M.Tech (Computer Science) Dissertation Series

Rule. Based “Sandhi Bicched” (de-ecuphonization) of
' Bengali

a dissertation submitted in partial fulfilment of the requirements

for M. Tech. (Computer Science) degree of the
Indian Statistical Institute

By
HEMANTA RANJAN PANDA
under the supervision of

. Probal Sengupta
B.B.Chaudhuri

INDIAN STATISTICAL INSTITUTE
203,Barrackpore Trunk Road, Calcutta-700 035

ABSTRACT

In an inflectional language, words are formed as a result of conjoining
of more primitive linguistic entities called morphemes. Meanings of words are
derived from the meanings of the constituent morphemes. Since -most Indian
languages are richly inflectional, efficient morphological level processing is nec-
ogsary in Natural Language Processing{INLP) systems for Indian languages.
The major responsibility of a morphological sub-system in an overall NLP
system is to ’parse’ a word in to its constituent morphemes. Quite often, a
stem morpheme may be considered to be constituted as a result of combining
two simpler stems. Sometimes the stems that combine undergo “euphony”
or ‘Sandhi’, i.e., the final portion of the left stem and the initial portion of
the right stem undergo a deformation in spelling. The deformations along
the boundary are guided by well defined morpho-rules. The system described
here augments an earlier morphological processor for Bengali in incorporat-
ing ability to perform fragmentation of stems. By incorporating this feature,
euphonized stems need not be explicitly stored.. As a result, a high degree of
redundany is achieved in the storage of the lexical database. The technique
involves imparting additional power to finite state automadta.

ACKNOWLEDGMENTS

ol |

| I am indebted to Mr. Probal Sengupta and Dr. B.B. Chaudhuri for in-
troducing me to the areas of Natural Language Processing(NLP) and guiding
me throughout this work. Interests of Suresh and Jyoti in the present work
are thankfully acknowledged. |

CONTENTS

SECTION SECTION NAME

1

2.1
2.2
2.3

4.2.1
4.2.2
4.3

5.1
5.2
3.3

Appendix

INTRODUCTION

STATEMENT OF THE PROBLEM
Definitions

The Problem
Motivation

'APPROACH TO THE PROBLEM

Lexical Organization

DESIGN AND IMPLEMENTATION OF ALGORITHM
Design of Data Structures

The Algorithm

DAG Creation

Execution Stage

Computational Complexity

DISCUSSION

Discussion on The System

Discussion on The Algorithm
Minimization of States in a DFA

CONCLUSION
References

Set of Sandhi Rules Used
Figures

PAGE

~J =J Ov On

10

12
12

- 13

14
14
16

17
17
17
18

19
20

21

23

1 INTRODUCTION

Natural Language Processing (NLP) and an inter-disciplinary field called
Computational Linguistics(CL) emerge from research in Artificial Intelligence
(AI), NLP is concerned with building of intelligent models of production and
comprehension of natural languages like English, Hindi, Bengali, Oriya etc.
The primary motivations for this type of research lie in: |

o

1. Building intelligent computer systems capable of human-like interfaces
as in natural language query system for databases, automatic machine-

translation(MT) from one language to another, text and speech anal-
ysis/understanding systems, computer-aided-instruction(CAI) systems
etc. | |

2. Gaining a better understanding of how humans communicate using nat-
ural languages which is still an open area of research for psycholinguists

and theoretical linguists.

NLP research can be broadly classified in the following few (possibly
overlapping) levels depending upon the extent of knowledge they use:

MORPHOLOGICAL LEVEL: It concerns with how words are constructed
out of more basic meaning units called morphemcs. -

SYNTACTIC LEVEL: It concerns with how words can be put together to
form sentences that look correct in language and how a word is related

to another in a sentence.

SEMANTIC LEVEL: It deals wnth how word meamngs can combine to
form sentence/discourse meanings.

PRAGMATIC LEVEL: Deals with how sentences are used in different
contexts and how context affects the interpretation of the sentence.

I'or a computer based NLP system to work reasonably, there must be
a sub-systern concerned with interaction with the lezicon. The lexicon is

the global knowledge base for words. For simple languages like computer
programming languages, the lexicon has a simple structure. However, in
inflectional languages, words are formed as a result of conjoining of more
primitive linguistic entities called morphemes. Meanings of words are derived
from the meanings of the constituent morphemes. As a result, the lexical
sub-system requires to be quite complex. The morphological level processing
normally performs lexical interaction in inflection languages. Since most In-
dian languages are richly inflectional, efficient morphological level processing
is necessary in NLP systems for Indian languages. The major responsibil-
ity of a morphological sub-system in an overall NLP system is to “parse” a
word into its constituent morphemes. Parsing a word is a non-trivial problem
because: |

"

o There are no conspicuous delimiters between morphemes in a word un-
like in sentences where words are clearly delimited.

¢ Quite often the participating morphemes get deformed at the conjoining
boundary. As a result, a word is not always a simple concatenation of
the conjoining morphemes.

A major advantage of having a morphological sub-system is that the
lexical properties of words can be derived from the constituent morphemes.
As a result, a high degree of redundancy is achieved in the lexicon. Physically,
the redundancy is manifested in lower space requirement for storing large
lexicons. |

In classical lexical analysis systems, as in.compilers for programming
languages, the recognizers are Finite State Automata [1|. Even for natural
languages, use of finite state automata (or finite state transition networks)
is very much in vogue. A good review of application of finite state transi-
tion networks{FSTNs) or deterministic finite state automata (DFAs) to word
recognition may be found in [3]. Some authors [5,6], have even come up
with powerful enhancements in classical DFAs which have been applied for
recognizing words in languages with complicated inflectional structures,

Words in Bangla and other Indian languages are composed of a manda-
tory stem morpheme, followed by other morphemes. The stem morpheme, or

simply the stem, provides the basic méaning of the word. Depeﬂding upon the
syntactic category (like' noun, verb, etc.) .to which the stem belongs, certain
morpho-syntactic rules are provided in the language which determine what
other morpheme(s) can follow the stem in the formation of the word. Nor-
mally, the morphemes following the stem, called snflections, have no meaning
in isolation but play their roles in determining the overall linguistic perspec-
tive of the word. |

Example: Word KARaIBEN is formed from KAR:a:IBEN , where
: indicates morphemic boundary. In this example, morpheme KAR is a
verb stem (“Dhatu”) meaning ‘do’, a is the verb causational affix (“Sadhita
Pratyaya”) and IBEN is a verb inflection (“Kriya-Bibhakti”) indicating sec-
ond/third person honoured, simple future tense. The word KARAIBEN is
A verh meaning ‘(you or someone whom the speaker honours) will make do’.
Thus, the meaning of the verb is derived from the meanings of the constituent
morphemes. |

-

The problem of parsing Bangla words have been taken up at the ISI some
time ago. A solution based on an automata which is more powerful than a
classical DFA and is organized in the form of a forest of Directed Acyclic
Graphs (DAGs) have been reported in [8]. In the formalism described in
the above paper, morphemes are clustered into belonging to different classes
and morpheres from a cluster are stored in a DAG representing the cluster.
However, all stem morphemes are stored in a single DAG called STEM. A
major assumption that has been made in the above system is that every DAG
is indeed acyclic. |

Quite often, a stem morpheme may be considered to be constituted as
a result of combining two simpler stems. Sometimes the stems that combine
undergo “euphony” or ‘Sandhi’, i.e., the final portion of the left stem and
Lhe initial portion of the right stem undergo a deformation in spelling. The
resulting stem will be called a “euphonized stem” in the present article.

The present work is an extension of the work described in‘[8] to incorpo-
rate ‘Sandhi’ rules in word level parsing. Simply speaking, the present work
1s involved with rule-based de-euphonization or ‘Sandhi-Bicched’ of stems of
words. It may be pointed out that any pair of simple stems may not combine
by euphony due to various restrictions. Since the above restrictions are almost

- ulways from semantic considerations, they are very difficult to capture in a
computerized system. In the present work, we assume that no restrictions
are there for stems to be euphonized except spelling restrictions as described

later.

2 STATEMENT OF THE PROBLEM

2.1 Definitions

Before we make a formal statement of the problem, certain terms need to be
defined. |

STEM: Stems are root form of simple words carrying meaning.
Example: SIMHA and aSANA are stems.

AFFIXES: Affixes in isolation do not carry any meaning but provide proper
linguistic perspective for words for which they are joined. Depending on
the position of joining,an affix is prefix, an internal affix or a declensjon.

b)among two or more affixes.
c)between two stems,thus producing compound stems.
d)by some combination of a) to c). | |
- Bxample: IBEN is is a verb inflection of stem morpheme KAR.

SANDHI or JOINING RULE: When two stems are Joined, there is a
resulting deformation at the boundary of joining. A set of rules, most
of which have been inherited from Sanskrit by most Indian languages,
govern the spelling deformities. These rules are called ’Sandhi Rules’. A
‘Sandhi Rule’ has the form left + right = resultant, where left, right
and resultant are strings of symbols from the alphabet of the language.

As a result of application of the rule g + b = ¢ during joining of the
stems Xa and bY, the joined stem is XcY.

JOINING: The operation by which two stem morphemes combine with the
application of a ‘Sandhi Rule’ governing spelling deformity during the
combination, is defined as “joining”. We shall use the notation X + Y
to denote joining of stems X and Y. The notation X + Y = Z denotes

that the result of joining X and YV is 7.

FRAGMENTATION: The operation for extracting the joining stems of
a compound stem alongwith the joining rule which was applied dur-
Ing joining, is called fragmentation or “Sandhi Bicched”. Fragmenta-
tion is the inverse process of joining. For example, fragmentation of

5

MAH:aTMa will yield MAHa + aTMa as the joining operation and
@+ a => a as the joining rule involved.

COMPOUND STEM: The stem resulting out of “joining” two simpler
stems will be called a “compound stem”. A compound stem derives
its meaning from the meanings of the joining morphemes. For exam-

ple, in SIMHA + aSANA = .SIMHaSANA,' the compound stem
SIMHaSANA derives its sense from bot.h" SIMHA and aSANA.

COMPLEX STEM: Sometimes, these are stems which are formed by mere
concatenation of two or more simpler stems without application of any
Joining rule. For example, MAHaPRABHU is a complex stem formed
as a simple concatenation of MAHa and PRABHU. Complex stems
have not been handled in the present work. |

CRACK POINT: This is the point where the compound stem breaks into
constituent morphemes. It is point at which the string ahead is a resul-

tant string of a Sandhi Rule. '

EXAMPLE:For the compound stem MAHaTMA the crack pgint is 4.
RaJENDRaLAY has two valid crack points at 4 and 8 respectively.

DETERMINISTIC FINITE AUTOMATA (DFAs) is defined as a five
tuple {@Q, g0, F, L, 6), where,
Q@=Set of states in the automation,
go=Starting state of automation. In the case of a DAG go is the root.
F=S(3L-of final states. This set refers to nodes which are arrived at after
consurning last alphabet of a morpheme,
2 =Set of characters constituting the alphabet. Small letters and capital
letters are members of this set. The cardinality of this set is 52.
6="Transition function which maps on to a state € Q from a state Q
after consumption of an alphabet € ©.

Given below are some examples of Sandhi:

1. HITA‘—i—UPADESH=HITOPADEJJSH originating from the ;ule A;U=>O.
2. JANA+EKA=JANeKA derived from the rule A+E=se.

3. MAHa+OSHADHI=MAHUSHADHI obtained from the rule a+0=>b.
4. similarly, PO+AK=PaBAK originating from the rule O+A=>aBA.

6

5. NOu+iK=NAABIK derived from Ou-+i= AABL

For a language, in general there could be multiple fragments of a com-
pound stem. For example, RaJENDRaLAY is a compound stem originating
from RaJa+INDRA+alLAY by virtue of rules a+I=E and Ata=>a .

The possibility of null string participating in euphonization is not ruled
out. For example if X+ '=Y then fragm_entation; of PYQ is PX and Q.

Recursive de-euphonization involves subsequent fragmentation of the
compositions of a rule. Thus, if ABC+DEF==GHIJ and X+Y==E are
dnndhi rules, the de-euphonization of PGHIJQ is PABC+DX+YFQ, owing

to the above two rules, provided PABC, DX, YF Q are morphemes. Recursive)

de-euphonization is not seen in Bengali.

The present dissertation work is involved with fragmentation or ‘Sandhi-

Bicched’ of Bangla Stems in a DAQ Based Morphological Sub-system as de-
scribed in-[8]. :

2.2 The Problem:

In a word parsing environment, if a string XcY of symbols otherwise satisfy
the properties of being a compound stem and if there exist a ‘Sandhi Rule’
a + b => ¢, i.e. there exists a crack point just after the string X is scanned.
Then string XcY will be recognized as a stem which is formed as a result of
euphony between simpler stems Xa and bY.

2.3 Motivation -

The major motivation behind taking up of the problem is computational —
that of further exploitation of redundancy in the word formation system of

Indian languages. There are a few other motivation.First, there is the lin-
guistic motivation in trying to have a basic tool using which the semantics
of compound word formation can be studied. Secondly, a base is created for
study of the behavior of the original .system when certain amount of cyclic
transitions are introduced. As we shall show later, incorporation of ‘Sandhi
Rules’ most definitely introduce cyclic transitions. With many cyclic transi-
tions, there may be considerable degradation in performance of the original
system. A balance has to be reached between throughput and redundancy
exploitation. The present work can act as a starting point from which a study
of optimal morphological representation for an inflectional language may be
carried out.

Thus, the problem of fragmentation of stems of an Indian language is a
real and interesting one to solve. The solution will not only permit compact
storage of large lexicons but also act as g starting point of studies in certain
important fields of linguistics and natural language processing. |

3 APPROACH TO THE PROBLEM

The first criterion lies in storing the lexicon within limits of availability of
resources. The system maintains a database of morphemes from which the
DAG is created. The DAG of morphemes is stored in the main memory of
the system. The amount of storage space required for storing the lexicon
depends upon the data structuring schemes employed. The sclreme should be
such that, the search of a morpheme in the DAG during execution stage of
the system is minimized. |

The system operates in two stages.

1. CREATING THE DAG OF MORPHEMES: This stage cre-
ates the DAG from the morphemic database and stores it in the main memory
for the next stage. The number of links emanating from a node decreases as
we go towards the leaf level. Sparsity of the DAG is reflected after fourth
level due to the fact that number of morphemes having first four characters
identical is negligible. For instance number of links emanating from a node at
second level is around one to four [7]. Hence, more than 95% of the links are
null in a lexicon storage environment ‘when 592 links emanate from each node.
We can get rid of null links by constructing link whenever the requirement
arises. We have taken care to refine the data structures by employing binary
tree representation scheme for a DAG, discussed in detail in next section .

2. EXECUTION STAGE: This stage on receiving a compound stem
as an input returns all possible morphemic fragments of the input. After
building the lexicon in the execution stage, we .étart scanning the compound
stem from the root of the DAG until we arrjve at some resultant string of
the Sandhi Rule fetched from the knowledge base. Once a possible crack
point is encountered ahead of the present scan point, it is checked whether
on scanning the left string of the Sandhi Rule along the DAG, a final state is
arrived. If a final state is not arrived, scanning is continued from the point
where scanning was stopped last, until a crack point is found. Suppose a
final state 1s arrived; root is revisited and scanntng for the right string of the
Sandhi Rule is done. Scanning is once again continued from the same state
for the substring after the resultant string of the compound stem.

3.1 LEXICAL ORGANIZATION :

Before execution the morphemes contained in the lexicon 1s to be organized in
the form of DIRECTED ACYCLIC GRAPHS (DAGs), also called as FINITE
STATE TRANSITION NETWORKS(FSTNs). At the time of building the
lexicon, of our system WG builds up a DAG of morphemes starting from a
common root and tagging a boolean variable indicating the end of the mor-
pheme. Pointers from the morpheme DAG might backtrack once it encounters
a crack point{point a which the word might split owing to the presence of a
resultant of joining rule). |

A DAG for recognizing a class of morphemes is the pair (N, E) where
N is a set of nodes and E is a set of edges. An edge is a triple (n1, n2, token),
and represents a transition from node n1l to node n2 on consuming the to-
ken(character) from input string of characters. The token ¢ is called the label
of the edge. A path from node n1 to node n2 is a sequence of edges el.e2..ek,
such that el starts from n1 and ends in n2, The labels on the sequence traces -
a sequence of characters which may or may not be meaningful, A special node
called ROOT represents the start node of the DAG. Some nodes of DAG are
called terminal nodes . A path from the start node to the terminal node traces
out a unique morpheme of the class to which the DAG belongs. Thus, every
terminal node has a finite numbers of paths from the start node, each path
tracing spelling variations of the same morpheme. A terminal node is thus
a representation for the morpheme it recognizes. For example, it should be
noted that the morphemes ‘aSAN ’ and '‘aSANA’ follow same path from root
till the end of the word ‘aSAN’ whereby for ‘aSAN’, DAG store a boolean
value ‘true’ and thereby emanating another edge consuming the token char-

During the building stage, our system first builds up a DAG of ‘mor-
phemes. ‘The starting character of each emanate from the ROOT of the
DAG. As explained above, a terminal node of any DAG is a representation of
a unique morpheme (or spelling variations of the same morpheme). If there
is morpherne which is an extension of another morpheme existing in the DAC
earlier (DEBA is an extension of DEB) then, an intra DAG transition (which
we'll call passive edge extension of the shorter word) takes place tagging a
boolean variable ’true’ when that word s Comp{etely stored in the form of a
DAG. The general structure of the edges is given below:

10

the root once a crack point is encountered .

TERMIN AL IN FORMATION
-end of morpheme.

11

4 DESIGN AND IMPLEMENTATION OF
ALGORITHM

'\

An algorithm for creating a DAG of stem morphemes to store the lexicon
within allowable space limits is employed. An efficient data structuring mech-
anism is incorporated to store the lexicon. Once the lexicon is stored in the
desired fashion, we fragment any compound stem supplied as input if the
morphemes exist in the DAG . The DAG thus created,can be stored in a
secondary device for subsequent execution. The [ragmentation aspect of the
compound stem starts from a Rule Base from which all the rules are fetched,
and used in the execution stage of system.

4.1 Design Of Data Structures:

‘t'he major point to be remembered during implementation is that the lexicon
could very well consist of one million entities. The space aspect need to be
tackled effectively by employing efficient data structuring schemes for storage
of huge lexicons. DFAs are efficient organizers of lexicons. - -

A DETERMINISTIC FINITE AUTOMATA (DFA) can be implemented
by linked lists, array of pointers or doubly linked lists etc, if a fix amount of
nodes emanate from the parent node. But handling of variable number of
nodes, as it is of of frequent occurrence in NLP systems need to be solved
keeping the space and time complexity in point of view. The extent of com-
promise between the two is decided by sparsity 0[_1,}10 DAG at different levels.
As the number of links emanating from fourth lével onwards drastically re-
duces, the data structure employing array of pointers are discarded owing to
its enormous storage requirement. The amount of wasteful spaces in a tree
structure representation is illustrated by the following lemma. The DAG rep-
resentation of a DFA is given in Fig.1 (in Appendix), for a general string of
alphabet till second level. :

Assume that the alphabet set contains ‘a2’ A2, If we assign 52 pointers
from each node to the next level nodes, the space wastage becomes very high
as discussed in the following lemma.

12

LEMMA [4]: f T is a k-ary tree (i.e. a tree of degree k) with n nodes,
each having fixed size as follows:

child-1 | child-2' .7 child-k

then n « (k — 1} + 1 of the n x % fields are nil, n >1. °

From the above lemma, for a 92-ary tree (assuming that the alphabet,
contains 'a’..'2', 'A'..! Z' characters at most) having 52 x n links, the number of
null-links for a n-node tree is approximately 51 x n, indicating a high degree
of wastage. | |
In our method, the lexicon is stored in a tree. To reduce this enormous space
wastage, binary tree representation is used. In such a iree, it is implicitly -
assumed that the order of children of a node is not, important. Only parent-
child relationship is preserved. To obtain binary tree representation, the
relationship.of leftmost child- next right sibling is preserved. Every node has
at most one leftmost child and at most one next right sibling.

Strictly Speaking, since the order of the children is not important, only
the children of a node could be jts leftmost child and any one of its siblings
could be its next right sibling. |

A typical example of representation scheme of two Bangla morphemes (aMI
and AK) one using array of pointers with constant record size and the other
using binary tree representation is given in Fig.2 'and Fig.3 (see appendix)
respectively.

4.2 The Algorithm

The algorithm basically operates in two stagés:-

13

4.2.1 DAG Creation:

In this stage the system builds the DAG of morphemes which is subsequently
used in the running stage. Fields of a node are alphabet, end morpheme, next
level edge, nezt edge.

BTEF 1: Initialize P to root.
STEP 2: For i=1 to length_ of morpheme do 3,4, 5.

STEP 3: Search for morphemeli| in current level. If found then set P to the
pointer found in the same level.

STEP 4: Else create a new node and insert it in'the same level. Set alphabet
to morpheme/i/ and nezt levei edge to nil and end morpheme to false,
Set address of the new node created to P. End if.

STEP 5: If i=length. of the morpheme then set end morpheme to trye else

set end morpheme to false. Set P to head of the children list of P, End
for.

4.2.2 Execution Stage:

In this stage, the compound stem is taken as an input and returns all possible
fragments of the input. This is a recursive procedure with two parameters
such as scan and pointer. scan is an indication of the point at which the word
is to be fragmented. Pointer representing the backtracking pointer once a

crack point is arrived at.Crack potnt is the scan point at which the resultant
of the sandhi rule is found . |

STEP 1: Firstly, we call the procedure fragment with scan=0 and pointer=root.

STEP 2: While scan less than length of the inpul word do

STEP 3: (f there is a crack point at the current scan point then for all such
crack point do 4, 5, 6, 7. | '

14

STEP 4: Check if on scanning the left portion of the root, we arrive at an
| accepting state starting from the current state. This is owing to the
fact that a portion of the string scanned by currently aclive procedure
concatenated with the left hand portion of the rule is a valid morpheme
or not. If we get a final state then check if we arrive at some state in
the DAG starting from the root and scanning the right hand portion of
rule. This done to see if the right hand portion of rule is a valid prefix
of some morpheme of the DAG. In the algorithm posnter and state of
the DAG are synonymous. |

STEP 5: If the second condition is satisfied then we call the recursive pro-
cedurc with parameters such as scan - length of the resultant string
and pointer we have after scanning the right hand portion of the rule.

STEP 6: scan = scan + 1 and make appropriate transitions. If none exists
then cxit. End do.

STEP 7: If the current state is an accepting state then output the frag-
mented string. End do. |

STEP 8: lilse output “The compound stem do not have a valid fragmenta-
tion or constituent stem morphemes do not exist in DAG or check for
the correct spelling of the word”.

4.3 Computational Complexity

The creation of the DAG of morphemes takes coinparatively more computa-
tions than running stage of the system. Worst case Lime complexity in forming
the DAG is linear in total length of the morpheines processed in DAG creation
slage. This is because of the fact that once a new alphabet at a particular

level is found, a new node is created. A new method for minimization of
acyclic deterministic automata in linear timeo is discussed.

b I . - o —

Generally, the number of fanouts at a particular level decreases as we
go towards the leafl level. Suppose the number of fanoutls at the first level
from root is 15, then number of links required is 3 I (two links for each fanout
and one for root to first level). Total number of bytes required for storing 15
characters is 15 bytes. Total bytes consumed is 139 bytes, assuming 4 bytes

15

per link. For incorporating the same scheme as array of pointers in a 52-ary
tree we require an enormous 208 bytes.

" 4 ' ’ 'y b

The space consumed is optimal by employing the binary tree representa-
tion of tree data structure. We have taken care of the enormous proportion of

the null-link leaves in a 52-ary tree. With this representation 51 morphemes
of average length 6.has occupied 1323 bytes in comparison to 34251 bytes
while implementing by array of pointers, |

The worst case time complexity in parsing a compound stem is expo-
nential in length of the compound stem. This is due to the non-determinisms
at various stages of parsing which have to be taken care of in a serial approach
by either depth first search or breadth first search. Backtracking during the
search may be reduced by using lookahead symbols to predict active transi-
tions.

16

5 DISCUSSION

b.1 Discussion on the System:

The formaljsin proposed here has been tried out for a medium sized lexicon
in Bengali consisting of one hundred morphemes and fifty rule bases. The
results of de-cuphonizations obtained were very satisfaétory. The formalisms
can easily be extended to any Indian languages with subtle modifications.
There were tivo implementation of the same work using array of pointers and
trees as data structures. " |

® The rules governing the conjoining rules arc semantic in nature. To
highlight one aspect of the semantic problem let’s de-euphonize a word
SIMHaMI with an existing rule A+a=>a and lexical morphemes as
SIMHA and aMI. The system will obviously parse it into SIMHA and
aMI,which is not a valid de-euphonization. This is a semantic problem
to be tackled as a future extension, |

* Moreover,since the noun stems and prefixes reside in the same DAG(STEM),
the active transition from an active node recognizing a prefix leads to
-a root of DAG itself, causing self loops. Too many sclf loops lcads to a
\ rapid.degeneration of efficiency.. . <

¢ The biggest advantage of our formalism is the compaetness and lucid-
ity of representation. The recognizers are finite state networks, a well
studied formalism. The representation scheme is easy to understand
and quite flexible.

5.2 Discussion on the Algorithm

Acyclic automata is an efficient data structure for lexicon representation.
Access time is linear in word size and compression results are excellent, min-
imization being the best size saving operation. Minimization of n-state DFA
O(n x logn) by Hofcroft is a refinement of O(n?) algorithm by Moore.

17

9.3 Minimization of States in a DFA

An efficient algorithm 2] which takes care of the cquivalent states of DAG by
replacing it with a single state, thus minimizing it in linear time. |
Each state of a directed acyclic word graph(DAWG) is labeled with a string
describing the reduced automata starting at this state. Working up in in-
creasing labels (labels = longest distance to a terminal state) the algorithm
spreads the labels,which are created from the labels of the following states.
At each labe] a lexicographic sort is applied to the list of labels and all the
states with identical labels are merged (such states are equivalent whence a
minimization). The labeling is done once and only once on each state and the
sorting is linear, so overall complexity is linear in the number of transition.

If A is an automation, then there exists a unique automation M minjmal
by a number of states, recognizing the same language i.e. L(A)=L(M). Two
ytates of a given automatjon p and ¢ are said to be equivalent iff the automa-
tion defined with p and ¢ as initial states are equivalent. If for every word w
states p.w and q.w are final then two states are equivalent. Anp automation
with no pair of equivalent states are minjmal.

With the above scheme working with huge automata of one million
states and 550,000 words are compressed by minimization algorithm. For
example:300,000 word dictionary in 5.2MB in lext format was compacted to
0.3MB in automation format—0.06 compression ratio.

18

6 CONCLUSION

The bres'ent work can further be extended to Semantic levels by:

e Tagging which are the pairs of simple sterns which can not conjoin at
the boundary. e.g. SIMHaMI if allowed Lo parse then the recognizer
will return us two constituent SIMHA and aMI which are not valid
conjoinings. Hence, we shall have to generalize the impossible pair eu-
phonizations and take care of them as an excluded set,

. envisag_ing on conveying the sense of a word,from its originating mor-
phemes i.e 'SAMAAS’ . |

SAMAAS of MAHATMA is ’one possessing MAHAN ATMA'.
' But DE-EUPHONIZATION of MAHATMA is MAHa-+aTMA:

A parallel approach eliminates backtracking completely by using a con-
current state-space method. The parallel method reduces tjme complexity
appreciably but may result in high space complexity. Experimental result
suggest that parallel approach yields slightly better results than the serial
method because word lengihs are normally within 6 to 8 symbols on the

.

average, so that the extra space required is nomina).

19

"References

1] AHO ;LV.;UILLMAN J.D:Pr:'nc;'pfe Of Compiler Detﬂ'gnj Narosa Pub-
lishing I:Io_'use-1990 : |

2] DOMINIQUE REVUZ: Minimization of deterministie acyclic automata
tn linear time. Theoretical computer science.(Jan’92)(181-189)

3] GAZDER G. AND MELISH C.: Natural Lanyuatge Processing in Prolog.
Addison Wesley : 1989. |

4] HOROWITZ AND SAHNTI: Fundamentq!s of Data Structure. Galgotia
Book Source:;1984.

5] KOSKENNIEMI K.1983. Two Level Mode! for Morphological Analysss.
In IJCAI-83. (INTERNATIONAL JOUNT CONFERENCE ON ARTI-
FICIAL INTELLIGENCE) Karlsruhe, West Germany: 683-685.

6] KAY M. and KAPLAN RM;1981. Phonological Rules And Finste State
Iransducers. ACL/LSA (ASSOCIATION OF COMPUTATIONAL LIN-
GUISTICS/ LINGUISTIC SOCIETY OF AMERICA) Paper. New York.

(7] SENGUPTA P.,CHAUDHURI B.B.1989. A Morphological Verb and
Case Analyzer for NLP of a major Indian language. In National sympo-
sium for Natural Language Processing.Vishakapatnam,lndia, 1989.

18] SENGUPTA P;,CHAUDHURI B.B.: A morpho-syntactic analysss based
lexical sub-system. (Under revision). |

20

A Set of Sandhi Rules Used -

The following set of rules are tested with the system and is found to give
satisfactory results.

e a-+tR=>Ar
e A+i=E
¢ at+i=E

e A+U=0
° A%—u_::»O
e 2+U=0
e a-tu=0
® A—}-R#Ar
e A+E=e
e at+tE=e

. A-I-O";:#o
e 2+0O=>0
-u%Uﬁu
¢ Utu=u
® U{u=>il

o U+U=u
o Ou+i=-AABI
¢ or&A:.—;}b
e A‘+A=>a

o Ata=>a

21

a+A=>a
ata=a
A+I=E
at+I=F

E+A=AYA

e+A=aYA
O+A=ABA
o+A=>aBA
I+1=>i
O+E=ABE
o+I=aBI
o+U=aBU

22

FIGURES

NI NIT

Fig.1. DAG represéntation for the alphabet set indicating that

more than
95% links are null,

23

Fig.2. A typical r_epresenté.tion of two morphemes AK and aMI as array of
pointers in a 52-ary tree. End of a stem morpheme is represented by two
concentric circles, |

24

- -
OO
[. ‘d
- _ =~ N
SN o]
R S

A CEM e

|. R —— R
i -
|[
—Y o
Ko M
N —f ~ NI
i
N

':: I\J} 1(3':- (L l'iL"-(*[ft.'L LRP .!*"- ’ ! 1.'-L t hL{-{L‘iL % Lwc]

. _.-{. L.f. L l-uf‘({:{ (1. ll T -mh": b .

Fig.3. Binary iree representation of two morphemes, aMI and AK in the
present schicine. Refinement is reflected in the number of non-nil links,

25

T
| [M-
$
L)
!
NI -

NIL |

SNIL

