 1 paths. So, the number of nodes we are storing is constant for a given DAG. Also,

for any graph G = (V, E) the number of edges E is constant.

A path of n edges constitutes a sequence of n + 1 nodes. So, for storing a path we need to

store the number of nodes one more than the number of edges in the path. Thus, the

12



number of nodes stored is equal to number of paths + number of edges. Since, the
number of nodes stored and the number of edges for a DAG is constant, the number of

paths that are generated is also constant for a given DAG.

Construction of these normalized paths is done on the basis of occurrence of these paths

in the path queries. Usually, it is done by the database designer.

One of the properties of the standard normalization process present in the well-known
relational system is the redundancy avoidance. When all the features present in a problem
domain are distributed among different tables, normalization algorithm tries to ensure

that same feature is not repeated in different tables. However, such process cannot ensure

complete avoidance of repetition,

Lemma 1 Path normalization process avoids redundancy completely.

Proof: Redundancy avoidance will be considered complete only if no edge is repeated in
the normalized set of paths. The path normalization process or the modified DFS
algorithm executes a recursive function DFS_VISIT that terminates either on a Sink node
or if the visited node has the color BLACK. Once again, as soon as all the descendants of
a node are visited or if a node does not have any descendant, its color is made BLACK.:
So, the recursive function DFS_VISIT never accesses any node beyond a BLACK node.
So, a node once made BLACK (i.e. its descendants are already visited), edges beyond it
.will never be visited twice. Recursively, the DFS_VISIT function turns the color of the
nodes from a Sink to a Source as BLACK keeping no scope of visiting the same edge
more than once and subsequently to add them to a path and to store them. Hence the

redundancy avoidance is complete.

2.2 Construction of Node Buckets

In processing a query, it is necessary to retrieve a set of normalized paths. But since the
graph considered is large, the number of these paths will also be high. The retrieval of
these paths and performing union or join operations on them, while processing the query,

‘will be costly in both space and time. So, to find and retrieve optimal number of paths

13



needed according to the query, the concept of node buckets was introduced.

Definition: A node-bucket represents a container of information which relates the node
with the set of paths. It basically contains the set of paths containing the node and its

related information. Generation of a path set simultaneously adds the identity of the path
and related information to the node bucket.

Node bucket is simply a set of paths which when joined in different ways gives rise to a
number of simple paths or part of a simple path from that node. So, querying against the

nodes leads to the union or join operation on the contents of the node buckets to
formulate the paths.

The information contained in each member of the node bucket is the path identity,
originating node and the terminal node of the path. This information is used in the

reconstruction of the simple paths from the node mentioned in the query.

With reference to the graph in Fig 2.4, the node buckets are:

a: {0, 1] Pl(a, g)

b: [1,1] Pl(a, g)

c: [2, 3] Pl(a, g) P3(c, )) P4(c, f) P5(p, ¢)
d: [1, 1] Pl(a, g)

e: [1, 2] Pl(a, g) P2(e, 1)

£ 12, 1] | P1(a, g) P4(c, f)

g: [1, 0] Pl(a, g)

h: [2, 1) ~ P2(e, i) P5(l, h)

i: 11,0 C P2e, i)

i+ [1,0] P3(c, j)

k: [1,2] - P4(c, f) P7(k, m)
1:[1,2] P4(c, f) P5(1, h)

n: (2, 2] P5(1, h) P6(m, n) P7(k, m)
n: [1,0] P6(m, n)

o: [1, 1] P7(k, m)

p: [0, 1 P8(p, ¢)

g: {1, l: P8(p, ¢)

14



e the information in the square brackets after each node represents the in-degree and

out-degree of that node, and the one in parentheses denotes the originating node

and the destination node of the path.

2.3 Reconstruction Process

The normalized set of paths has to be stored and indexed in such a way that the retrieval
and reconstruction of original paths during query processing is efficient. However, to
show the completeness and to generate all paths between any two given nodes,

reconstruction of paths is needed. The algorithm presented below gives a way to generate

all simple paths from the normalized paths and the corresponding node buckets.

15



Algorithm for Reconstruction process

l. L is a global boolean variable that corresponds to the Leaf or not and t is initialized to 0 and sp is a .
pointer pointing to the elements in the respective node bucket.

2. Procedure RECONSTRUCT ( node )

D) begin
2) if L =0 then
3) sp:= bucket[node].start;
......................................................... (1)
4) else
5) sp:=bucket[node].start->next;
6) repeat
7 get the pathset pointed by sp-in the
node buckets;
8) | for each node w E pathset do begin
9) if node = w then break;
10) end;
»
1) for each node w E pathset do begin
12) PUSH ( w,stack)
13) | end;
.............................................................................................. (i)
14) update the value of L according to the pathset;
15) if L = 1 then begin
16) Display the stack;
17) end
18) else begin
19) get the last node of the pathset;
20) w = POP(stack);
21) RECONSTRUCT(last node);
22) end; .
......................................... (iii)
23) repeat
24) w:= POP(stack);
25) ~if w not equal to node && bucket[w].outdegree > 1 then
26) | RECONSTRUCT(w);
27) . until num not equal to node; |
| N $13
28) . while not end of contents of bucket[node] do begin
29) sp.=sp->next;
30) if sp not equal to NULL then
31) if sp(origin) = node then break;
32) _ end
32) until sp is equal to NULL; )
33) end;

16



if L = 0 it is evident that the last node has in-degree > 1 and node has been
traversed before. So for the generation of all the paths from the last node, it has to -

start from the very first element in the respective node bucket pertaining to the

last node, whereas in case of L=1, it is not needed.

~ lines 7-13 it pushes the elements from the variable node till the end of the path set

in the stack.

lines 14-22, the L value is updated. if L =1 then display the stack note that the
stack contains a complete path, else revisit the Reconstruct procedure with the last

node obtained from the pathset as the complete path is yet to be obtained.

lines 23-27, renders the pop out mechanism until a node is found that is not equal

to the node value in the RECONSTRUCT procedure as well as have an out-
degree > 1. If such a node is found then the RECONSTRUCT mechanism is

called again with that particular node.

lines 28-33, here the node bucket contents are checked and utilized until there ts

no more element in the node-bucket;

17



Chapter 3

Query Processing for Directed Trees

ol

In this chapter we present algorithms for two types of queries viz. Reachability queries
and finding Least Common ancestor for any two given nodes. For other queries we apply
the algorithms used for DAGs considering them as special cases of DAG queries. The

labeling scheme proposed by H.V. JagadiSh [1] has been adapted.

Example:

Fig 3.1 Example Directed Tree

3.1 Pre-processing

e Number each node to reflect its relative position in a post order traversal of the

tree. Let us call this number a post-order number.

Mapping Table for the DAG shown in Fig 3.1

Actual Node Value a |b [c |d |le |fT |g {h

Post-Order Number 8 |4 |5 7 3 6 1 2

18



Now, to each node in the tree assigh an index consisting of the lowest post-order
number among 1its descendents. For simplicity, we assume that every node can

reach itself, so that the index associated with a leaf node is the same as the post-

order number of the node.

From now onwards, all the processing is done with reference to this post order

numbering of the nodes.

[1,8]
1,4] o [6,7]

(5, 5] '
(e (1
[1,3] [6, 6]

[1,1] [2,2]

Fig 3.2 Compressed transitive closure for the tree shown in Fig 3.1

Construct Normalized Paths and Node Buckets.

Normalized paths and node-buckets for the directed tree in Fig 3.1:

1. Normalized Paths
P1: {8, 4,3, 1}
P2: {3, 2}

P3: {8, 5}
P4: {8,7, 6}

19



2. Node Buckets [Actual Node-Value, Post-order Number, Interval obtained,
Paths]

a:8 [1,8] PI1(8)P3(8) P4(8)
b:4 [1,4] PI(8)
c:5 [5,5] P3(8)
d:7 [6,7] P4(8)
e:3 [1,3] PI(8)P2(3)
" ££6 [6,6] P4(8)
g1 [1,1] PI(8)
h:2  [2,2] P2(3)

= Note that in the first line 8 represents the post order number of ‘a’, 1, 8 in the
square brackets corresponds to its in-degree and out-degree respectively and the

number 8 in the parenthesis represents the post order number of the start node of

that path.

* [t is to be noted that, while traversing the DFS we must choose the.branches as

they are done in post-order traversal of the tree.

3.2 Algorithms for query processing

Note that as mentioned earlier all the arguments passed and return values in the following
algorithms correspond to the post order numbers, also assume that the mapping to the

post order numbers and node identifiers are done implicitly.

20



3.2.1 Reachability: The intervals that are obtained from the pre-processing step- |

give the reachability information.,

1sReachable (u, v)

{

if v lies within the interval associated with node u, then return true,
otherwise return false.

E.g.:
Query: isReachable (a, g)

Answer: True
J.2.2 Least Common Ancestor of node U and node V:

. Definition: The Least Common Ancestor of nodes U and V in a directed tree

is the ancestor of U and V that is located farthest from the root.

LCA (u, v)
{
if (u >v)
{
maxPON = y;
minPON = v;
\ ._
else
{
maxPON = v;
minPON = u;
b
if(isReachable(maxPON,minPON))
{

- For each path P for maxPON

21



if (Root(P) '= maxPON)

return the node which comes just before maxPON:

)
}
else |
f
while (1)
{
maxPON = findNext (MaxPON);
if (isReachable (maxPON,minPON))
return maxPON;
}
}
]
findNext (maxPON)
{
For each path P for maxPON
{
if (Root(P) '= maxPON)
return the start node of path P;
} |
;
E.g..i _
Query: LCA (e, g)
Answer: a

22



Chapter 4

Graph Compression

Definitions

-Strongly Connected Component:

A strongly connected component of a directed graph G = (V, E) is a maximal set of
vertices U subset or equal to  V such that for every pair of vertices u and v in U, e have

both u ~> v and v ~> u ; that is, vertices u and v are reachable from each other.

Hyper—N ode:

All nodes (vertices) of a strongly connected component S are fused to a single node,

called as a hyper-node.
Hyper-Edge:

If node p, either a hyper-node or a node outside a strongly connected component S is
connected to more than one node in S in the same direction D, all such edges will be

fused to only one edge when S is fused to hyper-node H. This edge will connect pand H
in the direction D. This fused edge will give rise to a hyper-edge.

The network based real life applications considered for our study are represented as
directed graphs. One p0551ble way to compress the directed graph to a DAG is by l‘usmg,

all strongly connected components as hyper-nodes and the information of each hyper-

node needs to be maintained.

For finding strongly connected components several algorithms are present In literature
(5, 10, 11, 12]. The following linear-time (i.e., © (V+E)-time) algorithm computes the
strongly connected components of a directed graph G = (V, E) using two depth-first

searches, one on G and one on G' (Transpose of graph G).
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Transpose of a graph G = (V, E) is defined as G' = (V, E"), where E' = {(u, v); (v, u) €

E}. That is, E' consists of edges of G with their directions reversed.
Algorithm for Fusing directed graph to DAG

Initialize numSCC-Components = 0, SCCNum [i] =0, Vi€V,
Convert-DirectedGraph-To-DAG (G)

{

I. Initialize a matrix A [numSCC-Components, numSCC-Components] with
Zeroes,

2. Call Strongly-Connected-Components (G).
3. For each edge e (u, v)

{
if (SCCNum [u] = SCCNum {v])
{ ' |
Output the nodes u, v and the edge as components of hyper-node
SCCNum [u];
}
else
{
set A [u, vl=1;
(Hyper edges can be obtained easily, by maintaining the list of
multiple edges)
} |
}

Thus the matrix A becomes an adjacency matrix for the DAG havmg hyper-
nodes and hyper-edges.

4. Convert thehadjacency matrix A to adjacency list;

)
Strongly-Connected-Components (G)

{
1. Call DFS (G) to compute finishing times f[u] for each vertex u.

2. Compute G'.

‘3. Call DFS (G'), but in the main loop of DFS, consider the vertices in order of
decreasing flu].

4. Number the vertices of each tree in the depth-first forest of step 3 as a separate
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strongly connected component.
For each tree in the depth-first forest of step 3 do

{

numSCC-Components = numSCC-Components+1;
for each vertex v of the tree

{
}

SCCNum [v] = numSCC-Components;
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Fig 4.1 Example Directed Graph
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Fig 4.2 DAG that was formed after fusing strongly connected components

After the transformation of the strongly connected components into hyper-nodes we get
the DAG shown in Fig 4.2. With reference to the directed graph presented in Fig 4.1,

there are 3 hyper-nodes which have been named a, d and e.

Information regarding the hyper-nodes and hyper-edges needs to be maintained to answer
the queries, which depend on these hyper-nodcs. And the storage and retricval of these

hyper-nodes and hyper-edges is out of the scope of this dissertation work. Information

Regarding Hyper-Nodes:

Hyper-Nodel, a: _ |

Nodes: {A, B, C, D} |

Edges: {(A, B), (A, C), (B, D), (B, A), (C, B), (C, D), (D, C)}

Hyper—NodeZ, d:

Nodes: {K,L, M, N, O, P} .

Edges: {(K, L), (K.M), (L, K), (L, M), (M, P), (P, O), (P, L), (O, N), (N, M), (N, P)}
Hyper-Node3, e:

Nodes: {G, H, I}
Edges: {(G, 1), (1, H), (H, G)}

Here onwards hyper-node and hyper-edge also considered as a node and edge,

respectively. Storing and Processing of these hyper-nodes and hyper-edges is out of the

scope of this dissertation work.
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Chapter 5

Query Processing for DAGs

Once we got DAG from directed graph by fusing the strongly connected components,

pre-processing of this DAG is required for query processing. This is done as follows:

5.1 Pre-processing

By generalizing the numbering scheme that was adopted for directed trees to the case
of Directed Acyclic Graphs and assuming that the graph consists of only one

connected component; note that disjoint components can be hooked together by

creating a virtual root node.

The compression scheme works as follows:

1. F ind a spanning tree T for the given graph G. We call T the tree-cover of G,

2. Assign post-order numbers and indices to the nodes of T as discussed earlicr
‘in case of directed trees. Thus, at the end of this step, an interval [1, j] is
associated with each node, such that j is the post-order number of the node

and I 1s the lowest post-order number among its descendents.

3. Examine all the nodes of G in the reverse topological order. At each node P,

do the follovﬂring processing;

* Forevery arc (p; q), add all the intervals associated with the node

q to the intervals associated with the node p.

» At the time of adding an interval to the interval set associated
with a node, if one interval is subsumed by another, discard the
subsumed interval. That is, if two intervals [ij, i;] and [j), j.] are

such that i; <j; and iy =j,, then discard [jy, j;]. If two intervals
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[i1, iz] and [ji, j2] are such that j; - i, + 1, then create one [iy, j;

corresponding to these two intervals. Merge two intervals, {iy, i,

and {jy, ja] into [iy, jo], if i1 <j) <, <)y
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Fig 5.1 Compressed transitive closure for a DAG without finding optimum tree-cover

Mapping Table for the DAG shown in Fig 5.1.

Actual Node Value

t B

Post Order Number

4

Nodes of a given graph can be covered by more than one spanning tree. However,

all tree covers are not equally good. Find optimum tree-cover in the sense that the

minimum number intervals associated with nodes (summed over all nodes).

| Algorithm for finding optimum tree-cover:

1. Topologically sort G.

2. Assume that all nodes with no predecessors are connected to a virtual level

0 root.

3. For every node j in G, in topological order, do:

Repeat for ach incoming arc pair (i, 4), (i2. j):
if size (pred (iy)) > size (pred (iz))
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L4

Delete (i, j)

else
Delete (i, ))
For every Iy immediate predecessor of |
pred (j) = {ik} U pred (i)

pred () denotes set of all predecessors of node j, and is computed incrementally.

[1, 1]
Fig 5.2 Compressed transitive closure for a DAG After finding optimum tree-cover

Give depth first numbering (DFN) for the DAG.
Algorithm for finding Depth-first Numbers:

Initialize dfnValue = 0;
DFNumbering (G)
{

Call DFS (G), in the main loop of DFS, after calculating f[u], calculate
DFEN (u) = dfnValue = dfnValue + 1;
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Modified Mapping Table for the DAG shown in 5.2

Actual Node Value a B [c [d Je |F |g [|H

Post Order Number 8 [4 [7 |6 [3 (5 |1 |2

| Depth First Number 8 [4 |5 (7 I3 |6 {1 |2

Need for DFN:

A numbering scheme is needed to maintain the ancestor-descendent relation, This

order is not maintained by the post-order number that we are constructing. This

can be seen from the following example:

[2, 2]

Flg 5.3 Example DAG Flg 5.4 After Numbering the DAG

Mapping Table for DAG shown in Fig 5.4

Actual Node Value A lb |c D je

Post Order Number _ 5 ] 4 3 P
Depth First Number S |2 |4 |3 1
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It 1s to be noted that, while traversing the DFS if we choose the branches as they

are done in post-order traversal of the tree then depth-first-number = post-order number.

e Run the modified DFS algorithni on the DAG shown in Fig 2, to construct
Normalized Paths and Node Buckets.

Let us take a reasonably complicated example and carry out the steps discussed

above. Compressed transitive closure for the DAG shown in Fig 2.1 by adding

dummy root node is shown in Fig 5.5.

Mapping Table for DAG shown in Fig 5.5

| Node [Dabcdefj_hijklmnnhpg
{PostOrder [ 18 [ 15 (14|34 (3|21 (7[6lsit2li019 3111117118
DFN 1815 ) 1af13le6]sl21[al3]7112t1009 [8]11117 (16
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[1, 18]

[6, 6]

Fig 5.5 Compressed transitive closure for the DAG shown in Fig 2.1 by adding dummy root node
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Normalized Paths:

P1:[1, 1} {18, 15, 14,13, 4, 3, 2, 4}

P2: [0, 1] {3, 7, 6}

P3:10, 1] {13, 5}

P4: [0, 0] {13, 12, 10, 2}

P5: [0, 0] {10, 9, 7}

P6: [0, 1] {9, 8}

P7:[0,0] {12, 11, 9}

P8: [1, 0] {18, 17, 1, 13}

Node Buckets:
D: 18 18
a: 15 15
b: 14 14
vk 13 13
d: 6 4
e 16 16
f: 2 2
g: ] ]
h: 4 7
. 3 6
j: 7 S
k: 12 - 12
i: 10 10
m: 9 9
n: 8 8
0: 11 11-
p: 17 17
q: 16 16

[0, 2]
[1, 1]
(1, 1]
{2, 3]
1, 1]
1,1
2, 1]
(1,0
(2, 1]
[1,0
(1, 0]
{1, 2]
(1,2

2,2]

(1, 1
[1, I
[1, 1

{1, 18]
{1, 15]
[1, 14]
[1, 13]

[1, 4] (6, 7]

[16, 16] [1, 13]

1, 2]
(1, 1]
16, 7]
[6, 6]
{3, 5]

6, 12] (1, 2)
[1,2] 6, 10]

[6, 9]
8, 8]
(11,11
[16,17

[16, 16’

[6, 9]

(1, 13]
(1, 13]

P1 (18, 1), P8 (18, 13)

P1(18, 1)

P1 (18, 1)

P1(18, 1), P3 (13, 5), P4 (13, 2), P8(18, 13)
P1 (18, 1)

P8 (18, 13)

P1 (18, 1), P4 (13, 2)

P1(18, 1)

P2 (3, 6), P5 (10, 7)

P2 (3, 6)

P3(13,5)

P4(13,2),P7(12,9) °

P4 (13, 2), P5 (10, 7)

P5 (10, 7), P6 (9, 8), P7 (12, 9)
P6 (9, 8) |

P7 (12, 9)

P8 (18, 13)
P8 (18, 13)

consider that 5™ row, here for the node‘d’, 6 denotes DFN, 4 denotes the post

order number, [1,1] in column 4 represents in-degree and out-degree of d, [1, 4]

(6, 7] represents the tree and non-tree intervals, in the last column Pi represents

the path identity and information in the parenthesis represents the start node and

end node of the corresponding path.
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5.2 Query Processing

5.2.1 Reachability:

The intervals that are obtained from the pre-processing step-1 give the
reachability information.

iIsSReachable (u, v)
{

if v lies in any one of the interval corresponding to node u then return true
else return false;

}
E.g.:

Query: isReachable (k, g)
Answer: True

5.2.2 Find all ancestors of a given node X:

Initialize Array GlobalColorFlag with WHITE;
Ancestors (node X, Array AncestorListFlag)

{

if (GlobalColorFlag (X) = BLACK)
{

Return;
} .
For each path P in the node Bucket of X do
{ |

if (root (P) =X)

Continue;
else
{

Push all ¢lements in path P up to node X;
(Push an element only if it is not pushed already)
While (stackTop = -1)
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3.2.3

5.2.4

Y =pop (); |
AncestorListFlag (Y) =1
Ancestors (Y, AncestorListFlag);

f
GlobalColorFlag (X) = BLACK;

}

E.g.:
Query: Ancestors (f)
Answer: a,p,b,q, ¢, d, j, k, e, 1

Find all common ancestors of nodes X and Y:

CommonAncestors (node X, node Y)
{
' Initialize Array GlobalColorFlag with WHITE:;
Ancestors (X, AncestorListFlagl);
Initialize Array GlobalColorFlag with WHITE:
Ancestors (X, AncestorListFlag?2);
for each vertex i € V(QG)

| CommonAncestorsFlag (i)=AncestorListF lagl (1) + AncestorListFlag2 (i);

Output all nodes whose CommomAncestorsFlag (i) = 2:

E.g.. _
Query: CommonAncestors (d, J)
Answer: a, p, b, q, ¢

Find all descendants of a given node X:

Descendants (node X, Array Des*ccndantsListFlag)
{

For each node Z in the interval list except X;
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5.2.5

5.2.6

DescendantsListFlag (Z) = 1;
Output Z as Descendant of X:

}

E.g.
Query: Descendants (i)

Answer: f, m, g, h, n, i
F ind all common descendants of nodes X and Y

AllCommonDescendants (node X, node Y)

{
Descendants (X, DescendantsListFlagl);
Descendants (Y, DescendantsListFlag?);
for each vertex i € V(G)
CommonDescendantsFlag (i) = DescendantsListF lagl (i) +
DescendantsListFlag? (i);
Output all nodes whose CommomDescendantsFlag = 2;
J
E.g.:

Query: CommonDescendants (1, o)
Answer: m, h, n, i

Find Least Common Ancestors for any given pair of nodes X and Y:

Definition: Let G = (V,E)beaDAG, and letx, y € V. Let Gy y be the sub-graph
of G induced by the set of all common ancestors of x and y. Define SLCA (x, y)
to be the set of out-degree 0 nodes in Gyy- Then the least common ancestors of x

and y are exactly the elements of SLCA (x, y).

FindAllAncestorsModified (node Y, Array AncestorListFlag)

{
LocalFlag = 0;
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if (GlobalColorFlag (Y) = BLACK)

d

}

if (AncestorListFlag (Y) = 3)

Return;

AncestorListFlag (Y) = 2;

For each path P in the node Bucket of Y do

{

if (root

else

\

(P)=Y)

Continue;

LocalFlag = 0;
Push all elements in path P up to node Y;

(Push an element only if it is not pushed already)
While (stackTop = -1)

{
Z = pop (); |
If (AncestorListFlag (Z) = 1 )
{ .
1f (GlobalFlag = 0)
{ .
GlobalFlag = 1;
GlobalNode = Z;
if (LocalFlag = 0)
{
LocalFlag =1,
//3 CA and Probable NCA
AncestorListFlag (Z) = 3;
} .
else
AncestorListFlag (Z) = 2;
}
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F indAllAncestorSModiﬁed (Z, AncestorListFlag);

} |
GlobalColor (Y) = BLACK:

iIf (GlobalNode = Y)
GlobalFlag = 0;
if (GlobalFlag = 1)

-
1f (AncestorListFlag (Y) 1= 0)
| AncestorListFlag (Y) = 2; // Surely not a NCA but CA

}_
}
LeastCOmmomAncestors (node X, node Y)
{ |

Initialize GlobalColorFlag with WHITE;

Ancestors (X, AncestorListF lag);

Initialize GlobalColorFlag with WHITE;

FindAllAncestorsModified (Y, AncestorListFlag);

for each vertex i € V(G)

Output all nodes whose AncestorListF lag (i)=3 as NCA and all nodes

whose AncestorListFlag (i) > 1 as CommonAncestors for nodes X and Y:
;
E.g.:

Query: LeastCommonAncestors (h, 1)
Answer: ¢, ]

5.2.7 Find all the paths between the nodes U and V:

L.if (V 1s not reachable from u)
{ .
No Path, Exit;

2.else
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Step2.]1 For Node U

{

Retrieve all the paths for U from the Node Bucket.
For each path P

{

J

if (Root(P) = U)

{ ,
if (V is Reachable from second(P))
\
Path List [P] = 1; |
Set the Natural Root field True:
! |
else
Path List [P] = 0;
;
else if (Leaf(P) = U)
{
Path List [P]=0;
}

At most One Path P1 will be left for U
If such path Pl exists

{
if (V is reachable from next (U))

{

Remove all nodes before U in path P1.

Set Root Field to U:;
Path List [P1] = 1;

;

Step2.2Find all the Anchor Nodes X between U and V using DFN such that X is

reachable from U and V is Reachable from X;

For each X
{
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tf (In Degree{X] = | && Out Degree[X] >1)

Type [X]=1;

eise 1f {In Degree[X] > | && Out Degree( X | =l)

Type [ X} =2,

else if(In Degree[X] > 1 && Out Degree[X] >1)

)

Type [X]=3;

For each Anchor Node X in decreasing DFN

A

Retrieve all the Paths P for X
If (Type [X]1=3)

{

For Each path P
if (Path List{P] = -1)
{
if (Leaf(P) = X)
Path List [p] = 0;
else if{Root(P) = X)

{
if (V is Reachable from second(P))
Path List [P] = I;
else
Path List [P] =0,
;
else if(Path List[P] = 1 and Leaf(P) I= X)
4
if (V 1s not Reachable from next(X))
| Remove all the elements after X;
}
)

For all the remaining Paths (at most one path will remain)

{ |
tf (V is reachable from next (X))

!

Remove all nodes before U in path P1.
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Append th;is'rlpath to any péth P2 |
whose (Leaf = X and Path List{P2] = 1);

| .
Path List [P] = I;
}
;
else if(Type[X ] = 2)
{ |
For Each path P
if (Path List[P] = -1 and Leaf(P) = X)
Path List [p] = 0;
for all the remaining Paths (at'most one path will remain)
{
if (V is reachable from next (X))
{
Remove all nodes before U in path P1.
Append this path to any path P2 |
whose (Leaf = X and Path List {P2] = );
Path List [P] = 1;
}
}
}
else if(Type[X ]= 1)
{
For Each path P
if (Path List[P] = -1 and Root(P) = X)

{ |

~if (V is Reachable from second(P))
Path List [P] = I;

clse
‘Path List [P] = 0;

} |

else if (Path List{P] = I and Leaf(P) != X)

{ | |
if (V is not Reachable from next(X))
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Remove all the elements after X;

)
}
}
Step2.3 for Node V
{
for each path P for V
if (Path List[P] = | and Leaf(P) != V)
d
Remove all nodes after V in that path P.
//at most one such path exist.
}

}

According to the modifications that are done above Natural Root, Natural Leaf,
in-degree, out-degree and path origin and path destination ficlds has to be

modified and giving the resulting paths to the reconstruction algorithm,

Eg.:
Query: AllPathsBetweenUandV (b, f)
Answer: b-c-d-e-f

b-c-k-1-f
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Chapter 6

Conclusion and Future Work

This dissertation thus constitutes graph compression 1.e., conversion from directed graphs
to DAGs, path normalization process, construction of node buckets for normalized paths

and algorithms for processing the path queries on trees and DAGs. The postulates and

methods adopted have not been proved but intuitively accepted.

As a further study, we suggest the following:

1. Rigorous study of storage and indexing of node-buckets is necessary.

2. Storage and processing of hyper—nodes 1S yet to be explored.

3. The present work considers only static directed acyclic graphs, so the study of

dynamic graphs remains to be attended.
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