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Abstract

A cellular network is often modeled as a graph and the channel assignment problem (CAP)
1s formulated as a coloring problem of the graph.

Existing studies on the channel assignment problem (CAP), focus on developing efficient
heuristic algorithms, owing to its NP-completeness. The solutions therebv generated are
otten less than satisfactory, and what is worse, there is no way of checking how far away

they are from the optimum.

Studies on deriving lower bounds on the number of frequencies required for CAP’s have
thus ansen out ot their capacity of indirectly checking the quality of the assignment

solutions at hand.

This project deals with proposing a lower bound on the number of frequency channels
required for the CAP on a hexagonal graph, where the channel interference does not extend

beyond k cells, i.e. the CAP with k-band buffering, where k is any non-negative integer.



1. Introduction

1.1 Background

In a cellular radio communication network, the service area is divided into hexagonal cells
(geographical areas), each under the control of a given base station. Each base station is in-
charge of communication with all mobile users currently present within its cell boundary.
Communication between a mobile terminal and the base station is wireless in nature, while
the base stations themselves are connected by a wired network in general. A number of |
mutually adjacent cells may be grouped together to form a location area (LA) which is
controlled by a mobile switching centre (MSC).In a GSM cellular environment,
communication is effected through a channel which may use the basic frequency division

and/or time division multiplexing, while in a CDMA cellular environment code division
multiplexing is used.

- The total currently available bandwidth for cellular communication is 230 MHz, in the
UHF part of the frequency spectrum. In 1995, it was decided that 170 MHz be allocated for
terrestrial communication, and 80 MHz be allocated for satellite communication. However,
currently 175 MHz is allocated for terrestrial communication and 75 MHz for satellite
communication. We can see that, the total bandwidth which can be allocated is more or less
constant, whereas the number of users is increasing rapidly. So, like all with all scarcely

available resources, the cost of frequency-use provides the need for economic use of the
available frequencies.

Reuse of frequencies within a wireless communication network can offer considerable
economies. However, reuse of frequencies also leads to loss of quality of communication
links. The use of (almost) the same frequency for multiple wireless connections can cause
Interference between the signals, which is unacceptable. So, we have to maintain certain
minimum frequency spacing between frequencies assigned to two users, this minimum
frequency spacing depends on the power of the signal that the base station uses to
communicate with the users within it’s cell boundary, and the geographical spacing
between the base stations under whose control the two users, who have to be allocated
frequency channels, are. If they are within control of the same base station, then the
minimum frequency spacing to be maintained between the frequencies assigned to the two
users, 1s called Sy, if the two users are within control of base stations that are adjacent, then
the minimum frequency to be maintained is called S;, if the two users are within control of

. base stations that are distance-k neighbors of each other, then the minimum frequency
spacing to be maintained is called S;. |

For a network, the available radio spectrum is divided into non-overlapping frcquency
bands of equal length, each of these bands is called a channel, and these channels are

numbered as 0, 1, 2 . . . from the lower end. In this context, the terms channel assignment
and frequency assignment can be used interchangeably.



When the mobile cellular network is designed, each cell of the network is assigned a set of
channels to provide services to the individual calls of the cells. The channel assignment
problem (CAP) is that, given a set of cells, each with g priori known demand of a given
number of users, we are to assign frequencies to each cell, so as to satisfy its demand and to
minimize the total radio frequency bandwidth of the system, subject to some frequency
separation constraints, so as to avoid channel interference. The highest numbered channel
required in an assignment problem is called the required bandwidth.

Three types of interference that are taken into consideration in the form of constraints. They
are,
(1) co-channel constraint, due to which the same charmel is not allowed to be
assigned to certain pairs of cells simultaneously.
(11)  adjacent-channel constraint, due to which adjacent channels are not allowed to
be assigned to certain pair of cells simultaneously.

(t1)  Co-site constraint, due to which any pair of channels assigned to the same cell
must be separated by a certain number.

1.2 Motivation

A cellular network is often modeled as a graph and the channel assignment problem (CAP)
1s formulated as a coloring problem of the graph.

Existing studies on the channel assignment problem (CAP), focus on developing time-
efficient approximate algorithms using simulated annealing, and genetic algorithms owing
“to 1ts NP-completeness, which however cannot guarantee optimal solutions, thus the
assignments generated by them may require more frequencies than an optimal assignment.

In heuristic approaches like genetic algorithm, the process terminates after a certain number
of iterations, so a prior idea about lower bounds will help the procedure a lot. Also in the
simulated annealing approach, the technique starts from a known lower bound and
improves the results in each iteration. Therefore, in both approaches, the algorithms will

give results in lesser time if we know a good lower bound on the minimum number of
frequencies needed for a solution.

Studies on deriving lower bounds on the number of frequencies required for CAP’s have
thus arisen out of their capacity of indirectly checking the quality of the assignment
solutions at hand. A tighter lower bound obviously gives a better judgment about how far
away the solutions of the CAP that is under consideration, is from the optimum.



2. Generalized lower bound for k-band Buffering

2.1. Problem definition

This project deals with proposing a lower bound on the number of frequency channels
required for the CAP on a hexagonal graph, where the channel interference does not extend
beyond k cells, i.e. the CAP with k-band buffering.

The objective of this project is to tighten the lower bound for k-band buffering, where k is
any non-negative integer.

2.2. Problem formulation

The Channel Assignment Problem (CAP) is represented by the model described by the
following components [1]:

(i) A set X, of n distinct cells, with cell numbers as 0, 1,2 . . . (n-1). |

(11) A demand vector W = (w;), (0 < i < n-1), where w; represents the number of
channels required for cell i.

(1) A frequency separation matrix C = (c;), where ¢ represents the frequency
separation requirement between a call in cell i and a call in cell j (0 <, Jj <n-1).

(1v) A frequency assignment matrix ® = (¢;), where ¢; represents the frequency
assigned to call jincell i (0<i<n-1,0 <j<w-1). The assigned frequencies
¢;' s are assumed to be evenly spaced, and can be represented by integers > 0.

(V) A set of frequency separation constraints specified by the frequency separation
‘matrix:
i - ¢ | = c;for all i, j, & I (except when both i = j and k = I).

Then, 2 triple P = (X, W, C) characterizes a CAP. A frequency assignment @ for P is said
to be admissible if ¢y’s satisfy the component (v) above V 0 < i < n-1, 0 £j <w;-1. The

span S(®) of a frequency assignment @ is the maximum frequency assigned to the system,
1.e. (@) = max (¢;). "
LJ

Thus, the objective of the CAP is to find an admissible frequency assignment with the
minimum span Sy(P), where So(P) = min{S(®) | ® is admissible for Pl

However, in order to judge the quality of the resulted solutions, it is essential to know the
lower bound on the minimum bandwidth requirement for a given problem.



2.3 Preliminaries

Definition 1. The cellular graph is a graph where each cell of the cellular network is
represented by a node and two nodes have an edge between them if the corresponding cells
are adjacent to each other (i.e. when the two cell boundaries share a common segment).

Note: The cellular graph represents the topology of the cellular structure, so, since the
topology of the cellular structure is hexagonal, so the cellular graph too is hexagonal.

Definition 2. The cellular nerwork is said to belong to a k-band buffering system if it is

assumed that the interference does not extend beyond k cells away from the call originating
cell.

Note: The minimum frequency spacing to be maintained between channels assigned to two

cells will be denoted by S,, if the two cells are distance i apart, where 0 < < k. Since we are
assuming here only single demand per cell, so S, does not play any role.

Definition 3. Suppose G = (V, E) is a cellular graph. A subgraph Gy = (Vy, Eg) of the
graph G = (V, E) is defined to be a distance-k clique, if every pair of nodes in Gy is
connected in G by a path of length at most k. |

Definition 4. Suppose G = (V, E) is a cellular graph. A subgraph Gy = (Vy, Ey) of the
graph G = (V, E) is defined to be a complete distance-k clique, if every pair of nodes in Gy
is connected in G by a path of length at most k and Gy is a maximal subgraph with this
property. |

Definition 5. Suppose G = (V, E) is a cellular graph and Gy = (Vy, Ey) is a distance-k
clique of the graph G = (V, E), A node v € Vy is said to be a central node of the distance-k
clique Gy, if it’s maximum distance from any other node in Gy is minimum, or in other
words, it’s eccentricity is minimum, i.e. in our case [ k/2].

Definition 6. Suppose G = (V, E) is a cellular graph and Gy = (Vy, Ep) is a distance-k
clique of the graph G = (V, E), A node v € Vp is said to be a peripheral node of the
distance-k clique Gy, if it’s maximum distance Jrom any other node in Gy is maximum, or in
other words, it’s eccentricity is maximum, i.e. in our case k. |

Definition 7. Suppose G = (V, E) is a cellular graph and Gy = (Vy, Ey) is a distance-k
clique of the graph G =(V, E). A seed subgraph G’ is that subgraph of the distance-k
cliqgue Ggwhose vertices are the central nodes of G,. |

Note: Consider the distance-k cliques in a hexagonal cellular graph, for different k values,
as shown in table 1. We can see that there are two types of seed subgraphs, one for even Kk,

and another for odd k, we will call them G’even and G’oq4, as we can see G’.ven has one node
and G’,4q has three nodes.
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Definition 8. We define a growth operation on a distance-(k-2) clique as the step of adding
to it all nodes in the cellular graph G, which are at distance one from it’s peripheral nodes.

Note: The distance-k clique can be derived from the distanée-(k-Z) clique in one growth
operation.

2.4 Results

We assume that the cellular graph is hexagonal in nature with a 3-band buffering restriction.
Let us now consider the complete distance-3 clique as shown in table 1. Every pair of nodes
in this graph is within distance three from each other, and therefore, they are going to
interfere with each other in their frequency assignment. So, no frequency reuse is possible
within this subgraph, hence the bandwidth requirement of this subgraph will give a lower
bound on the bandwidth requirement of the whole cellular network.

We now have the following results on the lower bound on frequency requirement of the

distance-3 clique. A lower bound is achievable if there exists an admissible frequency

assignment of the distance-3 clique with span equal to the lower bound. Suppose
frequencies in the interval [0; p] are sufficient for assigning single channel to each of the

" nodes of the distance-3 clique. Therefore, our objective is to find minimum p such that

there exists an admissible frequency assignment of the distance-3 clique with span equal to

P

We now have the following results on the lower bounds on bandwidth requirement for
frequency assignment of distance-3 clique.

Theorem 1: The minimum bandwidth required for assigning channels to the distance-3
clique, each cell of which has homogenous demand of single channel and 3-band buffering.

restriction with frequency separation S;, Sz, S3, is, 1183 and this bound is achievable when
S8 <38;and S> = §;.

Proof: Consider the twelve-node distance-3 clique as shown 1in figure 1. Since any two
nodes of the subgraph shown are at most distance three apart from each other, the
frequencies assigned on any two nodes of this subgraph must be separated by at least Ss.

Consider that a frequency channel number a has been assigned to a node, and frequency

channel number[(3, has been assigned to.another node of the subgraph, so the minimum gap
that has to be maintained between o and B, is Ss.

Since there are twelve nodes, so considering the lowest frequency being assigned to a node

of the subgraph to be 0, at least 11S; frequencies will be required to satlsfy the demand for
this subgraph.

Here, and in all future discussions, a frequency (iS; + jS; + kS3) assigned to a node will be
denoted by a 3-tuple (i, j, k).



When S, <, <383, and S2 = §3, an admissible frequency assignment of the distance-3
clique using 11S3 number of channels has been shown if figure 1. However, this
assignment is conflict free only when S; <, <383, and S, = S; Hence the proof.

(0, 0, 4) (0, 0, 8) 0,0,2)

k l

Figure 2.1 A conflict-free frequency assignment of distance-3 clique when S; < S; <3S;,and S, = S;

Theorem 2: The minimum bandwidth required for assigning chdnnels to the distance-3
clique having homogenous demand of single channel per cell and 3-band buffering

restriction with frequency separation Sy, Sa, S3, is (4824 753) and this bound is achievable
when S, <8; <3S; and S <855 <28,

Proof: Frequencies assigned to any two nodes of the distance-3 clique must be separated

by at least S3. In addition there is no node which is distance-3 apart from the central nodes e,
f, and i. |

Hence, if frequency o € [0; p] be assigned to any node of the subgraph. Then to satisfy the
interference criteria, no frequency channel within the open interval (o - S3; o) and (o o +.
S3) can be assigned to any node of the subgraph. That is, there would be an unusable gap of
(@ - S3; @) before o, and also another such gap of (o;o + S3) after o on the frequency
spectrum line, where gap (x'; y) implies that the integers within the open interval (x ; y)
cannot be assigned to any node of the subgraph. We refer (¥ - x) as the length of gap (x; y).

S0, for o = 0 (or, p), one of these gaps of unusable frequencies, e.g., (o - S3; ) (or, (o0 +
S3)) will be beyond the interval [0; p].

Now, consider the three central nodes in figure 1, i.e. nodes e, fand i. These three nodes are
- at maximum distance two apart from any other node in the subgraph, so, the frequency gaps

to be maintained between the frequency assi gned to these nodes and any other node has to
be at least S, instead of S;.



Suppose, during the assignment, a frequency channel 4 e [0; p] be assigned to any of these
three central nodes. Then, to satisfy the interference criteria, no frequency channel within

the open interval (x - S;; %) and (3% + S,) can be assigned to any node of the subgraph.
That is, there must be unusable gaps (y - $2; x) and (, % + Sz) before and after 7y,
respectively. If y = 0 (or p), one of these gaps of unusable frequencies, e.g., (y - S2; ) (or,

(X, % + S2) ) falls beyond the interval [0; p].Since S, > S3, it follows from above that we can
have more number of usable frequency channels if the minimum and maximum frequencies
are assigned to the central nodes, rather than to any other nodes.

Now, it 1s possible that one of the central nodes be assigned the minimum frequency
channel, call it frequency channel z, and another one the maximum frequency channel,

call it frequency channel y;, but the third central node will have to be assigned a frequency
channel which lies inside the open interval (0; p), i.e. strictly between 0 and p but neither 0
nor p, call it frequency channel y».

So, in view of this, there will be one unusable gap, (X1,%X1 + S2), of length S, within [0; r]
due to the lowest frequency ¥ being assigned to a central node another unusable gap, (%3 —
S2,%3), of length S, within [0; p] due to the maximum frequency 3 being assigned to a
central node, and two more unusable gaps (7> — S2,%2), and (x2,%2 + S») each of length S,

due to the frequency y; being assigned to a central node. That makes 4 unusable gaps each
of length Sz.

S0, in the earlier lower bound of 11S; we must add 4(S> — S3), because there are 4 nodes
that contribute to unusable gaps each of length S; instead of Ss. So, (4S; + 7S5) is a lower
bound for assigning channels to the distance-3 clique of a hexagonal cellular network,
having homogenous demand of single channel and 3-band buffering.

0,1, 1) (0, 3, 3) 0,3, 6)

Figure 2.2 A conflict-free assignment of the distance-3 clique when §, < S:£3S3and $; <5, < 28,



When §; <57 <3853 and S3 <8, < 28;, an admissible frequency assignment of the distance-3
clique using 45, + 75; number of channels has been shown in figure 2. However, this
assignment is conflict free only when S, <S; < 3S; and 83 <82 <283 . Hence the proof.

Theorem 3: The minimum bandwidsh required for assigning channels to the distance-3
clique having homogenous demand of single channel per cell and 3-band buffering
restriction with frequency separations S1, S2, S3is (251 + 4S,) when S> <87 <285, and
(381 + 28,) when S; > 28,.

Proof: Since any two nodes of the distance-3 cligue is either distance-1, or distance-2 or
distance-3 apart from each other, so accordingly the frequencies assigned on any two nodes
of this subgraph must be separated by at least Sy, S; or S5 apart.

Now, let us consider a complete distance-2 clique induced by the node set la,b,d, e, f, h, i)

as shown in figure 3. Any pair of nodes is within distance two of each other, and node ¢ is
the central node.

h 1
Figure 2.3 complete distance-2 clique induced by the node set {a, b, d, e, f,h, i}

The following result on minimum bandwidth requirement for assigning channels to this
complete distance-2 clique has been reported in [1].

Result: The minimum bandwidth required for assigning channels to the complete distance-
2 clique of a hexagonal cellular network having homogenous demand of single channel and
2-band buffering restriction with frequency separation S;, S, is (S1 + 552 ), when

52 281 228, and (2S; + 3S,) when S, >S5,

However, this result is only achievable when either the minimum or the maximum frequency
can be assigned to the central node. Note that in the distance-3 clique there are three
complete distance-3 cliques induced by the node sets {a,b,d, e f hi}, {b,c,e, f, g 1,7} and
{e, f, h, i, j, k, I} with central nodes e, J and i respectively. In addition, the central nodes e, f
and 7 are distance-1 apart from each other. Therefore, at least one central node must be
assigned an intermediate frequency, i.e. a frequency which is neither the minimum nor the



maximum. So following the same approach as reported in [1], the minimum bandwidth
requirement 18 given by (S; +38,) + [Sl e S:) = (28 + -I-S;), when 5> < §; £ :Sz and
(281 + 3S2) + (81 = 82) = (3S, + 2S5). when S, > 28.. __Hence the proof

Lemma 1: A lower bound on the number of channels required to assign channels 1o the
complete distance-2 clique of a hexagonal cellular nenvork having homogenous demand of
single channel and 3-band buffering restriction with frequency separation S;, S», S;is
max((45- + 78:), (28, + 48-}). when S <8; < 28> and max{(4S- + + 783), (3S; + 25-)), when

S; 2..?3:.

Proof: From theorem 2 gives a lower bound on the distance-3 clique, which is

(432 + 78;). and theorem 3 gives us a lower bound depending on the relative values of S;
and S, 1.e. etther S; £ S, £2S-0r §; > 2S,.50, max((4S, + 71S3), (25; + 4S4)) 1s a lower
bound when S> <81 £28,, and max((4S; + 7S3), (3S; + 2S+)) is a lower bound w hen S, >

2S5. Hence the proof.

In view of the above results. a generalized lower bound, for any non-negative k, both even
as well as odd. has been proposed below.

Lemma 2: The number of central nodes in a distance-k clique in a hexagonal cellular
graph is one, if k is even, and three, if k is odd.

Proof: By starting with the seed subgraph G’.ven , for even k, or G4 for odd k. we can
derive the distance-k clique from the corresponding seed subgraph in [k/2] growth

operations. The nodes of the seed subgraphs will have minimum eccentricitv in the
distance-k clique, therefore, their nodes will be the central nodes of the distance-k chque.

Since there are only two possible seed subgraphs, one corresponding to even k and one
corresponding to odd k, so the number of central nodes will be one if k is even and three if

k is odd. Hence the proof.

Lemma 3: In the @ growth operation on the seed subgraph, the number of nodes bem g
added to the graph will be 6o for even k, and (6 + 3) for odd k, where @ € [1, 2
k/2], forevenk,and @ e [1, 2, ....., [ k/2] ], for odd k.

Proof: The number af nodes in a distance-k clique in a cellular graph is given by, [2]

(i) 3/4 (k+1), ifkisodd ie k=1 35.
(ii)  3/4 (k+])2+1/4 ifkiseven, ie.k=0,24.

S0, we can see that the distance-k clique in a cellular graph will have 3k number of nodes
more than the distance-(k-2) clique in a cellular graph, for “both cases i.e. kiseven orkis
odd. Now, if k is even, i.e. k = 2w, then, 3k = 3(2w) = 6&) andlfklsodd 1.e. k—-’?o—-l

then 3k =3(2w + 1) = 6w + 3.Hence the proof.



Lemma 4: A lower bound on the number of channels required for assigning channels to
the N-node, distance-k cligue in a hexagonal cellular nerwork having homogeneous
demand of single channel and k-band buffering is (N-1)S,. Where N = 3/4 (k+1) if kis
odd, and N= 3/4 (k+1) + 1/4, if k is even. |

Proof : Since any two nodes of the subgraph shown are at most distance k apart from each

other, the frequencies assigned on any two nodes of this subgraph must be separated by at
least S;.

Consider that a frequency channel number o has been assigned to a node, and frequency
channel number B, has been assi gned to another node of the subgraph, so the minimum gap
that has to be maintained between o, and B,is S;.

Since there are N nodes, so considering the lowest frequency being assigned to any node of

the subgraph to be 0, at least (N-1)Si frequencies will be required to satisfy the demand for
this subgraph. Hence the proof.

Theorem 4: A lower bound on the bandwidih required for assigning channels to the N-
node, distance-k clique in a hexagonal cellular network, having homogenous demand of
single channel and k-band buffering for even k is,

k/2
(N-1)S + (Sw - Si) + 11(Sq1 -S) + Z120 (Sqq - Sy), where N = 3/4 (k+1)* + 1/4
0=2 W =[Kk/2]
Ql= ([k2]+1)
Qo = ([k2]+ w).

And for odd k is, | k/2 ]

(N-1)Sk +4(Sw- Si) + 22 (60 + 3) (Saw - Si), where N = 3/4 (k+1)?
o=1 ¥=[kn2] -
Q1 =([k2]+1)
Qo= ([k/2]+ ®).

Proof: In lemma 4 we have shown that (N-1)Sy is a lower bound, now we shall make it
tighter.

We know that the number of nodes in a distance-k clique subgraph in a hexagonal cellular
network, is

N=3/4(k+1),ifkisodd ie k=13 5.. and

N=3M(k+1) + 14, ifkiseven, ie. k=02 4.

Consider the N-node, distance-k clique in a hexagonal cellular network. Suppose, using the
frequency channels within the closed interval [0; pl, it is possible to assign frequency

channels to each of the nodes of the subgraph satisfying all interference constraints.
Therefore, our objective is to find mininum D.

10



Since, any two nodes of the subgraph are within distance k from each other. Therefore, any
two frequencies assigned to two nodes of the subgraph must be separated by at least S;,
suppose, the frequency channel « € [0; p] be assigned to any node of the subgraph. Then |
to satisty the interference criteria, no frequency channel within the open interval (o - Si; o)
and (o;o + Sg) can be assigned to any node of the subgraph. That is, there would be an
unusable gap of (a - §; o) beforea, and also another such gap of (o, o + Sy) after o, on the
- frequency spectrum line, where gap (x ; y) implies that the integers within the open interval
(x ; y) cannot be assigned to any node of the subgraph. We refer (v - x) as the length of gap

(x; ¥). So, for o = 0 (or, p), one of these gaps of unusable frequencies, e.g., (a - Sy o) (or,
(a; o + Sk)) will be beyond the interval [0; p].

Now, consider the central nodes in the subgraph, according to lemma 2, if k is even, then
there is only one central node, and if k is odd, then there are three central nodes,. These
nodes are at maximum distance | k/2 ] apart from any other node in the subgraph, i.e.
ceiling of k/2, so, the frequency gaps to be maintained between the frequency assigned to
these nodes and any other node has to be at least Sy, instead of Sy, whére ¥ =
rk/2-|.Suppose, during the assignment, a frequency channel % < [0; p] be assigned to any of
these central nodes. Then, to satisty the interference criteria, no frequency channel within
the open interval (y - Sy; %) and (3;% + Sy) can be assigned to any node of the subgraph.
That is, there must be unusable gaps (x - Sy, ¥) and (3% + Sy) before and after 7,
respectively. If x = 0 (or p), one of these gaps of unusable frequencies, e.g., (y - Sw; %) (or,
(X% + Sw) ) falls beyond the interval [0, pl.Since Sy 2 S, V'n <m, it follows from above
that we will have more number of usable frequency channels if the minimum and
maximum frequencies are assigned to the central nodes, rather than to any other nodes.

Case 1: k is even.

Now, consider the case when k = even, then, according to lemma 2, the seed subgraph will
have only one node, i.e.. there will be only one central node, and, we can assign to it, either
the lowest or the highest frequency channel. In view of this, there will be only one unusable
gap of length Sy ,within [0; p], either (X141 + Sw), due to the lowest frequency 7, being
assigned to the central node or unusable gap, (XN ~ Sy;xN), due to the maximum frequency
XN being assigned to the central node. So, in view of this, to the earlier lower bound,

- (N'-1)Sy, where N =3/4 (k+1)* + 1/4, (since k is even), we must add (S - Sy).

Now, we will construct the distance-k clique in a cellular graph, layer by layer, by adding

| k/2] layers over the seed subgraph, where | k/2] denotes the floor of k/2.According to
lemma 2, the o™ layer will contribute 3(2w) nodes, i.e. 6® nodes when k is even, where @ =
1,2,3,..Lk2]. '

Now, we grow the first layer over the seed subgraph, so the number of nodes which are
added is 6w, where ® = 1, so the number of nodes which are added in the first layer is 6.
Now, of the lowest and the highest frequency channels, only one was assigned to the
central node, the other one is available for assignment, so since S, 2 S,V n < m, we wil]
have more number of usable channels if we assign the other of these, to one of the nodes
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belonging to the first layer. In view of this, there will be one unusable gap of length Sq,
within [0; p], due to the highest (or lowest) frequency channel being assigned to one of
these nodes, where Q1 = ([ k/2 ] + 1). To the other 5 nodés whatever frequency o we assign,
the unusable gap in the frequency spectrum due to each node each node will be 2S¢, since
this frequency o will lie strictly inside [0; p], so both the gaps (a-Sqi; a) and (o. a+ Sor)
will also lie strictly inside [0; pl, for each of these 5 nodes. So, to the lower bound of
lemma 1, we must add 11(Sq; -Sy).

Now, when the second layer is added, the graph obtained will have 6® more nodes, where
® = 2, s0 12 more nodes will be added due to the second layer. These nodes can only be

assigned frequency channels which lie strictly inside [0; p], so whatever frequency a we
assign to any one of these nodes, the unusable gap in the frequency spectrum due to each
node will be 2Sq,, one gap of size S, before ¢, i.e. (@ - Sqz; ) , and another of same S1Ze

(o0 + Sq), where Q2 = (k2] + 2).So, to the lower bound of lemma 3, we must add
24(Sqz — Sy). -

Similarly, the @™ layer will contribute 6 nodes, and each node will contribute two
unusable gaps each of size, Saw , where Qo = ( rk/2_| + ®).S0, to the lower bound of lemma

we must add 12e (Sq, - Si). So, a lower bound on the number of channels required for
assigning channels to the N- node, distance-k clique in a hexagonal cellular network,
having homogenous demand of single channel and k-band buffering, when k is even, is

- | k2] -
(N-D)Sk + (Sw- Si) + 11(Sa1 -Si) + 120 (S, - Si), where N = 3/4 (k+1)* + 1/4
| ©=2 - Y= k2]
Q1= (|k/2]+1)
Qo= (k2] + o).

Case 2: k is odd
Now, according to lemma 1, for odd k, the seed subgraph has three nodes, i.e. there are
three central nodes in the distance-k clique in the hexagonal cellular network,. These nodes

are at maximum distance [ k/2 ] apart from any other node in the subgraph, so, the frequency
gaps that have to be maintained between the frequencies assigned to these nodes and any

other node has to be at least Sy, instead of Sy, where ¥ = [ k/2].As mentioned earlier, we
will have more number of usable frequency channels if the minimum and maximum
- frequencies are assigned to the central nodes, rather than to any other nodes,

Now, we can always 'assign the lowest and highest frequency channels to any two of these -
central nodes, but the third node has to be assigned a frequency channel which lies strictly

instde [0;p] in view of this, there will be four unusable gaps each of length Sy ,within [0; p],
they are (31,%1 + Sw), due to the lowest frequency y, being assigned to one central node (AN
~ Sy¢(n), due to the maximum frequency yn being assigned to another central node, and
two more (¥ - Sy ; x) and (y; y + Sv), due to frequency y being assigned to the third central
node because y lies strictly inside 10; p].So, in view of this, to the earlier lower bound,

(N -1)Sy, where N = 3/4 (k+1)?, (since k is odd), we must add 4(Sw - Sp).
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Now, we will construct the distance-k cligue in a cellular graph, layer by layer, by adding
| k/2] layers over the seed subgraph, where | k/2] denétes the tloor of k/2.According to
lemma 2, the o™ layer will contribute 3(2w+1) nodes, when k is odd, where v = 1, 2, 3,
k2,

Now, we grow the first layer over the seed subgraph, the graph obtained will have 6m+3
more nodes, where o = 1, so the number of nodes which are added due to the first layer is
9. These nodes can only be assigned frequency channels which lie strictly inside [0; rl, so
whatever frequency o we assign to any one of these nodes, the unusable gap in the
frequency spectrum due to each node will be 2501, one gap of size Sq; before a, i.e. (o -
Sa1; o) , and another of same size (oo + Sa1), where Q1 = ( (k2] +1 ).S0, to the lower
bound of lemma 3, we must add 18(Sq; - Sy).

Similarly, the o™ layer will contribute 6m+3 nodes, and each node will contribute two

unusable gaps each of size, Sq,, , where Qo = (|_ k/2 ]+ ®).So, to the lower bound of lemma
we must add 2(6w + 3) (Sq, - Sy).

So, a lower bound on the number of channels required for assigning channels to the N-
node, distance-k clique in a hexagonal cellular network, having homogenous demand of
single channel and k-band buffering, when k is odd, is

| k2]
(N-1)Si + 4(Sy - S) + 22 (60 + 3) (Sqe - Si), where N = 3/4 (k+1)?
=1 V= [k2]

Ql= ([k2]+1)

| Qo=(lk2]+w)
Hence the proof.

3. Concluding Remarks

Theorem 4 can be used to find a lower bound on the number of channels required

for assigning channels to the N-node, distance-k clique in a hexagonal cellular network,
having homogenous demand of single channel and k-band buffering and the bandwidth
requirement of this subgraph will give a lower bound on the bandwidth requirement of the
whole hexagonal cellular network with k-band buffering restriction. These lower bounds
enable us to compare the results obtained by heuristic approaches in a better way. Moreover
these bounds can be used in either terminating heuristic algorithms following a genetic

algorithm approach, or starting with a better initial solution in simulated annealing
approaches.

?
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