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ABSTRACT

This work deals with the cluster Vé.lidity problemi. Here three new Validation indices

have been defined. These indices have been calculated for various clustering techniques. Con-

cepts in Computational geometry like Varonoi diagram, Delaunay triangulation and Gabriel

graph have been utilized for the purpose.
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- Chapter 1

1. Introduction

Cluster analysis deals with automating a natural and commonly utilized human activity of
forming classes or groups of similar objects, irrespective of their origin.Thus the objects to
be clustered could be patients in a hospital, different brands of a consumer product, students
al a university, or pixels in a digital image. It may not be possible to say exactly what
a cluster is in abstract terms, without a statement of the criterion and the implementing
algorithm. Cluster analysis plays an important role in solving many problems in pattern
recognition and image processing. It is used for feature selection , 10 numerous applications
volving unsupervised learning (where it is difficult to assign a reliable category label to the
training patterns ), and speech and speaker recognition. But a novice user of cluster analysis
soon finds that though the intuitive idea of clustering is clear enough, the details of actually '
carrying out such an analyéis entails a host of problems. Anderberg [5] has proposed an
outline of the major steps of a cluster analysis. The major steps involved are the choice of the
data units, the choice of the variables and the similarity measure, decisions regarding what

to cluster, the élustering criterion, and the algorithm to be used.

Once we obtain the clusters the results are to be suitably interpreted. At the least



level of sophistication, the clusters are summary str;ttiatics like the mean and the variance. At
the next level, the set of choices used for cluster analysis are so well defined that the clusters
necessarily have the desired propeties. And at the highest level, the results of cluster analysis

are an aid to reasoning from the data to the explanatory hypothesis about the data.

Any given set of data may admit of many different but meaningful classifications.
Each classification may pertain to & different agpect of the data. Cluster analysis is a device for
suggesting hypothesis. The classification of data units or variables obtained from a cluster
analysis procedure has no inherent validity. The analyst should not feel any pressure to
embrace a particular classification, nor should he feel bound to the details of a classification
he finds interesting. The worth of a classification and its underlying explanatory structure is
to be justified by its consistency with known facts and without regard to the manner of its

original generation. A set of clusters is not itself a finished result, but only a possible outline.

There are many clustering algorithms found in the lLiterature. Thejr involve fixed
sequence of operations which systematically ignore some aspect of structure, while intensively
dwelling on others. So to a considerable extent a set of clusters reflects the degree to which

the data set conforms to the structural forms embedded in the clustering algﬂritim}.

Clustering #lgorithms tend o generate clusters even when éxpplied to random data.
If one has a great deal of experience with a particular clustering method, and some prior

information about the data being ‘clustered, the results of a cluster analysis can confirm

or deny assertions about the data and suggest subgaquent analysis. Howaevar, the user of a
clustering algorithm is often unsure about the data and has little experience with a particular

‘type of data or a particular clustering method. Lack of information about the data is often
the motivation for clustering the data in the first place. In this case the user searches for
objective meaning and needs quantitative measures of significance for evaluating clustering

structures. Cluster validaton refers to procedures that evaluate the results of cluster anal}ksia_



~ in a quantitative and objective fashion. The task of cluster Validity is to separate the artifacts
from the structure. The fundamental questions we address can be stated from user’s point of - .
view as : Are the clusters and the structures generated by a clustering method or algorithm
significant enough to provide evidence for hypothesis about the phenomenon being studied.

The problem can be viewed as in fig. 1.1 on the next page.

Data are first checked for clustering tendency, and 0111}1 if the data tend to be non-
random is clustering attempted. The validation process judges the success of an alganthm In
- imposing a structure as well as the suit ability of the structure for the data. We assume that
the data may be given in the form of 2 proximity matrix or a pattern matrix. And the imposed

structure may be partitional, or hierarchical, depending on the clustering methodology used.

The validation of the results of imposing a structure on data with a clustering method

may be done using the fol]owi';:g criterion :-

1. Compactness criterion : measures the inner sirength, or concentration or cohesion

or uniqueness of an individual cluster with respect to its environment.

2. Isolation criterion : measures the separation or gap hetween a cluster and its envi-

ronment.

3. Global fit eriterion : measures the accuracy with which the structure describes
the relationships between clusters, as well as the extent to which all the clusters are

individually valid.

4. Intrinsic dimensgionality criterion : determines the "shape” of a cluster and provides

information about representing the patterns in a cluster.

There is a need to establish a methodology whereby one can incorporate specific

criteria into a program and the type of imposed stucture. This problem is attacked by fixing

3
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the data type and the type of imposed structure. The following factors are helpful in deciding

‘which of the above criteria/criterions to choose from, in order to validate the clusters :-

1. Null hypothesis : This is a hypothesis about the meaning of "no clustering”, often
expressed as a concept of randomness or the antithesis of clustering. There are only two -
hypothesis that have been studied in the literature. They aré the Random Graph
Hypothesis and the Random Position Hypothesis.The first is applicable in studies
involving symmetric proximity matrices whose entries are rank orders. For eg., ah n
x u ordinal dissimilarity matrix has zeros in the diagonal and the numbers 1, 2, .....
n(n-1)/2 in the upper triangle without ties : the most familiar pair of data items has
rank 1. The Random Graph Hypntheﬁis is that all [ n(n-1)/2 |! such matrices are
equally likely. The Random Position Hypothesis views the n patierns as independent

samples from a d dimensional distribution.

2. The ideal cluster : This factor establishes the user’s prior concept of what a cluster
means and sets the goal for a clustering method. One can formulate an idea of cluster

from an assumed mathematical model or from prior work in the subject matter.

3. dample size : Increasing the number of patterns can increase the confidence in a

particular structure, but may increase the computational burden.

4. Details of imposed structure : Each clustering method lmposes its own set of
restrictions. Sometimes the restrictions are implicit in the definition of the clusters.
Many clustering algorithms always finds clusters which are ball shaped. Others always

place patterns which are closest in the same cluster.



1.1 Survey of literature

The first step in carrying out the study of cluster validity is $o verify whether the data set
shows a clustering tendency. Various strategies are found in the literature to measure this

tendency. Some approaches require a rank order clisaimi]ariﬁy mabrix |ri;] and is baged on the

- concept of a random graph. We begin thh asetof n nodea, one per pattern. A threshold
graph G(n,e) is is an undirected graph containing n nodes and e edges with edge (i,j) bemg
entered if r;; < e. Under the Random Graph Hypothesis, these edges are entered randomly.

The first test requireé the number of edges, E needed to connect a random graph.
‘Knowing the distribution of the number of edges required to connect a random graph, permits
one to judge how many edges must be added before deciding that the data are random. Ling
and Killough (8] produced an exact equation for the probability, based on the results of

Riddel and Uhlenbeck [13]. Ling 1] adopts the Random Graph Hypothesis, which requirea
all {n{n-1)/ 2]! ordinal dissimilarity matrices to be equally likely. |

The distribution function for E is denoted by P(n,e) = Prob(E’ <t

If ¢* is observed in a particular situation as the level at which the graph for the data

bemg studied first becomes connected, or the level at which all data items are absorbed into

the same single link cluster, then the clustering tendency is tested as follows :

If P(n,e) < 0.99, evidence exists for the conclusion that the disgimilarity matrix was

not chosen at random. The threshold 0.99 is arbitrary. The intuitive idea behind this ia
that within-cluster edges tend to occur before the between cluster edges when the data are
clustered, thus delaying the formation of a connected graph. There are other tests based on

the distribution of node degrees, and the number of nodes in clusters. The details can be
found in the literature [12,2] ,

Once the clustering tendency of the data is verified, the next step is to find out how
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well does a hierarchy fit a proximity matrix, or whether the partition obtained from a pattern

~ matrix is valid, or whether the individual clusters appearing in a hierarchy are valid. We

refer to the literature (3,4,15,14] for the varlous methods adopted for Cluster-Validity.

1.2 Owur Approach

Most of the cluster Validity techniques eraploy various statistical tools to define the actual
test of Cluster Validity. We are not following that approach. We assume that our samples
come from a population of known classiﬁcation, and that the classes are non-overlapping. We
have then applied the clustering techmques and found the misclassified samples/ nusclasmﬁed

areas. These misclassifications provide an idea of the Validity of the method.

For various sample sizes and for various data sets the averages of the Validity Indices
that we define in the next Chapter have been calculated. The Validity-Indices have been
defined in such a way that they take the value 1, if the classification is correct. The aim of
this work is to find the average of Validity Indices for various clustering methods, and for
various data sets g0 that one can get an idea of the Validity of the techmque for unknown
data sets. Expected values (Means) of the Validity-lndicéﬂ are better measures of Validation,

though they are difficult to calculate. We are not considering such calculations in our work.

It may be mentioned that though a lot is known about the various clustering algo-
rithms, a good literature on the merits and demerits of various algorithms and their applica- - -
bility to specific data sets is absent from the literature. We hope that the results given at the
end will throw light on the performance of various clustering methods. This knowledge can

~ be of immense help while applying the method of cluster analysis to solve real life problems.



To judge whether an algorithm gives the right clusters, one should know the original clas{
sification. Thus an approach to cluster Validity is to apply the algorithm to data sets with
known classification and check the results. To get a quantitive idea of the results of such
a comparigion, and of the clustering methodology for the polulation in general, we define
various Validity Indices.In defining these Validity Indices, we have assumed that our samples
come from a population of known class'iﬁcatiun, and that the clusters are non-overlapping. .
We have then drawn random samples from a population with known classificat ion, and pro-
- ceeded to find the various Validity Indices that we define below. Observe that any Index that
18 found is dependent on the samples, and therefore different Indices will be found for different
samples of the same size. This necesmta.tea the knowledge of the probability of occurence of
different sample sets. In this project the calculatmn of this probability is not being tackled.
After the calculation of these proballtles and suitably mcorporatlng them with the Validity
- Indices for the respective samples, this process results in Validation of the given procedure for
the given population. Detailed studies for the validation of different clustering techniques for

different data sets is absent in the literature, though some observations about the application



~ of some techniques to some data sets are known. We have defined three Validity Indices in
carrying out our study. The Indices have been defined such that they lie between 0 and 1,
and higher the value of these Indices, closer are the clusters to the original populatlon cluster.

Hence the Validity Index is 1 for the right classification, We define the Validity Indices, V I,
- VI & VI in the following sections.

2.1 Definition of VI,

The first Validity Index ( VI, ) that we define evaluates on the assumption that, in general,
the performance of a clustering algorithm improves if the size of the sample is increased. Thisa
result, however, doesnot apply to all clustering algorithms. K-means algorithm, for example,

will not correctly classify the following fype of data sets,however large the sample size may
be.
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But some other algorithms, like the set-estimation method ( to be discussed in the
next chapter) and the single linkage algorithm, guarantees that we always get the right classi.

fication if the sample sige is very large.Now, for the given data set if the derived cla,asiﬁcatian
i3 found fo be incorrect, the proposed method of Validity appends some more points to the
given data set $o achieve the right classification. The addition of these points may be incor-

porated subjectly, or randomly. Both methods of adding points will give different Validity

Indices. We have selected the second option, and have not considered the computation of the



~ probabilities. We now define VI, as given below :

VI = N-ATEE, 2.1
(1+ =5578) &)
where,

N-Added = Number of points added to get the right classification, and

N = Size of the original sample.

It can be easzly seen that V' I; = 1, for the correct classification, and V I; goes to 0,

when N-Added—» oo.

'2.1.1 Computation of V1 B

To compute V I, all we need to know is the number of points to be add.ed to the given sample,
g0 that we get the right classification. We are taking the points to be added randomly from
the pcapulatlon from which the sample has come. We apply the clustering algorithm to the
given sample, and verify whether we have got the right classification. We stop if we get the
right classification, or when we have added MAXLIMIT number of points. The number of

points added upto this stage is used to compute VI;. Otherwise, we add one more point to

the data set, and the above process is repeated.

2.2 Definition of VI,

The problem with V' I, is that it is computationally very expensive, and there is no guarantee

~ that we-will finally get the right classification. So we have defined another Validity Index (
- VL ) which can be computed by a a single run of the program, while giving a fair idea of
~ the Validity of the clusters obtained. Let,

a;; = Number of points of i cluster going to j™ cluster, and

10



k = Number of clusters

;; then

Q;;
Ei'l *#7 No. of points in 7 cluster

k-1

Vh=1- (2.2)

. Again we find that
(Vfl)mm = 1, and

(VIE)mnm =0

2.2.1 Computation of VI,

The.camputation of VI, is also straightforward. Here we need to know the number of mis-
 classified points ( ai;, j = 1...k ) of each cluster C;. This we find by comparing the clusters

obtained with the original population cluster, and finding the number of misclassified points,

While comparing the clusters we have to be careful about the label we a,aaigﬁ to each
 cluster of the sample. We have chosen to perform the comparision for each possible labelling

of the sample, and choosing the one which gives the minimum number of misclassified points

a8 the correct labelhng

2.3 Definition of VI,

The Validity Iudices VI, & VI, are somewhat sensitive to the size of the samples, and so we
define another Index of Validity ( V 1, )y whlch ig based on the computation of the areas of

‘the clusters. The areas are defined below. Let

¢ a; = The area corresponponding to cluster C; where the poinis are rightly classified,

11



e A; = The area corresponding to a; when all points in cluster C; are classified cor-

rectly,and

e £ = Number of clusters,

" VI, is now defined as

VI === (2.3)

2.3.1 Computation of VI,

To compute VI, we need to compute the areas a; and A; for each cluster C;. The points
needed to compute A; is known from the original population cluster. The poiﬁts needed fo
compute a; are the points which are present in the corresponding clusters of both the data
. set and the given population cluster. Now all that remains to be computed are the above
areas from a given set of points. The computation of the above areas ig not an easy tagk.
We have found a way to compute the above areas, using the Voronoi diagram, the details of

- which are given in Chapter 4.

12



- Chapter 3

3. Clustering Methods Studied

In this chapter, we describe in brief, various algorithms that we have considered for our study.

All the algorithms considered are valid only for non-overlapping clusters only.

3.1 K-means algorithm

This is one of the most popular cluateriﬁg techniques, because of its advansage in ferma of
space and time complexily, and ease of implementation.It is based on the minimization of

a performance index J, which is the sum of squared distances from all points in a cluster

dorain to the clugter centre. i

J= ;;j lz ~ m|l*

where,
k = No. of clusters,

C; = Set of samples belonging to the ;¢ cluster,and

13
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m;= == » T
T NJ' :‘l;j
m; is the sample-mean of C;, and N; represents the number of samples in C;. The algorithin

can be found in [104.

Althongh, no general proof of convergence exists for this algorithm, it can be expected
{0 yield acceptable results when the data exhibits characteristic pockets which are relatively
far from each other. This algorithm assumes that the number of clusters be known apriori.
The selection of the wrong seed points, may in some cases, may make all the difference
between a wrong classification, and a correct classification. We have followed the following
method for selecting the seed points :

Let

S = {:c;, T3 ...%,;} be the given data set,

k = No. of clusters, and

b= ij-lj

The seed points are then given by {z,, Zo1, Tar ... Toe}

3.2 Single-linkage Algorithm

This is a hierarchical clustering algorithm, wherein we start with n clusters and at each stage

reduce the number of clusters by one. Let us first define

d(4,y) = Inf d(z,y)
d(A, B) = xE;iin,g‘EB d(z,y)

where,

A and B are the data sets.

14



At stage i, there are (n.i) clusters. We merge two clusters C; and C; for which
d4(Ci, ) is minimum among all the clusters at this stage.. This process is repeated for

1=0,1...(n-1). So we get a dendogram. The number of clusters is now decided using some

heuristic which ensures that the step jump between two successive levels in the dendogram

is significant. The dendogram is now cut at this level, and the disconnected components in
the dendogram are the clusters.

In carrying out our study, we have assumed that the number of clusters is known
apriori. This ensures that we are not very much biased when we compare the results of this

algorithm with other algorithms, like the K-means algorithm. This algorithm is known to

give good results when the cluster consists of long chain like structures.

3.3 Complete-linkage Algorithm

The steps followed by this algorithm are exactly the same as that followed by the single-linkage

algorithm, except that the dissimilarity measure d is redifined here as

d(A,y) = supd(z, y)

d(A, B} = SOp d{z,y)

where,

A and B are the data sets.

This algorithm gives results which are comparable to that obtained b;r the K-means

algorithm, when the clusters are compact. The advantage here is that we need not know

the number of clusters apriori, and the problem of seed selection as in the case of K-means

algorithm is also not there.

15



3.4 Set-Estiniation Method

This algorithm which was proposed by C.A. Murthy and D. Dutta Mazumdar will always
provide the right classification if the number of points is very large, and the clusters are

tnon-overlapping [6,7,8]. The major steps of this algorithm are given below *

Let § = {z1,2;...%3,} C R be the given data set.

1. Find out the Minimum-spanning tre_e(MST) of 3, where the edge-weight is taken as the

Euclidean distance.

2. Calculate the sum of the edge-weights of the MST and call it /..

3. Let &, = \/§

4. Remove form the MST those edges whose edge-weights is less than 2h,. The counected

components that we get are the clusters.

" —

- This method also doesnot require the apriori knowledge of the number of clusters. If
the number of clusters that we get using this method is the same as that we obtain using the

single-linkage method, then the clusters we obtain in both cases are identical.

16



Chapter 4
4. Computation of VI;;

We have seen in Chapter 2 that the computation of V I requires the knowledge of the area

of a cluster. The various steps involved in it are discussed here. The area can be calculated

once the shape of the clusters is known.

The shape of a set of pointz has been defined in various wayé. One commeon way
to define the shape of a finite set of two dimensional poinis is its convex hull. But in many
cases the underlying shape from which the points emerge is not convex. Edelsbrunner et al.
(17} extended one definition of the convex hull and proposed a general definition of the shape
(convex or otherwise) of a finite planar set. This is called aeshape. The a-shapes seem

to capture the intuitive notions of the fine-shape’ and ’crude-shape’ of point sets, They are

 also subgraphs of the closest point or further point Delaunay triangulation. But the main
drawback of this method is the dependence of the shape on the parameter o (0 < & < 1);,
and this o has to be chosen by trial and error. Our method of obtaining the shape of 2 set
of points S, while capturing the intuitive notion of the shape of the set of points, 1s also iree

from this drawback.

Let us assume that we require to compute the area A { Cover set of points ) for the

17



get of points 8. The major gteps involved are given below: .

1. Construct the Voronoi- diagram for the set of points 5,
9. Construct the covering polygon of the set of points S { Cover Set of 5),

3. Triangulate the above polygon and find out the required area A.

The details are now given in subsequent sections.

4.1 Voronoi diagram

Definition : Given a of N points S in the plane, we divide the plane into N regions such that

for each point p; in S, the region i is the locus of points {X,y) that are closer to p; than to any
other point of 8. Such a partition defines what we call as the Voronoi diagram. We denote

the Voronei diagram by Vor(8), and the Vorenoi polygon associated with p; is denotod by

V(i). The vertices of the Voronoi diagram are the Voronoi-vertices, and its line segments are

the Voronoi edges. °

We now give below, without proof, some of the properties of the Voronoi diagram.

For proof, the reader is referred to [11].
"« P1; Every Voronoi vertex in the Voronoi diagram is the intersection of at least three
Voronoi edges.

o P2: For every Voronoi vertex, let C(v) denote the circle with centre at v, and passing.

through three or more points satisfying property P1. Then for every veriex v of the

Voronoi diagram, the circle C(v) contains no other point of 5.
 P3: Every nearest neighbour of p; defines an edge of the Voronoi polygon V(i).

18



e P4: Polygon V(i) is unbounded iff p; is a point in the boundary of the convex-hull of
S.

¢ P5: The straight line dual of the Voronol diagram is the triangulation of 8, known as

the Delaunay Triangulation.

4.1.1 Constructing the Voronoi diagram

By constructing the Voronoi diagram Vor(S), we shall mean fo produce a descripiion of the

diagram as a planar graph embedded in the plane, consisting of the following items :

1. The coordinates of the Voronoi vertices,

2. The set of edges and the four edges that are their counterclockwise and clockwise
successors at each extreme jﬁﬂint, This implicitly provides a cycle around each vertex

and around each face, in either direction.

We now give below two results we have use of in our algorithm. The proof can be

referred in [11].

¢ Regult 1

Given a partition {S;,5: } of 8, let (5., S2) denote the set of Voronoi edges that are
gshared by pairs of polygons V(i) and V(j) of Vor(8), for p; € S, and p; € S2. Then if

8, and 8, are linearly separated, then o(8;, 8;) consists of a single monotone chain.

¢ Result 2
I S; and S, are linearly separated by a vertical line with §; to the left of 93, and ¢

cuts the plane into a left portion 7z and a right portion wg, then the Voronoi diagram
Vor(8) is the union of Vor(S;) Nn1l; and Vor(8;) N1l

19



- The algorithm, therefore, runs as follows :

1. Partition 8 into two subsets 57 and S, of approx. equal size by median x-coordinate.

2. Construct Vor(S,) and Vor(S;) recursively.
3. Construct the dividing chain ¢ separating S, and S,.

4. Discard all edges of S; that lie to the left of o and all edges of Vor{S5;) that lie to the

- right of 0. The result is Vor(8), the Voronoi diagram of the entire set.

The main step of the above algorithm is the construction of the dividing chain 0. This

can be done in linear time by following the algorithm given in [11].Hence the construction
of Vor(S) can be carried out in O(nlog,n) time, which is optimal.We have implemented the

above algorithm on the assumption that not more than three points are co-circular.

4.2 Cover Polygon

Our next objective is to find the cover-polygon from the Voronoi-diagram. This will give us

the shape of the set of points S.The following routines are devised for this purpose.

o 1.IsIntersects{e,v;,v2) : This routines returns TRUE, if the line segment joining v; and

vy intersects with the edge e. Otherwise, it returns FALSE.

o 2 ReverseVertez(v,, ¢} : This routine returns the vertex v, on the side of e, which is

opposite to v,

To construct the cover-polygon, we move around the set of points in the counfer-
clockwise direction, and join the successive vertices which form part of our polygon. How

these vertices are selected will be given in the steps that follow. p

20



Step 1: Select the leftmost point of S as the infitial hull-vertex, and call it HullRoot.Let
hy = HullRoot;
e = Open edge of V(h,);
h, = ReverseVertex(h,, ¢e);

| Step 2: repeat

begin
if {IsIntersects(e,h; h;) == TRUE)
begin ' o
Include the edge (hy,he) in the cover-polygon;
hy = ho;
end

e = The next edge that we come across, while moving in the clockwise

direction about Ay, and starting from the edge e;
~ hy = ReverseVertex(h, e);
end ;
while (h; # HullRoot)

Figures 6.1 to 6.7 illustrates the above procedure. Note that this method, in its
present form, will fail to give the shape of a cluster having a ring like structure, as shown
in fig. 5.3. This occurs because the cluster boundary in this case is not continuocs. So
once the outer boundary is traversed, we must construct the inner boundary. This can done
following the steps given above, provided we can locate one of the points belonging to the
inner boundary. We have not tackled this problem. So our method works only when the

cluster boundary is continuos, which is usually the case.
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4.3 Area of a polygon

“Qur next objective is to obtain the area of the polygon, which is obfained by successive
‘{riangulations. Let P, be a polynomial with n vertices vy, vy, ... v,-; connected in that order.
- We now give below a recursive procedure POLY-AREA(PF,, v; which returns the area of

the polygon F,. v; is the reference veriex,

Procedure POLY-AREA(P, , v; )
'bagin .
- if{n=3)
hegin
Compute the of the triangle formed by the vertices {vy,v;, v3).
refurn area;
end
elge
begin
Check whether the edge (v;, ¥;4;) lies inside the polyncmial;
if it lies inside,
begin
# Compute the area of the triangle formed by the vertices {v;,v;41,¥in).
# Remove the vertex v;y, from P,, and add an edge {(v;,vi44)
# Return (Area + POLLY-AREA(P,,_I, Vg1 ))
end |

elge

Return POLY-ARFEA(P,, viy,)

end
end,

It may be noted that the edges of the Cover Polygon (CP) are a subsetf of the edges of
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the Gabriel-Graph{GG) and hence of Delaunay triangulation(DT) also. The Graph obtained
from DT by removing those edges of DT which donot intersect its dual Voronoi-edge, is the
Gabriel-Graph [16]. In constucting our polygon, we are including only those edges of GG,

~ which lies on the periphery.
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Chapter 5
5. Generation of data sets

In this chapter, we give a list of data-sets that we have generated for carrying out our study,

alongwith other relevant details. We broadly divide our data-sets into three classes.

5.1 Data-Class I

The data-sets in this class consists of two unit squares separated by a distance 6 a8 shown in
fig. 5.1, We have selected the values of § as 6 = { 0.1, 0.2, 0.5, 0.8 }, We have considered

the following distributions for our study:

¢ Uniform, and

e Triangular.

Ten data-sets for each value of § and for each of the above distributions were consid-

ered. The study for each of these cases was then carried out for sample-size N ranging from

50 to 250, In steps of 50.
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5.2 Data-Class 1l

The clusters in this Data-Class comprises of a concentric disc, and a ring. The shape of the

clusters is shown in fig. 5.2. Let the radius of the disc be r, and the onter and inner radius

of the ring be R and r, respectively. We choose the {following value of the parameters :

o R=1
‘f{;:[ls

e Define é-rading =ry -1

The value of the §-radius was taken to be {0.3, 0.4, 0.5 }. The distribution is taken

to be uniform. Ten data sets were generated for each §, and the study was carried out for

A

sample-size N ranging from 50 to 250, In steps of 50. %

5.3 Data-Class 111

This Data-Class consists of three clusters, arranged in the configuration shown in fig. 5.3.
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'Mhe following two data-sets were considered under this Data-Class :

1. 151 = 0.8, 5;; = 05, and

2. & = 0.5, 8, = 0.8.

The results are described in the next Chapler.

MJ_,’_TII
)

Fig. 5.0 . Data Class-t




Fig. 5.2 ! Dala Class-l

Fig. b.3 : Data Class-li
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Chapter 6

‘6. Results, Conclusions, and Scope for

further Work

- This chapter describes, in brief, some results we got during the course of our work, along
with relevant observations and conclusions. We then give the scope for further work in the

last section.

I

"_ 6.1 Results

6.1.1 Area of a cluster and VI,

Before we give the results for the computation of Validity Indices, we cite an example to
illustrate that the method followed by us actually gives the desired shape of a cluster. We
‘have drawn random points from a semi-circular ring. We have then constructed the Cover-

‘Polygon, from the Vorbnoi—-diagram. The result is shown in fig. 6.1.
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We also cite an example to show the computation of VI,. The sample was taken for
the Data-Class-I, and for § == 0.1 and n = 100. The clusters were obtained using the K-means
algorithm. The computed areas are shown in figures 6.2, 6.3 and 6.4. The nomenclature used

for labelling the areas can be referred in section 2.3. The computed value for V I3 was found

to be 0.7570,
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Fig. 6.1 : Sh
-1 : Shape of a set of points
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~ Fig. 6.2 : Area Aofaq of cluster Gy
 ap = 0.6806

| 3




. Tig. 6.3 : Area A, of cluster C;

Al = (}.ODHYI)
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Iy
Fig. 6.4 : Area a, of cluster €,
tdy — (0.3438
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6.1.2 Tabulation of Validity Indices

The tabulation of the Validity Indices have been divided into three Groups, each group
corresponding to one of the Data-Classes defined in the last chapter. We have tabulated only

the average values of {he Validily Indices.

Recall that the computation of V I; (section 2.1) required that we know the number
of extra poi.nts to be added (N-Added) to the sample so that we get the right classification.
~ We have limited this number 'N-Added? to 25. This limit is not found to be sufficient in some
cases. All we can say for such cases is that

VI < 1
We have marked all such entries with a #*? mark. There are cases when N-Added was found
to be enough for few samples of a data set, while it was not sufficient for other samples of
the same data set. All such entries have also been marked with a ™? mark. The outputs of
the four clustering algorithms have been tabulated separately. It may be noted that while we
have assumed that the number of clusters are known for the rest of the algorithms, the same
is not true for the set-estimation method. In many cases this method gave the wrong number
of clusters because of the small sample size. We have then experimented by using %, instead

of h, in our algorithim. The number of clusters obtained in both cases have been tabulated,
alongwith the Validity Indices, if applicable. Otherwise such entrieg have been marked with
“#%3_ Note that few entries under V I3 are empty. For such cases V I3 could not be computed,

because more than three points were found to be co-circular, which violates the assumption
on which our algorithm for the construction of Voronoi diagram 1s based. We have also not
considered the computation of V I; for the data-sets under Group-1I. This was because the

method for the construction of Cover-Polygon is not valid when we have ring like strutures
(section 4.2).
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LIST OF SYMBOLS USED FOR TABULATION

e N : Total number of points in the sample

» %-Mismatch : Percentage of points which are have been misclassified

]

o V1, : Validity Index (refer Eqn. 2.1)
+ V1, : Validity Index (refer Eqn. 2.2 )
e VI, : Validity Index (refer Eqn. 2.3 )
. :\/7;;:
o N - Clus, : Number of clusters obtained by considering h,

e N - Clus; ; Number of clusters obtained by considering %
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GROUP-1

(i) § = 0.8
| K-:ﬁeana"

i | vi [ Vi 75 ]
K 10000 | 1.0000 | 1.0000 |
0.9750 | 0.7536
0.9930 | 0.9867

1.0000

100 11.7

- "

Single-linkage

I n %Misinatch] VI




(i) § = 0.8

Complete-linkage l

n | % Mismatch | VI VI VI;{
50 0.0 1.0000 | 1.0000 | 1.0000 |
100 0.0 1.0000 | 1.0000 | 1.0000
150 0.0 1.0000 | 1.0000 | 1.0000
200 00 | 1.0000 | 1.0000 | 1.0000 |
250| 0.0 |1.0000 | 1.0000 | 1.0000 {
Set-Estimation Method
n! h, | NClus TNC:!';SQ % Mismatch | V[ V L Vi, “
50 | 0.4048 | 2 . 0.0 1.0000 | 1.0000 | 1.0000 |

150

1.0000 | 1.0000

1.6000 |

02807 2 | - 0.0 1.0000 | 1.0000
200 { 0.2678 2 - 0.0 1.0000 | 1.0000 | 1.0000
250 { 0.2517 | 2 - 0.0 1.0000 | 1.0000 | 1.0000
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(ii) 6 = 0.5

K-means ‘

n || % Mismatch | VI, | Vi | VI i

0] 00 | 1.0000] 1.0000] 10000

10| 6.0 0.9880 | 0.8775 | 0.9782 |

150 0.9 0.9842 | 0.9777 | 0.9813

200 08 0.9930 | 0.9800 | 0.0883
250 | 01 |0.9975 [o9071| -

Single-linkage
v | %Mismatch | VI, | VL | VI, |

250

AR



(ii) b = 0.5

C;ﬁﬁlﬁf;lgﬂkﬂéﬂ u{

1 %MiﬂnmtchL V I Vi | VI i

150 | 00 | 1.0000] 1.0000 | 1.0000 |

100 .0 LLO{}G{} 10000 | 1.0000 ‘;

150 0.0 1.0000 | 1.0000 | 1.0000

200 0.0 | 1.0000 | 1.0000 *'1.fmooj

250 0.0 | 1.0000 | 1.0000 | 1.0000

Set-Estimation Method
n | ha | NClus, | NClus, | % Mismatch | VI, | VL | V1,

50 (03802 1 | 2 0.0 10000 | 1.0000 | 1.0000
100 | 0.3205 N 0.0 1.0000 | 1.0000 | 1.0000
150 [0.2071 | 1 | 2 0.0 1.0000 | 1.0000 | 1.0000
200 | 02650 | 2 -. 0.0 1.0000 | 1.0000 | 1.0000 |
1250 {02512 | 2 - 0.0 1.0000 | 1.0000 | 1.0000
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(iii) § = 0.2

g K-mecans
| n | % Mismatch | VI VL | VI
50 | 12 | 09388 | 0.0763 | 0.9907 |
L 100 9.8 0.9437 | 0.8070 { 0.8891 |
| 150 4.8 0.9715 | 0.8710 | 0.9542

200 3.4 0.9810 | 0.9444 | 0.9628
f”zsol 0.0 1.0000 | 1.0000 | 1.0000

Single-linkage
n | % Mismatch | V1, V L, VI,

50 | 1.1 | * |0.7307 | 0.8004
100 | 100 | 0.9377 | 0.7710 | 0.8243 |
T
150 0.0 1.0000 | 1.0000 | 1.0000
200 0.0 1.0000 | 1.0000 | 1.0000
250 0.0 1.0000 | 1.0000 | 1.0000
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(iii) § = 0.2

Complete-linkage

n | % Mismatch | VI | VR | VI

50 14.0 10,5235 | 0.8430 |

100 17.0 0.5643 | 0.9011 |

150 13.0 0.7826 | 0.9347

200 80 | 0.0321 | 0.8321 | 0.0431

250 | 0.0 | 1.0000 | 1.0000 | 1.0000

Set-Estimation Method

I h,, NClus, NC‘!usg“%Mismatch VI, i VL |V
[ 50 [03882] 1 R X ]" a
100 | 0.3184 | 1 1] o I i I
150 | 0.2832 | 1 1 # ok | ok |k
200 | 0.2619 1 1 kit S B M
250 | 0.2470 | 1 1 e ok |k |k
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(iv) 6 = 0.1

K-means
n | % Mismatch | Vi | v | v,
50 5.0 | 0.8561 |0.9059 | 0.0384 |
100] 157 | 09452 | 0.7100 | 0.7812
150 6.0 0.0930 | 0.9189 | 0.9377
200 4.0 0.9550 | 0.9041 | 0.9581
250 2.1 0.9770 | 0.9575 | 0.9879
| Single-linkage

n | % Mismatch | VI, | VL | VI,
|50 ] 430 T“ 0.0867 | 0.6760 |
00| 245 | * [0.3800 |0.7321 |
150 |  45.3 ¢ 10.0037 | 0.7100
200 250 « | 0.2100 | 0.7621
250 | 10.1 « {02011 | 0.8231
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b = 0.1

6amplete-linkage

n | % Mismatch | VI, | VI | VI Lﬂ

100 " 20.0 ¥ 0.8695 | 0.6783

150 | 45.33 * ] 0.0286 | 0.6623

200 47.2 * 0.0294 | 0.5731

250 15.0 0.9321 | 0.8023 | 0.8213

Set-Estimation Method

n | h, | NClus; | NClus, | % Mismatch | VL, | VL | VT,
50 he.sss?_ 1 1| o e e[ e |
100 | 0.3123 | 1 1 o S N
150 | 0.2845 | 1 I w e [ |
200 | 0.2644 | 1 1 o N
250 | 0.2466 1 1 - KA ORR R :




GROUP-.II

(i} 6-radius = 0.5

- K-means

| o [ % Mismateh [VE | v

50 32.0 10,3240

100 34.5 | 0.3580

150 48.1 “ | 0.1040

200 33.5 “ 10,3345
250 30.5 “ 10,4041

- Si;lgle-linkagu -

n § % Mismatch | VI, | VL
50 0.0 10000 | 10000
100 0.0 1.0000 | 1.0000
150 | 00 [ 10000 | 1.0000
200 0.0 1.0000 | 1.0000
[250] 00 | 1.0000] 10000
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(i) :5-_-radi1m — 0.5

. Complete-linkage
n | % Mismatch |\VIi| VL |
50 38.0 * 1 0.2713
100 362 | * 02131
150 42.1 * 10.1865 |
200 41.5 * 1 0.3402
250 38.9 * 10,2714 |

Set-Estimation Method

™

n | h, | NClus NClu.sg_ %Mismatch! VI VI,
50 | 0.3876 1 ¥ ** K ok
100 | 0.3077 1 % Ak Ak %
150 | 0.2698 1 % ok Aok %%
200 [ 0.2573 | 2 1 0.0 |1.0000 | 1.0000
250 | 0.2311 | 2 1 0.0 | 1.0000 | 1.0000
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(if) é-radius = 0.4

1
I i L
!

46

K-means
n | % Mismatch [ VL1 VI |
| 50 36.0 “ | 0.2010
100 41.5 « | 0.2080 |
150 324 | * [03440 |
l200| 305 | * |o0.2445 |
250 324 | ¥ 103731
| Single-linkage
I n 1 % Mismatch | VI, VL
| 50 43.3 *10.2231
| I NS Shfiibitell|
100 0.0 1.0000 | 1.0000 |
150 0.0 1.0000 | 1.0000
200 0.0 1.0000 | 1.0000
250 | 0.0 1.0000 | 1.0000



(ii) é-radius = 0.4

"~ Complete-linkage

nL % Mismatch | VI | VI
100 37.9 10,1780 ||
150 40.1 “ 10,1765
200 36.1 * 10,3302
250 389 | * 0.2914

Set-Estimation Method
I hn | NClus; | NClus, | % Mismatch Vi |

yia.

47



(iii) d-radius = 0.3

| Kemeams

n | % Mismatch | VI

150 H 37.3 “ | 0.2500
200 41.0 “ 10,1725
250 | 42.2 * | 0.1581

Single-linkage

it n .%Misma.tch VI

—F-'I'-"-"-‘i

VI 4
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S-radius = 0.3

Complete-linkage |
n | % Mismateh [ VL | VI, |
100 379 | * |o.20m1|
150 |  40.1 ‘ * [ 0.1765 |
200 351 | * |0.3100
250 |  39.7 “ | 0.2814 [

Set-Estimation Method .
v | h | NClus, [ NClus, | % Mismaten | V1, | V1
—_——-————T-._. ) — S —

| 50 | 0.4079 1 x *t ok ok
o - e . T— e — - viemamid
100 | 0.3170 1 | 2 98.0 0.9485 | 0.4642
150 { 0.2800 | 1 j' 2 0.0 1.0000 | 1.0000 |
T

200 | 0.2643 1 | 9 0.0 1.0000 | 1.0000
K| 1 . |

250 | 0.2575 1| 2 0.0 1.0000 | 1.0000
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% Mismatch | VI, Vi |
Fso | 7.3 * 1 0.7786 | 0.9471
| 100 2.0 * 1 0.9500 | 0.9887
lﬁsol 046 | * |0.9670 | 0.0804 |
200  2.66 * 109366 | 0.0642
250 | 3.3 * 10.9321 | 0.9833
| - Single-linkage

ﬂ—-n —-% Mismatch | V _VI: Vi, |

vl

150

200 00 | 1.0000 | 1.0000 | L0000
250 | 0.0 [1.0000 1.0000 | 1.0000 [




Complete-linkage
n %MismatchJ Vi V I Vi l
50 0.0 1.0000 | 1.0000 | 1.0000
| I . I B
100 2.1 0.9821 | 0.9321 0,98764
150 0.0 1.0000 | 1.0000 | 1.0000
—
| 200 0.0 10000 | 1.0000 | 1.0000 ||
250 0.0 | 1.0000 | 1.0000 | 1.0000
Set-Estimation Method _i
n R NClus, l NClus, ‘ % Mismatch | Vi Vi, _J V1,
50 +0.4581 1 ¥ T X % ki | xx
! L. . - . , .
100 | 0.3851 1 2 0.0 1.0000 | 1.0000 | 1.0000
150 | 0.3446 | 1 n 0.0 1.0000 | 1.6000 | 1.0000
200 { 0.3200 | 1 2 0.0 1.0000 | 1.0000 | 1.0000
250 | 0.3002 ] 2 . 0.0 1.0000 | 1.0000 | 1.0000
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150

J[ {
150 19.3 0.9528 | 0.7064 | 0.8732
200 13.75 0.9810 | 0.7891 | 0.8871 |
250 | 215 | 0.9826 | 0.6720 | 0.8812 |
| Single-linkage
0 | % Mismatch | VI | VL | Vi,
Sl B )
50 0.0 1.000 | 1.0000
0.0 1.0000 | 1.0000

200

250




(ii) (51 —_— 0-5, 152 = {}.8

Complete-linkage

I .%Mimmtch' VI | VI
50 0. | 1.0000 | 1.0000
100 0.0 [1.0000 | 1.0000 | 1.0000
150 | 0.0 | 1.0000 | 1.0000 | 1.0000
200 0.0 1.0000 | 1.0000 | 1.0000
250 0.0  |1.0000 | 1.0000 | 1.0000
Set-EBtim-atian Method
2 | by | NGlus, | NClus; | % Mismatch | VL | VI, | V], |
50 | 04627 1 | 2 0.0 1.0000 | 1.0000 | 1.0000
100 | 0.3757 | 1 ! 2 0.0
150 | 03424 | 1 2 0.0 1.0000 | 1.6000 | 1.0000 |
20003160] 1 | 2 | 00 | 10000]1.0000 | 1.0000
250 (02948 | 1 | 2 | 00 | 1.0000] 10000

1.0000 |
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6.2 Con(:lusions

In this section we make certain observations and comparative statements about the behaviour
of various algorithms for the data-sets considered by us. We also give cerfain properties of

the cover polygon that was observed by us.

6.2.1 Validity Indices & Clusteﬂng Algorithms

The results under Group-I show that complete-linkage, single-linkage, and the set-estimation
methods always give us the right classification for § = 0.5 and above. For § = 0.2 these
methods give the correct classification if o 2 150, while for § = 0.1 a large percentage of
pomta are being misclassified. K-means algorithm, on the other hand showed small variation
in the value of Validity-Indices when § was mcreased from 0.1 to 0.8. 30 when the clusters
are well separated, complete-linkage, single-linkage and set-estimtion methods guarantee that
we always get the right classification. K-means algorithm may still misclassify some of the
points, if the seed points are wrongly selected, The selection of seed points 1s stnl] an open
problem. Howaver, for small values of § the K-meang algorithm showed very gaﬂd resulis, ag

compared to ather methods.

The results under Group-II shows that only the single-linkage, and the set-estimation
methods could give the correct classification. This is to be expected since the clusters in this

group are chained structures, and they are not linea,rly separable.

Under Group-IIT we have considered data-sets w:th three clusters, whlch are linearly
separable. The between-class distance between clusters js more in case(ii) than in case(i). So
the values of Validity-Indices are comparatively higher for case(ii) than for case(i). Single-
linkage , Set-Estimation and Complete-linkage methods are found to give better results as

compared to K-means for the cases considered by us.



‘Note that we have not tabulated the results for the triangular .distributkioﬂ. All

algorithms were found to give the correct classification in almost all the cases considered by

&,

- In general, the results of Single-linkage and Gmnpleﬁ;é-linkage algorithing are com-

" parable, except for the case when the clusters are chain like structures for which case the

Single-linkage is definitely better. K-means is better in case the clusters are linearly separa-
ble, but the between-class distance is comparatively small. In case the separation between
the clusters is very small, the Set-Estimation gives the right number of clusters only when

the number of points is very large. Otherwise, the behaviour of the Set-Estimation is same

as that of the Single—linkége method.

6.2.2 Properties of Cover-Polygon

While constructing the Cover set of points from the Voronoi diagramn, certain deviatious were
observed in the Cover-Polygon, in case the set of points are not compact. Figures 6.5(a),
6.6(a) & 6.7(a), illustrates the three possibilities.

Let us now remove the edges ¢, and ¢ in figures 6.5(a) and 6.6(a), and the vertex -
Ve In fig. 6.7(a). We are left with the figures shown in 6.5(b), 6.6(b) & 6.7(b). The two
‘polygons in fig. 6.7(b) are reconstructed from the cdmponents obtained after the removal of
the vertex v in fig. 6.7(a) .So in all these cases we are left with one or more closed polygons,
and zero or more isolated points. The isolated points may be viewed as outliers, and the
points lying within the closed polygon (including those on the boundary) form a compact
structure. That i3 why this method gives the desired area for the computation of VI;, So

given a set of points, this method may be used io extract a set of compact structures, and

isolated peints. If we look at these compact structures as clusters, this might provide us with

a new clustering technique. We now formally describe the above method.
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1Fig. 6.5(b)

Fig. 6.3(b)



1. Construct a Voronoi-diagram for the éiven set of points 8.

2. Construct the Cover polygon from the Voronoi-diagram, using the method described in
Chapter 4.

3. Remove from the above graph, all those edges that donot form part of any closed

polygon. Also remove all those vertices which form part of two or more closed polygons.

By following the above steps, we will be finally left with a set of closed polygous,
and zero or more isolated points. The points within these polygons,including those on the
boundaries, are the points belonging to the compact structufes. These are our clusters.
So we may use the above method to obtain clusters in the form of closed polygons,which
simultaneously gives the shape of the clusters also. We have not carried out studies to verify
the above possibility. What we can say at this stage 18 that thie method provides us with a
seb of well separated and compact structures, which should givie-us the right classification in

case the clusters are {ar apart and linearly separable.

8.3 Scope for further Work

The Validity Indices defined here basically provide us with some kind of measure for the
misclassification of points.Since it is difficult to find the expected values, we have merely

given the averages of the indices for some data sets. Further work neéds to be done for other
data sets, and for other clustering techniques. These indices reflect the applicability of the
clustering techuique for that data set and for that sample size. Note that for larger data sets
the sef-estimation method validates the clusters obtained by any other clustering technique.
For Siugle-linkage and Complete-linkage techniques we assunied that the number of clusters

are known apriorl. Otherwise, the results would be different. The Voronoi-diagram method
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for finding the sh.ﬁpe of a set of points needs further improvement, to tackle the cases where

the boundary is not continuos (as in the case of a circular ring, section 4.2).

Tili now we have not described how the Validity Indices that we defined can be put

to actual use. We now describe the utility of the proposed Validity Indices for unkuown data

sets in the following steps .

1. Apply the cluster_ing technique and obtain the clusters. Let the number of clusters be

k, and the number of points in the 1** cluster be n,.
2. Istimate the area of the obtained clusters by the Voronoi-diagram method.

3. Draw random samples of sige n; from i'* area for i= 1...k, and obtain the Validity

Index.

Thus the above steps provide us with a measure of misclassification under the hy-
pothesis that the given clustering method gives the right clussification. The above method

can be improved by incorporating the density estimation techniques for the clusters.

- The Vahdation of clustering structures is the most difficult and frustrating part of

cluster analysis. Without a strong effort in this direction, cluster analysis will remain a black

art accessible only to those true believers who have great experience and courage.
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