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Abstract

'GEOMETRIC MODEL OF MEDICAL IMAGES’ can be thought

of as composed of broadly two phases.

{I) Image reconstruction part based on phantoms.

(I} Stmulation of three dimensional medical objects starting from the
reconstructed images. ‘ )

In course of our following discussion we have mainly concentrated on the
firat phase of our modelling i,e the problem regarding image reconstruction of

phantoms. This problem we have carned out using different methodologices.
Broadly speaking here we have adopted three methods -

(a) Convolution BackProjection (CBP);

(b) Positron Emmision Tomography(PET);

(c) Magnetic Resonance (MRI);

Let us discuss the (a) and (b) one by one. In our discussion we did not
incorporate (c) though some works have been done on it in reality.



Introduction

We have covered two types of methods in our image reconstruction problem.
Deterministic and Stochastic. In our discussion in the following chapters we
have discussed two procedures one by one. Convalution BackProjection is the
primary topic of our discussion of deterministic approach whereas we make
stady on Positron Emission Tomography as the part of Stochastic approach.
In Convolution BackProjection we give an algorithmn and its corresponding
program implemented in the computer. In this algorithm our input is ele-
mental objects described in terms of their locations, onientations, size and
densities respectively. Its output is an image which we have displayed in our
work. Oun the other hand, regarding stochastic approach we use Positron
Emission Tomography applied in circular ring geometry environment. Here
in this approach our basic problem lies with the estimation of the pixel densi-
ties. Since our image prcessing problem needs a lot of space and time we will
discuss about a more efficient algorithin. We then try to show the relative
performance of the above two procedures.All our programs we have written

in pascal.



Chapter 1
Convolution BackProjection (CBP)

CBP 18 a deterministic method of image reconstruction. The theoretical
development of this method owes a lot to reconstruction of mathematically
described objects (they are called phantoms) from computer simulated pro-
Jection data. A program capable of simulating data collection has been found
to be rather complex. In recent times many systems have been developed to
meet this end. For example SNARK7T7 is one such system. As evident from
the problem posed itself is that the data simulation part is quite a real prab-
lem and as such there 18 no concrete rule established as yet. So applying on
a particular data set one phantom is developed. Here our assumption is that

the pixel density at a particular point (x, y) 18 the relative hnear attenuation
of the tissue concerned at that point under a given energy level.

Creation of a Mathematical Phantom:

We now discusss how we have created a test phantom.( a test phantom is
nothing but a picture on which we wish to test reconstruction algorithms or
data collection methods). Basically a phantom is put together by superim-
posing a number of elemental objects. In our simulation we have used ellipse,
rectangle, tnangle as our elemental objects. [n other simulations, there can
be other geometric figures taken as elemental objects. These elemental ob-
Jects are placed at desired positions in the coordinate system, with suitable
orientation each having their own densities. The density of an elemental ob-
ject may be negative. The density of a picture at a particular point is the
sum of the densities of the elemental objects within which that point lies.
Now we will describe how we have obtained the density estimate within a
particular pixel. Basically what we do here is we subdivide a particular pixel
into 8 numbar of grids (say k X k finer squares, where k is user specified
each square constituting a grid). The densitlies of these grids of each pixel
are calculated on the basis of above procedure and once they are found, the
average of the densities are taken over the grids within a particular pixel.
This average value of the density is assigned as the density of that pixel. In
this way all the densities are calculated of all the pixels. That is how we

have developed the image. Given below is the program writlen to derive the
Image.



program phantom (imput, output);
label {;

const nmaxinten = 320:

obj.no = 20; {* maximum number of objectss}
maxpic = 150; {* maximum number of pixels in a row*}
maxgrid = 20;
pi = 3.141592624;

type object = record

xx : real; {* location *}

¥y : real; {* locatiom *}

au : real: {* axis*}

vy : real; {* axis=}

th : real; {* inclinations)

class : integer; {* represents the type of object »}

density : real; {* demsity of a particular object*}
end ;

var list : array [1..obj_nol of object; {* array of objects*}
delta : array [-160..160, -160..160,1..0bj_no] of integer;

indl, ind2, i,1, j, k,index, inten, nobj :integer;

d : array [-75..75, -75..75] of integer;

dense : array [-75..76, -75..75] of real:

"picsize, level : integer;

filvarl, filvar2 : text;

filpamel, filname2 : warying [15] of char;

answer : varying [1] of char;

procedure del_cal(templ, temp2 : integer; factorl, factor2 : real):
{* table is created to find the pixel densities in future *}

var row, col : integer;
denseval : real;



function ellipse (x, y: intégar; cx, ¢y, u,v, ang :real):boolean;
{# defines ellipse as an elemental object *}

var x_prn, y_prm, temp, dis :real;

begin {» ellipsex}

X_pm := x - cx;

y-pm =y - cy;

temp = x_pmm;

X_Pra = x_prm * cos(ang) + y_pm * gin(ang);
y-pm = y_prm * cos(ang) - temp * sin(ang);
x_prm = (x_prm * x_prm)/(u * u);

y-pm = (y_prm * y_pm)/(v * v);

dis := x_pm + y_prm - 1;

1f dis <= 0 then

ellipse := true

else

ellipse := false;

end; {* ellipse*}

function rectamgle(x, y: integer; cx.cy, u,v, ang :real):boolean:
{* defines rectangle as an elemental object *}
var x_prm, y_prm, temp, di, d2 :real:

begin {* rectangle=}

X.prm = x - Cx;

y.prm = y - cy;

temp = x_prn;

I_prm = x_prm * cos(ang) + y_prm * sin(ang):
y-prm := y_prm * cos(ang) - temp * sin(ang);
dl :=abs(x_prm) - u ;

d2 := abs(y_prm) - v ;

1f ((d1 <= 0) and (d2 <= 0)) then

1



rectangle := true
else

rectangle := false;
end; {* rectangle*}

function triangle(x, y: integer; cx, cy, u, v, ang :real):boolean;

{* defines triangle as an elemental object =}
var x_prm, y_prm, temp, di, d2, 43, ht :real;

begin{* triangle*}

X_prm = X - CX;

J-pm (= ¥ - CY,

temp = X_Pprm,;

X.pm = x_prm * cos(ang) + y_pm * sin(ang);
y-pIm := y_prm * cos(ang) - temp * sin(ang);
ht := vx(u - abs(x_prm))/u;

if ((abs(x_prm) <= u} and (y_prm > 0) and (y_prm <= ht))
then triangle := true

else triangle := false;

end;{* trianglex*}

begin {* del_cal*}

for row := templ * k to tempt = k + k - 1 do

for col := temp2 * k to temp2 * k + k - 1 do

for 1" := & to nobj do

begin

if list[i].class = 1 then

begin '

if ellipse(row, col, list[i]l.xx * factoril, list[i]l.yy *= factori,
list[i].wu * factorl, list[i].wv = factorl,
list[i] .th = factor2) then

deltafrow, col, i] := 1

elae

delta[row, col, i] := 0:



end

else

if liast[il.clase = 2 then

begin

if rectangle(row, col, list[i].xx * factorl,

list{i]l .yy * factori, list{i]l.uu # factori,

1ist[i] .vv * factorl, list[i].th » factor2) then

deltafrow, col , i} := 1 |

else

delta{row, col, i} := 0;

end

else

if list{i].class = 3 then

begin

if triangle(row, col, list{i].xx = factori,list{i].yy * factori,
list{i]l.uu = factori, list[i].vv &« factori,
list(i] .tk = factor2) then

delta[ros, col , i] := 1

elae

deltalrow, col, i] := 0;

end ;

end ;

denseval := Q;

for row := templ * k to templ * k + kK - 1 do
for col = tewmp2 * k to temp2 * k + k - 1 do
for j := 1 to nobj do

denseval := denseval +

deltalrow,col, j} * listlj].density;

dense[teapl, temp2] := denseval / inten;

end;{* del_cal*}

procedure rounding;

{* maps the densiies obtained into gray values with levels being uger-specis '

g



var max, min,range : real;

begin

max := 0

min := O; |

for indl := -trunc(picsize/2) to trunc(picsize/2) - 1 do
for ind2 := -trunc(picsize/2) to trunc(picsize/2) -~ 1 do
begin |

if densefindl, ind2] > max then

max := dense{ind1,ind2]};

if dense[indl,ind2] < min then

min := denselindl , ind2};

end ;

range = max - MIN;

for indl := -trunc{picsize/2) to trunc{picsize/2) ~ 1t do
for ind2 := ~trunc(piceize/2) to trunc(picsize/2) - 1 do
d[ind1,ind2] :=round(level = ({demse{ind1l,ind2] - min)/range));
end ;

procedure probability;

{* calculates acceptance probability of a particular pixel as emission pixe.:

var = filvar3 : text;

filname3 : varying [15] of char;
temp : real;

begin

uriteln ('what is the name of probality output file’);
readlan (filname3):

open (filwvar3, filname3, new);

rewrite (filvar3):

temp = 0;

for indl := -trunc{picsize/2) to trunc(picsize/2) -~ 1 do
for ind2 := -trunc(picsize/2) to trunc{(picsize/2) - t do
temp := temp + d{indl, ind2};

10



if temp <> O then
begin
for indl := ~trunc(picsize/2) to trunc(picsize/2) - 1 do
for ind2 := -trunc{picsize/2) to trunc(picsize/2) - 1 do
begin
dense{indl, ind2} := dlindl, ind2] / temp;
griteln (filvar3, dense(indl, ind2]);
end;
end
elae
sriteln (’all gray values are zero’);
close (filvar3);
end ;

procedure plot;
{sgraph plotting *}
label 22;

var nn : 1nteger;
filvard :text;

begin

99: writeln (’which row do you wamt to plot, maximum is’, picsize) ;
readln (nn);

if nn > picsize then

begin

uriteln (’no such row exists, do you want to repeat’);
readln (answer);

if ((anewer = ’y’) or (answer = *Y’)) then

goto 22;

end

else

begin

open (filvar2, f1lname?2, old);

reset (filvar2),

11



for j := —trunc(piceize/2) to trumc(picsize/2) - 1 do
readln (filvar2, d{on - trunc(picsize/2) - 1, jl);
open (filvar5, ’graph.dat’, new);

rewrite (filvarb);

for j := -trunc(piceize/2) to trumc(piceize/2) - 1 do
writeln (filvar5, j + trunc(picsize/2) + 1

, d[on - trunc{picsize/2) - 1, jl);

close (filvar$);

cloge (filvar2);

end;

end ; {plot}

begin {*main*}

1: writeln (’give the gridaize you want’),
readln (k);
inten := k =* k;
sriteln (‘give the number of pixela in a row');
readln (picsize);
writeln (’what is the level of the picture you want’),
readln (level);
writeln (’number of objects?’);
readln (nobj);
wuriteln (’give the input filename’);
readln (filnamel):
- writeln (’give the output filename’);
readln (filname2);
open {(filwari,filnamel,old);
reset (filvarl);
for index := 1 to nobj do
readln (filvari,list{index] .xx, list{index].yy, list{index]).uu,
list{index] .vv, list[index].th, list{index] .claes,
list[index] .density);
open (filvar2, filname2, new);
rewrite (filvar?2);
for indl :+= -trunc(picsize/2) to trunc(picsize/2) - t do
for ind2 := ~trunc(picsize/2) to trunc(picsize/2) - 1 do

12



if filnamel = ’test3.dat’ then
del_cal(indl, ind2, picsize/ ( k ¢ 2), pi/180)
else
del_cal (ind1, ind2, (picsize » k)/2, 1);
rounding; -
for indl := -trunc(piceize/2) to trunc(picsize/2) - 1 do
for ind2 := ~trunc(picsize/2) to trunc(picsize/2) - 1 do
sriteln (filvar2, d[ind1, ind2]);
close (filvar2);
vriteln (’do you want the probability measurement’);
readln (answer);
if ((ansver = ’y’) or (answer = ’Y?!)) then
begin
open (filvar2, filname2, old);
reset (filvar2);
for indl := -trunc{picsize/2) to trunc(picsize/2) - 1 do
for 1nd2 := -trunc(picsize/2) to trunc(picsize/2) - 1 do
readln (filvar2, d{ind1, ind2]);
probability;
end ;
close (filvari);
sriteln (’do you want graph plot’);
readln (answer);
if ((answer = ’y’) or (answer = ’Y’)) then
plot;
writeln (’do you want another figure’);
readln (answer);
if ((answer = ’y’) or (answer = 'Y’)) then
goto 1;
end.

The above program can be applied on different input files to get images
accordingly. As for example we have used tablel to the figure in figl, whereas

by applying on data of table2 we get fig2. In tablel, there are 18 elemental
objects and in table2 there are 9 elemental objects.
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Table 1

radius orientation | object | density
serni-major type

el

]
1
1
X
]
1
1
1
1
1
1
1

-y
)

po—
)
ko

A
W

a2 (Lo b LW

Table 2

— ongn | tadius [ orientation | object | density
%> | Vo | semi-major Jsemimimor ype

t

obj jec

1 1
2 : . . 1
3 : . . ]
4 . : Q. 1
5 5 . . 1
6 : : 1
7 : : ]
8 : . , 1
9 . . . _ |
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In the above algorithm, we find its time complexity to be O({nk)*m)

where
m : numnber of elemental objects,
n : number of pixels 1 a row,
k .: number of gride within a pixel, specified by the user

and its space complexity 18 O((nk)?)

In the above program there is also provision of plotting the graph of
densities of pixels lying in a particular row or coloumn. The output are as
follows with input taken from tablel and table2? respectively. The graph of
the 75th column of figure 2 and 70 th row of figure 1 are attached.



GRAPH OF 70TH COLUMN OF FGURE 2

Pi=EL DERISITIESS

E = ‘rﬂWWWWWWWWWWﬂ'11Tﬂ1ﬂﬂ"mm‘ﬂ'f1TwrlTﬁTfTrﬂ“l'rﬁT 111*111"‘1‘!"‘[1‘ T T vy
! 17 33 oy BS i1 1 193

Fictl PCBITICHEA



Chapter 2

Positron Emmision Tomography

(PET)

Unlike CBP , the physical processes concerning PET is assumed to be
stochastic in nature. Before we go into details of the physical processes
concerning PET and their stochastic behaviour whatscever let us discuss a
bit on how the PET works.

(1)Mechanism of PET :

PET isotopes are characterised by the emission of a positron on decay.
The emtted positron undergoes annihilation reaction with an atomic electron
In its immediate vicinity producing two gamuma ray photons. These photona
fly off the point of annihilation in opposite directions along a line with a
completely random (stochastically speaking it is uniformly distributed in
space) orientation. While passing through the body some of the photons
will be attenuated, while some penetrate through the body . In the PET
measurement system those pairs of aanihilation photons which travel along

the plane of detectors in the system { geometrically all the detectors lie in
one plane) as well as avoid absorption in the body of the patient are however

detected by a pair of detector elements. Such an observation in respect of a
photon pair constitutes a tube. In our pracical PET experiment, the number
of photon counts observed by all such tubes in a finite duration of time is

our measurement data. We will attach a diagram. Lat-er on after make an
elaboration on this in ’Simalation in PET system’.

(2)Mathematics behind the PET :

In PET, the decay of radionuclides are modelled as a spatial poisson point
procesa with mean intennity function { A(s}; s€O,} where O is the abject space.
Assumptions regarding ) :

(a) We assume that the value of )\ at a particular pixel is proportional to
the concentration of the radionuclide at that pixel.

16



(b) As the decay of radionuclides are spontaneous in nature so the emisssions
occuring in two different pixels are independent of one ancther.

With the above assumptios, our objective 18 to estimate the A s statis-
tically. So mathematically, we model the emission process X in the com-
plete set of pixels as a spatially independent poisson process with the joint
probability density function given by,

E—«\; x;
P X=z)=1]] i!)"

X

=1

where z = {z;;{ = 1,...,n} is the emission vector, z; being the number

of particles emitted and ); being the mean parameter of the poisson pro-

cess in pixel i. Since the mean of the emission process is assumed to be pro-

portional to the concentration of radionuclides , an estimate of the intensity

parameter A = {A;;¢ = 1,....,n} 18 also an estimate of the radionuclide
concentrations in the whole object.

So far as the measurement process in PET is concerned , we have y =
{y;;2 = 1,.....,,m} be the observed measurement data where y; is the number
of coincidence photons observed in tube j . kanissions ocurring in a pixel
pixel 1 is assumed to be modelled as a Poisson random variable );. A particle
enutted in pixel i is detected in tube j with a probability p;;. This amounts
to considering that the number of particles which originate in pixel 1 and is
detected in tube ) is also a Poisson random variable with mean A;p;;. Thus

the measurements Y;, j = 1, ...., m are independent Poisson variables with
means given by

| "
B(Y) = Y Apigs = 1y
=1
Hence the process y follows the Joint probabihty density function given
by -

‘it

m _— '.'I.l TN
P(Y = y) = [ ——— =t ] Y )

=1 Ys-
The deterministic image reconstruction methods are limited by the sub-

optimal use of the statistical informations available fromm the models for the
physical processes.

17



(3)Simulation of PET system :

In the previous discussion, we have had a little discussion on the physical
and mathematical fundamentals of the PET. In our discussions so far we did
observe that most of the physical processes involved in this imaging technique
is stochastic in nature and hence the estimation of spatial concentrations
of radionuclides basically boils down to a stochastic estimation. Ueing the
necessary statistical rudimentaries different image reconstruction algonithma
could be developed. At this stage, for evaluation of performance of these
algorithms a PET system is simulated in computer. Now we will discusa
about the sinmlation part mentioned abave. To go into this let us first
describe about its measurement geometry and corresponding pixel-detector
probabilities. Basically we use circular ning geometry as our measurement

system. The program for deriving the circular ring geometry is attached
below.

program circle(input,output);

congt pi=3.141569;

var x, cx,y,p,th,q,aa,bb,rrl, rr2 ,length : real;
xx1,xx2, xx3, xx4, yyl, yy2, yy3, yy4 '@ real;

i,j,n, detno, picno : integer;

procedure grstrt(i, j:integer);external;
procedure draw(i,j:real);external;
procedure move(i, j:real);external,
procedure grstop;external;

procedure circle(a, b, r :real);
begin |
move{(a+r,b) ;
for 1:= 1 to n do
begin
th := 2%pi/nx*i;
x :=a+r*cos(th);
y:=b+regin(th);
draw(x,y);

18



end:
end ;

procedure line (xi, yl, x2, y2 : real);
begin

move(xl, ¥yi);

drav(x2, y2);

end ;

function min (x, y :real): real;

begin

if x < y then
min := x

else

min := y;
end;

begin {main}

gretrt (4209,1);

eriteln (’give origin and radii.’);
readln (aa, bb, rrl, rr2);
writeln(’give n.?);
readln(n);
vriteln (’give the number of detectors’);
readln (detno);
writeln (’what is the number of pixels in a row’);
readln {(picno);
circle(aa, bb, rr1);
circle(aa, bb, rr2);
cx := 2 * pi / detno;
for 1 := 1 to detno do
line(aa + rr1 = cos(cx * i), bb + rxrl * sin(cx * i),
an + rr2 % cos(cx * i), bb + rr2 * pin{cx * i));
for i1 := 0 to 3 do

19



begin
j = 2=*=1 +1;
line(aa + min(xrrl, rr2) *» cos(j » pi/4),
bb + min(rri, rr2) » sin(j = pi/4),
aa + min(rri, rr2) = cos((j + 2) » pi/4),
bb + min(rrl, rr2) = sin((j + 2) *= pi/4));

end;

xxl := aa + min(rri, rr2) * cos(3 * pi/4);
xx2 := aa + min(rri, rr2) & cos(pi/4);

yyl := bb + min(xri, rr2) * ein(3 * pi/4);
yy2 := bb + min(rri, rr2) * sin(pi/4);

xx3 := aa + min(rrl, rr2) * cos(5 * pi/4);
xx4 :* aa + min(rrl, rr2) * cos(7 * pi/4);
yy3 := bb + min(rri, rr2) = sin(b * pi/4);
yy4 := bb + min(rrt, rr2) * sin(7 ¢ pi/4);

for 1 := 1 to picno - 1 do
begin
line(xxl + (xx2 - xx1) * i/picno,yyl + (yy2 - yyl) * i/picno,
xx3 + (xx4 - xx3) * i/picno,yy3 + (yy4 - yy3) » i/picno);
line(xx1 + (xx3 - xx1) * i/picno,yyl + (yy3 - yyl) = i/picno,
xx2 + {xx4 - xx2) * i/picno,yy2 + {(yy4 - yy2) * i/picno);
end ; -

gratop;
end.{main}

As a result of the above program we get the following diagram -

20



\.t ..i/
lI.___l- EEcam Q\
ﬂ

AREEEEERERENEEN
JeEEEEEREEARRLS
Ellllllllll!

EI.II-_.-“mﬂ ~
4‘-‘ ...-l“nm -
o

-

£ _



(4)Geometry behind the PET simulation :

‘The schematic figure is as shown in the figure. In this there are a number
of detectors and there are a number of pixels in the picture frame. The
detectors are kept inside the circular ring as shown. Within that circular
ring the pixel frame is inscribed. The pixel frame is partitioned into small
pixels which has been schematically shown in our reference figure. However,
in the pixel frame we have our circular object space (the largest possible circle
completely inscribed within the square pixel frame). Qur assumption is that
the phantom to be simulated lies geoinetrically inside the object space.

In PET, a positron emission and its subsequent annihilation with an elec-
tron produces two gamma ray photons which travel in the opposite direction
as we have already stated. These photons are detected in time coincidence
by a pair of detector elements situated in the outer circular ring. This pair
of detectors constitute a tube a term which we have used a number of times

in our discussion. The example of a tube 18 also evident from our reference
picture. |

An annihilation event ocurring inside a pixel has a finite probahility for
its detection in a given tube. Though this probability depends on many fac-
tors, however, 8o far our theoretical consideration of our simulation procedure
18 concerned we shall only consider the geometric factor. An annihilation
event ocurred in pixel 1 18 detected in detector j with a probability p;;. The
diagramatic representation of the above geometry is ag follows






(5)Mathematical Phantom using PET :

The mathematical phantom we use is made up of eighteen elemental
objects having different sizes , orientations and density values, viz tablel.
The characteristics of the objects are given in the above table. Each of these
elemental objects are superimposed to obtain the phantom .

For simulating measurement data a Monte Carlo procedure is used. In
this , each emission is simulated as follows. First a random point is chosen
mn the phantom. The concentration of radionuclide at the sampled point
is assumed to be proportional to the density value of the phantom at that
paint. This point is taken as an emission point with probability proportional
to the denmity value. For each of the accepted emission point, a randomly
oriented (between 0 and =) line is selected and the detectors which this
hne intersect is found. The emission point corrosponds to the annihilation
point and the random line corrosponds to the direction in which the pair
of annihilation photons travel. The detectors which this line intersect are
assumed to detect this annihilation event and the tube corrosponding to this
pair of detectors is incremented. In this way, all the emissions are simulated
and counted in the respective tubes, which is used as the measurement data

for image reconstruction. We have used the following program to simulate
this mathematical phantom -

program phantom (imput, output);

label 1;

const pi = 3.14269;
inf = 10000;

var X.¢o, y.co : array{l..2] of real;

temp, anglel, angle2, th, r, cx, cy : real;

det : array{0..16] of real;

p : array [0..2080, 0..290] of real;

tube : array (0..16, 0..18] of real;

tube_count : array [0..290] of integer;

exno, index,picno,start,final,i, j,n,row, col,detno, indi, ind?2 : integer;
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filvari, filvarQ_: text; |
filnamel, filname2 : varying [15] of char:

function rnunf : real; external:

function tan(x: resl): real:

begin '

if cos(x) <> 0 them
tan := gin(x) / cos(x)
else

tap := inf;

end ; {tan}

function discrim : real:
var templ, temp2 : real;

function sec(x :real): real;
begin

if cos{x) <> 0 then

gec = 1/cae(x) . ’
else

sec := jinf;

ond ;{sec}

begin

D = picno; |

templ := (((n + 1)/2 ~ rouw) + ({n +1)/2 - col) = tan(th)) == 2.
temp2 := gec(th) » sec(th) > ((n + 1)/2 »» 2 - 2 ¢ ((n + 1)/2) * you
+ ((n+1)/2 ~ col) » 2 -~ 1 »x 2):

discrim := templ - temp2;

end ;{discrim)

function circle(x, Y. €x, ¢y, r : real): boolean;
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var x_pm, y_.prm, dis : real;

begin

X_pIm = x - CX;
y-pm =y — C¥;
X_PIm = x _prm *= 2
y-pIm = y_prm ** 2;
dis := x_pmm + y_prm ~ r *= 2;
if dis <= Q then
circle := true

else

circle := false;
end:{circle}

procedure normalise;

begin

for indl := 1 to picno * picno do

begin

temp := O,

for 1nd2 := 1 to detno * detno do
begin

temp := temp + plindl, ind2];
end ;

for ind2 := 1 to detno * detno do

1f temp <> O then

plind1, ind2]) := plindi, ind2] / temp
else |

pl indl, ind2] := 0;

end ;

end:{normalise}

begin {main}

uriteln (’what is the number of pixels in a row’);
readln (picno); '

writeln (’how many detectors are there’);
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readlx (detno);

temp := (2 * pi)/detno;

for i := 0 to detno do

det[i] := temp * i;

uriteln (‘how many emissions do you want’);

readln (emmo):
for index := 1 to emno do
begin

1: row := trunc(raunf #* picno) ;

col := trunc(rnunf * picno) ;

th := rnunf * pi;

if circle(row, col, picno/2, picno/2, picmo/2) then

begin

if discrim > 0 then

begin

cx := picno/2;

Cy :m CX;

x.coli] := row + cos(th) *» ({(cx - row) + (cy ~ col) * tan(th)
+ sqrt(discrim));

y.col1] := col + sin(th) * ({cx - row) + (cy - col) * tan(th)
+ sqri(discrim));

x.co[2] :» row + cos(th) * ({cx -~ row) + (cy - col) * taun(th)
- aqrt(discrim)); |

y.col2] := col + sin(th) * ({(cx - row) + (cy - col) * tan(th)
- sqrt(discrim));

end + | ¥

elgse

goto 1;

angleil := arctan(y_col1] / x_col1]);

angle2 := arctan(y_co[2] / x_co[2]);

for 1 := 0 to detno do

begin

if ((det[i] < anglel) and (det{i + 1] > anglel)) then

start := ji;

if ((det{i] < angle2) and (det(i + 1] > angle2)) then

final := i; | |

end;
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for i := 1 to picmo * picno do

for j := 1 %o detno * detmno do

pli, jl := O;

for 1 := 1 to detno do

for j := 1 to detno do

tubeli, jl := 0;

for 1 := 1 to detno * detno do

tube_count[i] := 0;

indl := (row ~ 1) * picno + col;

ind2 := (start - 1) * detno + final;

pl ind1l, ind2] := p[ind1, ind2] + 1;
tubef{start, final] := tubelstart, finall + };
tube[final, start] := tube[final, start] + 1;
tube_count[ind2] := tube_count[ind2] + 1;
end ;

end ;

normalise;

vriteln (’give the filename of your tubecount’);
readln (filnamel):

open (filvarl, filnamel, new);

rewrite (filvarl):

for 1 := 1 to detno * detno do

writeln (filvarl, tube_countlil);

writelr (’give the filename of your pixel_detector probability’);
readln (filname?2) ;

open (filvar2, filname2, new); -

rewrite (filvar2): _

for i := 1 to picno * picno do

for j := {1 to detno * detno do

writeln (filvar2, pli, jl);

close (filvaril);

close (filvar2);
end .

In the above procedure what we adopted is that for each emission we
choose a point randomly in the object and it is accepted as an emission point
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- with probability proportional to the true object value at that point. For
each accepted emission point a randomly oriented line iz selected and the
detectors which this line intersect is found . The tube corresponding to these
two detectors is found and the corresponding to this tube is incremented by

oue. In this way a number of emissions are simulated as per the specification
of the user.

In the above algorithm, we find its time complexity to be O((nd)%e)

where d : number of detectors present,
n : number of pixels in a row,

e : number of emissions
and tts space complexity 18 O({nd)?)
(6) Estimation of mean pixel densities :

We have already seen that the image reconstruction problem, which is
essentially the estimation of the mean parameters of the emission process.
We will deal with the Expectation Maximisation {EM) estimation approach
to emiss- jon tomographic image reconstruction. However we will get shortly
that EM algo- rithm is computationally excessive space consumning as well as
1ts convergence is very slow. In recent times there has been positive effort to
unprove the performance of EM algorithm by making certain modifications
on it. They constitute Expectation Maximisation Search (EMS) algorithm
» Overrelaxation procedure applied on EM algorithm. In our study we have
developed aprogram to estimate the mean parameters using EM algorithm.
Later we have also incorporated the Overrelaxation procedure as a program
implement. This procedures are incorpo- rated below.

program axpetation_maximization (input, output);

const maxpic = 4100;
maxdet = 128;

type arr = array [1..maxpic] of real;
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. var n, relx, count, 1, j, detno, picnu : intagar;

tenp, templ, eps, parm, loc : real;

yyt : array [1..maxdet] of real;

yy : array {1..maxdet] of integer;

lam, a : arr;

p : array [1..maxpic, 1..maxdet] of real:

filvarl, filvar2, filvar3, filvar4, filvarS : text;

infill, infil2, infil3, infil4, infilS : varying [15] of char;
response : varying[i] of char;

function meu : real;

var mumax , min :real;
m : array [1.. maxpic] of real;

begin
mumax = 256;
min = Q:

if a[il < 0 then
m{i] := - (lam{i] / a[i])

else
m{i] := mumax:
for 1 := 1 to picno do

if m{i] < min then
nin := nfi];

men = min;

end ; {*meus}

procedure iteration(flag : boolean);
begin

1f count <= relx then

begin

count = count + 1;
for j := 1 to detno do
begin

temp = O;
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for 1 := 1 to picno do

temp := temp + lam{i] » pli, jl;
if temp <> 0 then

yyt[j] = (yy[j] - temp)/ temp;
end ;

for 1 := 1 to picno do

begin

temp := O;

templ := (;

for j := 1 to detno do

begin

templ := templ + p[i, j];

temp := temp + yyt[j] » pli, jl;
end;

if tempi <> O then

begin

ali] := temp * lam[i]/ tempi;
1f flag = true then

lam{i] := lam{i] + men * afi]
else

lam{i] = lam{il + af{i];

end;

end ;

end ;

end; {* iteration *}

function convergence (xx : arr): boolean;

begin

for 1 := 1 to picno do
if xx[i] < eps then
convergence := true
else

convergence := false,
end ;

procedure log_likelihood;



var X : real :

begin

x = (;

temp = O;

for jJ := 1 to detno do
begin

X :=x + temp;

templ := 0;

for 1 := 1 to yyl[j] do

tempi := tempi + In(1);

temp := 0;

for 1 := 1 to picno do

temp := temp + lam[i] * p(i, j];

temp = ~temp + In(temp) * yy[j] + tempi;
end ;

X = x + temp;

loc = x;

end; {*log_likelihood=}

procedure loopl(flag? :boolean);

begin

repeat

iteration(flag?);
log_likelihood;

writeln (filvarS5, count, loc);
antil convergence(a);

end ; {*locopl*}

procedure loop2 (flagl :boolean);
begin

repeat
iteration(flagl);
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until convergence(a);
end ; {*loop2»}

begin {* mains*}

writeln (’what is the number of pixels’);

readln (picno);

writeln (’what is the number of detectors’);
readln (detno);

vriteln (’what is the probability input filename’);
readln (infiltl);

open (filvari, infill, old);

reset (filvart);

for 1 := 1 to picno do

for j := 1 to detno do

readln (filvari, pli, jl);

eriteln (’what ie the mean_intensity filename’);
readln (infil2);

open (filvar2, infil2, old);

reset (filvar2);

for 1 := 1 to picmo do

readln (filvar2, lam[il);

uriteln (’what is the detector input filename’);
readln (infil3);

open (filvar3, infil3, old);

reset (filvard);

for } := 1 to detno do

readln (filvar3, yyljl);

ariteln (’what is the level of precision you want’);
readln (eps);

count := O;

sriteln (’do you want log_likelihood function calculation{y/n}’);
readln (respomnse);

if ((response = ’y’) or (respomse = ’Y’)) then
begin

writeln (’what is the output filename of log likelihood’);
readln (infil4); |

open (filvar4, infil4, new) ;

J1



rewrite (filvar4d);

repeat

iteration(false);

log_likelihood;

uriteln (filvar4, couat, loc);

until convergence(a)};

end

else

repeat

iteration(false);

until convergence{a);

writeln (’ convergence in’, count, ’iteratiomns’);
eriteln ('’ do you want overrelaxation method implementation’);
readln (reaponse};

if ({(responee = ’y’) or (resporse = ’'Y’})  then
begin

uriteln (’how many intervals do you choose’);
readln (n);

count := {;

eriteln (’do yon want log_likelihood function calculation(y/mn)’);
readln {(response);

if ((response = ’y’) or (regponge = ’Y’)} then
begin

writeln (’what is the output filename of log likelihood’};
readln (infilS);

open (filvar5, infil5, new);

rewrite (filvarb);

‘loopl (true);

end

else

loop2 (true);

eriteln (’ convergence in’, count, ’iterationa’);
end ;

close (filvari);

cloge (filvar2);

close (filvar3);

close (filvar4);
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close (filvarb);
end.

(7) Basics of MLE :

We have already defined \;i = 1,....,nas wellas y; | = 1,...., m. Moreover
we know what are p;;. Our likelihood function is given by,

£(3) = H MRS 0 A M (3)

y=13 y.l‘

The ML E(EHLL i{ it exists, is obtained by maximising the likelihood function
L{}) or equivalently the log-likelihood function given by top( L{AY) = {{A).

from equation (1) we have,

(A} = Z{ Z Api; + y,fﬂg(z \ipi; ) — tog{y, )} (1)

=1 =1

To maximuse l().) we differentiate it with respect to A and set the result
1o zero. We pet that
A WPy oy (i73)

}:;*1 Piy =) 2okt }‘kpl:;

{t can be mathematically checked that the hessian matrix consisting of the
second order derivatives of 1{\) corresponding to the solutions obtained 1n
(ii1) of A comes outl to be negative defimite. Hence we can at once conclude
that the hypersurface I{)) with respect to its axes }, -s 18 concave in nature
and as such an MLE exists. Since the estimates obtained in (iii) are iterative
in nature we can set the Lquatmllﬂ in (1) teratively as follows

PLagde Z U717 N 1= 1, (zv)
3=1P‘J je=1l Zt-— ’\f Pis

The EM algorithm given by equation (ii) bas certain interesting pro- perties
though we do not go into their proofs.
(1) The iterates have nondecreasing log-likelihood values. It means that

H(AFY) > [(AF) (v)
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This property is called the monotonicity property of EM algorithm.

{II) As the log-likelihood function is concave the equality in equation {v)
means that the iterates have already converged to the required MLE solution.
[n that case we can say that

I(A*) = I(AME)

(I} The EM estimates have self normalising properties. This can be mathe-
matically attributed as follows from equation (iv)

- k
) DERAL U111 (vi)
=1 E P
Since the right hand side 1s independent of k, the iteration numbes, therefore

s » . k
Y AR =3 (1)
1=}

—
—

Moreover, if 3, py; = | whose physical interpretation is that each emission
ocurnng in pixel 1 15 detectable in one of the detectors then from equation
(v} 1t 18 evident that

L . ™
LA =)y (v}
s=1 =1

(8)Improvement of EM algorithm :

The EM 1teration step in equation (1) in the previous section can be
rewniien 1o the additive form as follows

mn |
a\f+l:f\:‘ E—Z—#—L P, = 1,..,n {1x)
Z,...: Pis ;21 Loe Aff-’i_;

Vectorially it can be represented as follows

1=k AQK) (2]

whete

Z Y, — EL.] ‘l'l Dty

AN =
EJ"'I Piy j 21 A?PIJ

p.j,f‘; .L....,ﬂ' (ﬂ:t]
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A(X*) ia the i-th component of A(3*) and 3* is the i-th component of A¥. It
18 here we introduce the method of overrelaxation where we substitute the
second part of (x) with *A(A¥) so that one can regulate the conver- gence
rate of the algonthm. In our program, we could find how did we choose our

T
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Conclusion

There is a lot of scope which we did not cover in our present discussion. For
example in improving the EM algorithm we only concentrated on overrelax-
ation method. There are other methods as well. e,g IEMS algorithm vector
extrapolated maximum likelihood estimators etc. In future they need a lot
of attention. Moreover we mainly concenirated on CBP and PET. However,
what we did not cover at all is MRI. Recently a lot of work has been being
done in this area. That is another angle where we can concentrate. What re-

mained uncovered as yet is the application of Bayesian approach in diflerent
methods. In this field also there is a lot of scope left.

- J6
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