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1 Introduction

Several models [1,2,3,4,5| for spatial information management have been proposed. Most
of these systems offer a definition and query language which déclares a spatial object in

- . terms of a set of geometric base objects, mainly point, line and polygon. Some of them

such as GeoSAL [2] offer more complex objects such as chain of lines and tessellation of
polygons. Geometric declarations have some clear advantages.

e The spatial objects are directly representable in geometric data structures.

¢ Definite spatial access mechanisms and pre-processmg techmques can be directly
applied to the user defined objects.

. Smce the user defined objects are geometric, computational geometric algorithms
can be applied on them.

« There are some disadvantages of direct geometric representation of all user objects.

1. Many spatial objects (such as a river system) that should have simple one-stroke
conceptual definitions result in complicated potentially incomplete definition in
terms of geometric entities.

2. Many conceptual objects can be defined not only by spatial objects but by some
topological restrictions on such objects. A political map may need the inherent
semantics of political system.

" 3. Operations semantically associated with spatial objects do not have obvious geo-
metric counterparts; for example, roads which are polylines can be traversed, but
boundaries which are also representable by (closed) polylines are not traversable.
As a matter of fact, traversal has more to do with user’s perception than geometry.
Such restrictions are not apparent in geometric representation.

There has been object-oriented approaches involving proper inheritance and opera-

tion encapsulation. But that they are far from an adequate representation follows from
these observations.

¢ They maintain the basic premise that the user needs to explicitly define the geo-
~metric character of the objects.

_»_The acknowledgment of the fact that only inheritance and encapsulation are not

~ sufficient tools to model space. Relations other than IS_A occur in space and

~ comes out from the mathematical structure of spatial domains. So, a semantically
stronger model is necessary to abstract space. |

| In this disseftation, we present a more canceptual data model developed in course of
'_ 'ﬁur work on an Archa,eologlcal Information System. This model provides a topological
“abstraction of geometric information and is borne out of a necessity to disassociate the
‘8emantic representation from the internal representation. Our query language allows
_processing of queries at this higher level of abstraction. The inner geometric structures



are transparent and would be used only if the user’s query cannot be answered at
~the semantic level. The complimentary use of the logical structure provides a more
efficient utilization of the user’s conceptual model of space. A second significant aspect
of the model is that it builds on theme integration - which is akin to view integration
in relational models with an important difference. A set of conceptually connected
spatial objects are grouped into a structural aggregate called theme. Different themes
' may have different models and integration is affected through a shared name space and
appropriate geometric anchors. The integration helps to answer intertheme queries in
which the nodes of a query graph and the response belong to all different themes.

The organization of the dissertation is as follows. In Section 2, we deal with the formal
aspects of data model. Section 3 deals with the definition, specifications and operations
on themes, our major focus of the dissertation. In Section 4 our query language and
- its processing are described. Section 5 illustrates strategies for processing inter-theme
queries. In Section 6, we conclude with a discussion on our implementation and the
scope for future work. |

2 Basic Concepts

The formal model that we are going to present is a many sorted algebra, where the sorts
are

Aspatial Atomic Sort ¥, = (int, float, string, bool)
Spatial Atomic Sort s = (point, polyline, region)
Attribute Constructor C = (set, tuple)

In literature, some [1] have referred to £4 as the Standard Domain D or the Base
Representation. Attribute, according to [1] specifies a private property having a value
from some domain, or derived from an constructor operation

C1(C2(-.-(Cnld € 4 U Eg))...

where C; € C, a non-empty set of constructors and () is the currying function. So the
total set of sorts is this system is given by

S=Y,UEsUC(Z4UIg)

~An attribute is represented by A%, the tth attribute of the kth sort.
Now we move over to some definitions.

;De_ﬁnition 1 A Spatial Object s € O, 1s a S-tuple (sid, sst, asts) where
"std € SID, the space of all object identities

st 15 an attribute A® called extent.

:"' It belongs to a specific spatial sort of the form

A e LU C(Xs)
tsts . denotes one or more ‘a'&patt'al attribules from
B Y C(X4) UM(Zs = L,4) where
- M s a measure function on g

o



3 ;?}._;-I:hformally speaking, a spatial object has an sid, which uniquely identifies it, should
| .-'B_e’_;:nf one and only one spatial sort and can have a set of other aspatial attributes, some
of them dependent on the spatial sort of the object and defined by a measure function
- M. For example, if the spatial sort of a spatial object is region, an instance of M can
_ be the area of the polygon defined as area : region = float. In course of this work we

have made the following assumptions on the basic atomic sorts.

® A region is a simple closed polygon

¢ A region has an area, minimum bounding rectangle (MBR), maximally enclosed
rectangle (MER) and optionally depth(s).

e A polyline has a length and a number of 'segments.
e Every segment of a polyline has a general orientation and width.

e A point can be a member of any spatial type.

Definition 2 A Spatial Relationship R s a §-tuple (relname, f, invrelname ) where
relname denoted by n, 1s the name of the relationship

f ts the associated function

f : relnamed0, x O,
tnurelname  denoted by n', is the name of the snverse relationship

It is implied that if s;,6; € O,, and 3r € R such that f(r.n) = {51,823},

then f(r.n') = {s;,5,;}.

For example, let A and B be two spatial objects and let there be a relation EAST _ADJACENT.
Its inverse relation is WEST_ADJACENT. Then if there exists a tuple in R of the form
(EAST_ADJACENT, {A, B}, WEST_ADJACENT )} then there also exists o. Bjale,
(WEST_ADJACENT, {B, A}, EAST_.ADJACENT )} in R. Next we define a desig-
nated spatial object called the universe to specify the domain of interest of a specific
spatial database.

Definition 3 Universe 1s a spatial object of the spatial sort region such that the follow-
ing are satisfied.

1. No defined spatial object is outside the universe.

2. The universe is closed unth respect to spatial operatlions, 1. e., no spattal operation
can generate a spatial object lying outside the universe.

However, there is one case where a spatial object can lie outside the universe. Such
spatial objects are called referred spatial objects which can be accessed only by name.
No spatial access is granted to these objects and they cannot be generated by any spatial
operation. An example is a city that lies at the terminal point of a road passing through
the universe. '



Definition 4 Theme is a 3-tuple (theme_name, msob, theme_structure) where
theme_name s the name of the theme

msob ts a set of member spatial objects of the theme
theme_structure s a representation of the theme structure which
physteally denotes the topological constraints of
the msob s such as rules of containment, connectivily,
coverage and overlap ' |

Note that such a declaration of theme is different from that employed in GIS where
a theme is defined on different values of an attribute. For example, if the attribute
chosen is population then a ranking of space based on population (usually depicted by
assigning different colors to different population zones) may constitute a theme. The
theme declaration used here defines a logically interconnected set of spatial objects as a
collective object that can be accessed simultaneously. We believe that this declaration

is a more meaningful subdomain representation of the universe much like a view in a
relational framework.

3 Formal Data Model

3.1 Data Definition Language
3.1.1 Universe

In course of data definition the user first declares the universe.

< Universe Declaration > ::= %BEGIN UNIVERSE
UNAME : < UName >;
[TESSELLATION : < TName >:
EXTENT : < UExtent >:]

<ExtName Declarations >
*END UNIVERSE
< UName > ::= < identifier >
< ExtName Declarations > ::= EXTERNAL <ExtNames> | €
< ExtNames > 1:= < identifier > | < identifier >, < ExtNames >

The EXTERNAL declaration specifies a referred spatial object explained before. The
reserved word TESSELLATION refers to the nature of grid (square, hexagonal and
so on). It is optional and a square grid is chosen by default. EXTENT refers to the
physical limits of the universe in terms of the grid. If none is mentioned, it is taken as
the MBR of the universe polygon. Next we will see how to declare themes and discuss
the design advantages that are obtained out of such declaration. |

3.1.2 Theme

In general a large spatial database would consist of a number of themes. Each theme,
being a collective object must have a name. Thus the user declaration is given as shown
in Figure 1



< Theme Declarations > ::= < Single Theme Declaration > |
< Single Theme Declaration >
< Theme Declarations > .

< Single Theme Declaration > ::= % BEGIN THEME .
TNAME : < ThName >;
ITTOP : < ThTop >;
< Theme Type Declarations >
% END THEME
< ThName > ::= < identifier >

Figure 1: User Declaration of Theme

< Theme Type Declarations > ::= < Single Theme Type Declaration > |
< Single Theme Type Declaration >

< Theme Type Declarations >
< Single Theme Type Declaration > ::=

% BEGIN THEME TYPE
TTYPE : < ThObType >;
< Theme Type Declarations >
< Theme Object Declarations >
% END THEME OBJECT TYPE ~
< Theme Type Declarations > ::= < Region Declaration > |
< Network Declaration >

Figure 2: Theme Type Declaration

For themes, we introduce a concept of theme type, which essentially constrains the
operations allowed on the participant objects of the theme. These constraints are both
topological, as well as functional. Through topological constraints the aperattions under
a theme are forced to produce topologically meaningful spatial objects. For example,
no operation on a political theme can result in a region which is unconnected to other
regions, unless there is an intervening water body. A functional constraint, on the
other hand restricts the object classes allowable under a certain theme. For example,
it is illegal to declare a “region boundary” in a theme that accepts only polylines and
points. For our purposes, two broad theme types have been considered, region theme
and network theme. The first rests on notions of algebraic topology, while the second
allows network analysis operations. These are referred by the keyword TTOP in the user
declaration. Figure 2 shows the user syntax for theme type declaration.
Region Themes

A theme of the region type is characterized by four topological properties. The decom-
posability property asserts whether a region object declared under this theme is atomic
or decomposable. In the latter case, the name of the decomposed object must be men-



tioned. For example, in a political theme, a state may be decomposed into districts. In
case the largest decomposable object under a theme is the universe itself, the user has
to state it explicitly. Following the example of the political theme, a declaration may
be like .

UNIVERSE IS COUNTRY

COUNTRY DECOMPOSES INTO STATE

Decomposable regions are further classified by their properties of coveringness and dis-
jointedness. When a larger spatial object is decomposed into k& smaller spatial objects,
the set of decomposed objects produced may not spatially cover the parent object. A
familiar example is a mineral map of a country, where there can always be a region
with no mineral production. While this situation is easily managed by using null-valued
regions, the user may choose to assign a non-null spatial constraint, whereby the theme
enforces that the set of decomposed objects declared must obey the cover constraint.
The constraint of disjointedness asserts that no two decomposed objects of a given par-
ent spatial object in a theme can overlap in space. There are many cases where this is
true, such as a political theme; on the other hand cases such as agricultural pmducti%
would not be disjoint, because a given region can have many agricultural products. The
~ property of connectedness is to specify that the spatial objects produced by decomposi-
tion are connected. If they are not, one may specify any constraints applicable to them.
The constraints are specified by a set of predicates that must be satisfied by the objects
in that theme. For example, an island state is declared by the following syntax.
ISLAND STATE DECOMPOSED INTO ISLAND

NOT CONNECTED ISLAND -

CONSTRAINT ((CONNECTING REGION IN ISLAND STATE) IS WATER_BODY))

An object type called WATER_BODY has to be declared in order to have a valid system
constraint. |

While parsing a declaration, the system discovers recursive decompositions, as well as
partitions which appear as a consecutive set of disjoint covering decompositions. A
partition, can however be explicitly declared, as in Figure 3. The declaration parser
can also check consistency by topological rules, such as a region declared non-disjoint
must be connected, and hence the latter specification may be omitted in the user’s
declaration. A region can be either boundary-designated or non-boundary designated.
If a region is declared to be of the former type, then the boundary of the region is
explicitly stored. This enables sub-boundary operation of the region. For example find-
ing the common boundary between two adjacent regions is meaningful only if both the
regions are declared to be boundary designated. This also pertains to spatial adjacency
between two regions. Two regions are spatially adjacent if and only if they share a
common boundary. There exists a definite relation between boundary designation and
field decomposibility, in that a decomposable field implies a boundary designated re-
gion. Note that in such the declaration parser checks for consistency of the boundary
designation of the region and the boundaries of the field decomposition. A region is
also qualified as a simple or complex type. All our discussion about region themes till
now has been confined to simple type regions only. But sometimes it 1s necessary to
call a set of ( simple ) regions collectively by a single identity. For example, such a



Partition Declaration > |
Other Region Declaration >
PARTITIONED INTO < PName >

Region Declaration >

I
AA

Partitibn Declaration >
PName > ::= < identifier >

Other Region Declaration > ::= < Boundary Declaration >
| < Field Declaration >
Boundary Declaration > ::= BQUNDARY DESIGNATED : <DType> |
| NON~-BOUNDARY DESIGNATED
DType > ::= DECOMPOSABLE | ATOMIC | |
< Field Declaration > ::= % BEGIN FIELD

FTYPE : <DType>;
<Field Attributes>
% END FIELD |
Fleld Attributes > ::= <Typel> <Type2> <Type3>

Theme Object Declarations > ::= < Region -Object Declarations > |
< Network Object Declarations >

Region Object Declaration > ::=
< Simple Region 0Object Declarations > |}
< Complex Region Object Declarations >

Simple Region Object Declarations > ::=
< Single Region Declaration > |
< Single Region Declaration >
< Simple Region Object Declarations >

Region Simple Single Theme Object Declaration >

% BEGIN SIMPLE REGION THEME OBJECT
ONAME : < OName >:

<Polygon Declarations >
% END SIMPLE REGION THEME OBJECT

Polygon Declarations > ::= < Single Polygon Declaration > |
< Single Polygon Declaration >
< Polygon Declarations >

Figure 3: Declaration of the region theme
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< Complex Region Object Declarations > ::
% BEGIN COMPLEX THEME OBJECT
CONSTITUTED QF < Simple Region Object Names >
% END COMPLEX THEME OBJECT
< Simple Region Object Names > ::=
< OName > | |
< OName >, <Siﬁp1e Region Dbject Names>

Figure 4: Declaration of a Complex Theme

collection can be THE FORESTS OF NORTH INDIA. This is a complex region object
constituted of a number of regions, each of which are FORESTS and located in NORTH
INDIA. It may be possible that NORTH INDIA is itself a complex object ( in fact it is,
composed of STATES in the northern part of INDIA ) and proper constraints should be
generated by the declaration parser to take care of such cases. Specifically if NORTH
INDIA has not been defined then a proper reference should be kept of the fact with
the constraints imposed by the spatial extent of the FORESTS. The declaration of such
complex regions as shown in Figure 4. |

Network Themes .
A network theme is characterized by a collection of nodes, edges, and intersections. A
theme object in a network is a sequence of segments which are an ordered node-pair
with an edge between them. For example the river GANGA is a theme object in the
theme RIVERS (say). The declaration parser expects the object GANGA to contain
a sequence of segments. Besides this, the network theme also supports declaration of
complex object, like the one in the Region theme which constitutes of a collection of
simple objects in the same theme. The edge of a segment has several attributes, like
width, general orientation, navigability, interpolability , edge costs etc. There are eight
possible general orientation allowed viz. North-South, South-North, East-West, West-
East, NE-SW, SW-NE, NW-SE, SE-NW. The user can associate one or more costs to the
edges. These are used as static evaluation potential (s.e.p.) in the heuristic function to
solve optimal path /route problems. Some of the attributes like navigability dynamically
changes the cost of the edges in the query execution time. The concept of paths /routes
introduces a new kind of object in the network realm. A path/ rout_;e in such a domain is
a collection of segments of different objects in the network theme. The path/route has
an identity of its own and its specific declaration syntax. It is declared as shown in the
Figure 5. A network object may join another network object or several other network
objects may fork from one or more segments from a network object. This is called ’join’
or ’fork’ of network objects. A join or a fork imposes several constraints which are to
be checked by the declaration parser in course of such declarations. The first of these
constraints is the appreciation of the fact that a join or a fork declaration necessitates the
declaration of the other. For example the river JAMUNA joining GANGA at segment
number 2 implies a fork’ on segment number 2 of GANGA by the name of JAMUNA.
So the user may chose not to explicitly specify such inverse declarations and the system

11



< Composition > ::= } BEGIN ROUTE
o RNAME : < RName >;
< Route Declarations >

| % END ROUTE
< RName > ::= < identifier >
< Route Declarations > ::= < Single Segment Declaration > |

< Single Segment Declaration >;
< Route Declarations >
< Single Segment Declaration > ::=
EXTENDING < RExtent > OGN < NNames >

< NNames > ::= < NName > | < NName >, <NNames>

< NName > ::= < identifier >

< RExtent > ::= < StartSegmentno >, < EndSegmentno >
< StartSegmentno > ::= < integer >

< EndSegmentnb > ::= < integer >

Figure 5: The Path Declaration Language

is bound to compute any such referential constraints. Furthermore, a mechanism should
be provided to deal with false intersections. For example, a bridge over a road can lead
to a false intersection due to the two-dimensional limitation of the viewing surface.
Such intersections should be avoided by the query processor in path-finding problems.
Finally we come to the ’interpolability’ property of an segment-edge. When an edge
is declared to be interpolable, then the points intervening the start and the end point
of the segment becomes significant, in the sense that such an interpolated intervening
point can be referred as a object type. This can be illustrated by an example. Consider
a national highway covering a number of important cities. Of the several (hundreds) of
segments in such a road, some of them actually passes through the cities. Such segments
may be declared interpolable, so that an intervening interpolated point where the city

is located can be referred. The declaration syntax of a network is shown in Figures 6
and 7.

3.2 The role of Geometric Objects

Though we have mentioned in the introduction that the user query language in our
model is not explicitly based on geometric objects, this does not mean that the geometric
aspect of space can be ignored. The phrase in our context means that the underlying
geometric representation of the objects is hidden from the user once it is declared. The
access to the internal representation then becomes an exclusive privilege of the Query
Processor. The data structures and algorithms for such geometric representation have
not been dealt with in our work. For an excellent survey on such topics, the reader is
referred to {9]. In query processing we will show how to use the underlining geometry
of space.

12




A A A A

Network Declaration > ::= < Nodes >
< Edges >
- < Intersections >
Nodes > ::= %{ BEGIN NODES
< Nodelist >
% END NODES
Nodelist > ::= < Node > |
< Node >, < Nodelist >
Edges > ::= % BEGIN EDGES
- < Edgelist >
% END EDGES
Edgelist > ::= < Edge > |
< Edge > < Edgelist >
Edge > ::= < CO > : < CO >;
ENO : < integer >,
% BEGIN ATTRIB
<Attributelist>
% END ATTRIB
Attriblist > ::= < attribute > |
< attribute > < Attributelist >
attribute > ::= < Nav attribute >;
Direction attribute >;
Orientation attribute >;
Width attribute >;
Interpolable attribute >;
< Cost attribute Declaration >
Cost Attribute Declaration > ::= % BEGIN EDGE COST
< EdgecostlList>
% END EDGE COST
< SingleEdgeCost > |
< SingleEdgeCost >< Edgecostlist >
EdgecostList > ::= < CostName > : < Cost >;
CostName > ::= < identifier >
Cost > ::= < integer >
Intersections > ::= % BEGIN INTERSECTION
< Intersectionlist>
% END INTERSECTION | ewmg &
Intersectionlist > ::= < Intersection > |
< Intersection >
< Intersectionlist >

A A A A

Edgecos%List >

e,

Figure 6: The Network Theme Declaration Language |

13
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Intersection > ::= < Intersection Type >
< Intersection edges Declaration >

Intersection Type > ::= < Junction Type > | INCIDENTAL
Junction Type > ::= FORK | JOIN | CROSSROAD

Intersection edges Declaration > ::= < Edgel >, < Edge2 >
Edgel > ::= < integer > S
Edge2 > ::= < integer >

Network Theme Object Declaration > ::=
< Network Simple Theme Object Declaration > |
< Network Complex Theme Object Declaration > |
< Composition >
Network Simple Theme Object Declaration > ::
% BEGIN SIMPLE NETWORK THEME OBJECT
ONAME : < OName >;
<EdgeNoList>
% END SIMPLE NETWORK THEME OBJECT
Network Complex Theme Object Declaration > ::
% BEGIN COMPLEX NETWORK THEME OBJECT
ONAME : < OName >;
CONSTITUTED OF <ONames>
% END COMPLEX NETWORK THEME OBJECT
ONames > ::= < OName > | <ONames>, <0ONames>

Figure 7: The Network Theme Declaration Language(contd..)
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3.3 Logical Models of Theme

A logical model consists of a specific set of objects and operations, designed in such a
fashion that conceptual models of many applications can map onto it. In course of this
work, we have identified three logical models to capture the theme semantics outlined so
far. These models are hierarchical graphs, networks and interval multigraphs. They are,
in fact, complementary to each other, and in the general case the user’s data definition
would partially map into each. Out of these, the basic structure of the network model
is practically the same as the network theme outlined earlier. Properties of the other
two are described in the following subsections, while operations related to them will be
discussed alongwith the query language.

3.3.1 Hierarchical Graph Model

A hierarchical graph is a structure having the following properties.

1.

k
It consists of an m-ary tree called the p-tree containing objects called planes,
rooted at the designated node called universe. |

. A plane consists of a connected multigraph of node entities. One node entity

can be connected to another by at most k directed edges. Each edge has a label
ei,t = 1..k. Two nodes connected by an edge with a label ¢; are said to be adjacent
in the direction e;.

. A node entity can be either a single node, or a set of nodes. Participant

nodes of a set entity need not be connected. However, no participant node can be
isolated from all other nodes in the plane.

. The parent of the (i+1)-th p1la,ne of the hierarchical graph is one and and only one

entity of the :-th plane, If there is a node entity in plane ¢ without any children,
it 1s atomzc else it is decomposable.

. All planes of a level of the p-tree is called a resolution level. Two node entities

can also be edge connected if they belong to different planes, but to the same
resolution level.

Next we specify the semantics of a hierarchical graph in terms of the underlying com-
putational geometry.

1. To every singleton node in the leaf level of a hierarchical graph, there is a polygon

in absolute space, defined in terms of the declared tessellation.

. For each decomposition in the hierarchical graph, there is a polygon fully contained

within the polygon corresponding to its parent.

. For two adjacent nodes in the hierarchical graph, connected by an edge label e,

there exists common sides between their corresponding polygon, such that the
average orientation of the common sides is e. Here average orientation is derived
from arctan %—f%, discretized to the appropriate angular resolution level.

15



4. A nonleaf node of the hierarchical graph may explicitly refer to a polygon. In this
case, all the declared topological properties will be obeyed by the polygon. There
is one exception to this explicit reference. An 1-th level node of the p-tree explicitly

‘refers to a polygon p*, and all nodes of a plane 7 at the 2nd descendant level refer

to explicit. polygons p[(}:' + 2)...pl:' + 2). However parent_of(7), belonging to the
i-th level of the p-tree does not refer to an explicit pnlygon In this case, pli + 1)
is called a dummy node and is defined to represent | p;t + 2). An illustration of
this situation appears at a political theme if a country decomposes directly into
districts without going through the mtermed:ary level of states, albeit state has
been defined in the theme.

3.4 Interval Multigraph Model

An 2D interva.l multigraph is a structure with the following properties

1. It consists of k sets of typical nodes N'..N* where i indicates the type of node
n c N

2. No two nodes n} and nj of the same set are connected.

3. Nodes n} € N* and n¥ € N* (i # y ) may be connected by a labelled “directed
edge” e, or its dual e’ with the direction reversed. The number of connecting edges
will not exceed an upper limit. Two connected nodes are said to be “overlapping”
along the direction e, if their connecting edge has label e.

4. Isola.tgd nodes are allowed to appear in the graph.

So far we have described the multigraph characteristics of our model. Next, the interval
semantics would be explained in terms of the underlying computational geometry.

1. For each node in the multigraph there exists one and only one polygon in absolute
space.

2. If two nodes in the multigraph are connected by an edge, then the corresponding
polygons overlap in absolute space.

3. The label of the edge connecting two polygons represents either a complete con-
tainment of one in the other, or denotes the direction of the half-plane in which
one polygon extends with respect to the other. Naturally, if there are k cardinal
directions defined in the system, anly k/2 need be specified as edge labels.

It is simple to establish that the semantics above does follow the properties of an interval
~ graph in 2D space. For simplicity consider, there are only four cardinal directions, east,
_-west, north and south. Therefore, there are two edge labels. Let us say, they are
“overlapping and projecting eastwards” and “overlapping and projecting southwards”,
‘an equivalent of the raster representation of 2D space. The specification of four cardinal
directions is, in fact, a restatement of the assumption that a square grid tessellation
iconstltutes the underlying partition of absolute space. Hence, any pair of polygons that

16



overlap and lie to the east (west) of the other, will be represented by the first edge
label. Similarly, a pair of polygons overlapping and extending to the south (north) of
one another will be represented by the second edge label. Since, each of these two labels
constitute an interval graph in the appropriate direction, their simultaneous use, leads
to an interval (multi-)graph in two dimensions.

Next, let us look at a more pragmatic method of representing the interval multigraph
in two dimensions. Continuing with our assumption of four cardinal directions, it is
possible to restructure our node-edge-node representation of the graph such that we
first denote all the squares of the grid as distinct tuples. For each such tuple, we record
all the polygons that overlap with it. The interval information can then be directly
obtained by inspecting the tuples necessary for any search. As a further pragmatic
modification, we observe that we could construct the alternate representation of the
interval multigraph simply because the square grid tessellation provides a partition of
absolute space. Hence, any other structure with the same property could be used in
place of the explicit use of the tessellation. Therefore any level of all themes with the
partition property can be used to represent this alternate interval representation. We
call this representation as the interval dictionary and the theme used for this purpose
as the base theme. |

4 Query Processing

4.1 User’s Query Language

The basic structure of a query expression consists of three clauses, much like the ones
used in SQL; select, from, and where.

1. The select clause can be thought of as akin to the select clause in in normal SQL
statement. It lists the attributes desired in the results of a query.

2. The from clause lists the theme-names and/or theme objects in theme-names to
be consulted in the evaluation of the query.

3. The where clause corresponds to the selection predicate(s). It consists of predi-
cates involving attributes of the theme objects used in the from clause. |
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A typical query has the from
select A,, As, .
from T4, Tz, N

where P
Here each A; represents an attribute. The list Ay, A, ...A may be replaced with a * to

select all attributes of all theme objects appearing in the from clause. Each Ti is either
a theme-name or a theme-object, specified directly or as a function of another theme
object. The functions are dependent on the underlining theme-structure. For example,
a decomposition of a non-leaf node in a hierarchical graph may either be enumerated
explicitly by citing all the names, but a simpler way to specify it is in declaring the set
as a descendant function of the parent i.e., if our need is to specify all the districts of
WESTBENGAL, either explicit declarations of the districts can be done or else the user
can simply refer to the set as STATES OF WESTBENGAL. The internal translation

of such statements will be discussed later. The query structure pertaining to each of
the three basic structures are shown in Figures 8, 9, 10 and 11.

4.2 Theme Structure Operations

Hierarchical Graph
The following operations are supported in the hierarchical structure :

1. ANCESTOR (sid [,Ivl]) = { sid }
Purpose : returns a set of ancestors of a spatial object. The optional level vl’
acts as a filter of ancestors at level ’lvl’. So,

FATHER (sid) == ANCESTOR (sid, 1)
GRANDFATHER (sid) == ANCESTOR (sid, 2)

2. DESCENDANTS (sid [,Ivl]) = { sid } _
Purpose : returns a set of descendants of a spatial object. The optional level ‘Ivl’
acts as a filter of descendants at level ‘Ivl’. So,

CHILDREN (sid) == DESCENDANTS (sid, 1)
GRANDCHILDREN (sid) == DESCENDANTS (sid, 2)

3. NEIGHBOR (sid [,Dir]) = { sid }
Purpose : returns a set of neighbors of a spatial object. The optional direction
‘Dir’ acts as a filter of neighbors in appropriate direction, presently taken as any
of 8 cardinal directions.

4. LCA ({sid}) = sid
Purpose : returns the least common ancestor of a set of spatial objects at same
or different level.

Network |
The following operations are supported in the network structure :
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< Hierarchical Query Statement > ::
< Set Statement > |
< General Query Statement > |
< Navigational Query Statement > |
< Aggregate Query Statement >

< General-Select-clause > ::= SELECT < attributes >
FROM < plane-denoter >
[ AT < level-denoter > ]
| WHERE < predicate-list >
< Set-statement > ::.= SET CURRENT NODE = < select-set-clause >
< Select-set-clause > ::= SELECT < plane-denoter >
FROM < level-denoter >
WHERE < predicate-list >
< Navigational Query Statement > ::= SELECT < attributes >
FROM < neighbor >
FOLLOWING < edge-label >
WHERE < predicate-list >
< neighbor > ::= NEXT [ <neighborno> ] NODE | |
UNION ( NEXT [ <neighborno> } ) |
NEXT [ < neighborno > ] IN < plane-denoter > |
UNION ( NEXT ([neighborno] IN < plane-denoter >
< plane-denoters > ::= < plane-denoter > |
< plane-denoter >, < plane-denoters >
< plane-denoter > ::=
< plane-id > |
ANCESTOR ( < ancestor-type > ) OF < plane-denoter > |
DESCEDANT ( < descendant-type > ) OF < plane-denoter > |
LCA < plane-denoters > |
~ JOIN ( plane-denoters >
< ancestor-type > ::= < integer > |
< descendant-type > ::= < integer >
< level-denoter > ::=

*
| *
< level-name > |
ANCESTOR < ancestor-type > OF < level-name > |
DESCENDANT < descendant-type > OF < level-name >
< Aggregate Query Statement > ::= FIND d-agg*attributes >
| IN < select-set-clause >

< s8pace >
< space > ::= OVER < abs-space > | ¢

-_—

Figure 8: User’s Query Language for Hierarchical Graphs
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< Nod
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<Exp
Node Set st

network-sel

ry Statements > ::=

e Set Statements > |

eral Network Query statement> |

work aggregate Query statement> |

lorative Query statement>

atement > ::=

SET CURRENT_NETWORK_NODE =

< network-select-set-clause >

ect-set-clause > ::= SELECT < Network_Node >
WHERE < predicate-list >

General Network {Query statement > ::=
SELECT < attribute-list >
FROM < Network_Node >
WHERE < predicate-list >
Network_Node > ::= <Network_Object> |
< segno-clause > OF < Network_Node > |
FORKING FROM < Network_Node > |
JOINING OF < Network_Node > |
REACHABLE FROM < Network_Node > |
COMMON OF < Network_Nodes >
Network_Nodes > ::= < Network_Node > |
< Network_Node >, < Network_Nodes >
segno-clause > ::= SEGNO < Segments >
Segments > ::= < Enumerable Segments > |
< Indexed Segments > | *
Enumerable Segments > ::= < segno > |
< gsegno >, <Enumerable Segments>
Indexed”Segments > ::= <segnol>..<segno2>
segno > ::= < integer >
segnol> ::= < integer >
segno2”> ::= < integer >
attribute-list > ::= < attributes > |
< attributes >, < attribute-list >
attributes > ::= SP | EP | NODES | <SegmentAttributes>
SegmentAttributes > ::= LENGTH | WIDTH | NAVIGABILITY |

DIRECTION | ORIENTATION | INTERPOLABILITY

Figure 9: User’s Query Language for Network
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< Network_Object > ::=
<Network Theme Object> |
<Network_Composition>

< Network aggregate query statement > :@:=
FIND < aggregate-attributes > IN
< network-select-set-clause >

< 8pace | o
< gpace > ::= OVER < abs-space > | &
< abg-space > ::= < Extent > .
< aggregate-attributes > ::= SUM | AVG | COUNT | MIN | MAX
< Explorative Query Statement > ::=

FIND < Aggregate of Exploration >

< Route attributes > (0F ROUTE

FROM < Network_Node > TO < Network_Node >
< Route attributes > ::= LENGTH | WIDTH

Figure 10: User’s Query Language for Network(contd..)

g
<Interval Query Statement> ::= <Interval Set Statement> |
- <General Query Statement>|
<Aggregate Query Statement>

?Interval Set Statement> ::

’ SET CURRENT REGION_NODE =

| | <Region-select-set-clause>

?Region-select-set—clause> ::= SELECT <RObject-denoter-clause>

o [ IN <Base-object-denoter> ]
WHERE <Predicate-list>

¢l

?Rﬂbject-denoter-clause> o
| RObject | |

. OVERLAP OF <RObject-denoter-clause> |

~ MINIMAL COVER OF <RObject-denoter-clause>

<Base-object-denoter> ::=

| * | Plane~id | Object |
ANCESTOR OF <Base-object-denoter> |
DESCENDANTS OF <Base-object-denoter> |
LCA OF <Base-object-denoter>

Figure 11: User’s Que;f' Language for Interval Graphs
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10.

11.

_-—

. FORKING_FROM (sid [,segno]) = { sid }

Purpose : returns a set of network spatial objects forking from a network spatial
object. The optional field segno acts as a filter of Segment Number = segno.

. JOINING_OF (sid) = { (sid,segno} }
 Purpose : returns a set of network spatial objects, segment number pairs. Nor-

mally a network spatial object joins only 1 network spatial object, but in some
cases the function returns a set. For example, a confluence of more than two nodes
in a network.

. COMMON_OF ({ sid }) = (sid, { segno })

Purpose : returns a commort subsequence of a set of network spatial objects.

. REACHABLE (sid) = { sid }

Purpose : returns a set of spatial objects which are reachable from a spatial object.

. SP (s.id [,segno|) = CO

Purpose : returns the starting point(co-ordinate pair) of a network spatial object
of optional Segment number segno. If no segno is specified, then by default the
first segment is chosen.

. EP (sid [,segno]) = CO

Purpose : returns the ending point(co-ordinate pair) of a network spatial object
of optional Segment number segno. If no segno is specified, then by default the
last segment is chosen.

. NODES (sid [,{ segno }]) = { CO }

Purpose : returns a set of coordinate pairs corresponding to the start and end
points of the segments denoted by the set of segments segno. If no such set is
specified, then by default all the segments of the spatial object is taken as the set.

. SEGMENT _ATTR (sid [,{segno}] [,{attrlist}]) = { attributes }

Purpose : returns a set of attributes of a spatial object of segment numbers chosen
by the sét segno. The attributes desired are chosen by a set attrlist.

. LENGTH (sid |,{segno}|) = float

Purpose : returns the length of the set of segments segno of a spatial object. If
no such set is specified, all the segments are chosen by default. In that case the
function returns the total of the spatial object.

LENGTH_COST (sid, CostType [,{segno}|} = integer
Purpose : returns the cost-length of type CostType of the set of segments segno of
a spatial object. If no such set is specified, all the segments are chosen by default.

In that case the function returns the total of the spatial object.

AVG_WIDTH (sid, {segno}) = float ‘

Purpose : returns the average width of the set of segments segno. If no such set is
specified, all the segments are chosen by default. In that case the function returns
the average width of the spatial object.
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12.

13.

14.

LENGTH_COMPOSITION (sid [, {sid,{segno}} |) = float

Purpose : returns the length of a composition (route) spatial object. The filtering
construct can be the length of the route on a set of segment numbers of a set of
network spatial objects. For example, the length of that part of a route R that

‘stretches from Segment Number #Segnol to #Segno2 of Road R1 and Segment

Numbers #Ségno3 to #Segno4 of Road R2.

I ENGTHCOST_.COMPOSITION (sid, CostType |, {sid,{segno}} |} = integer
Purpose : analogous to the previous function, only that the cost length of a

composition is returned.

FIND_PATH (sidl [,segnol],sid2 [,segno2| ) => { sid }

Purpose : returns a set of compositions if a path exist between Segment Number
segnol of the source spatial object and Segment number segno?2 of the destination
spatial object. If any of the the Segment numbers are not specified, by default all

segment numbers are taken.

Wherever possible complex functions are executed by using basic functions; for exam-
ple, to find out the length of a path between a source and a destination spatial object
the following algorithm can be followed :

Step 1. FIND_PATH (sid1 [,segnol],sid2 [,segno2| );

Step 2. LENGTH_PATH = 0

Step 3. WHILE NOT end-of-set

LENGTH_PATH = LENGTH_PATH + LENGTH_COMPOSITION (sid);

Step 4. return LENGTH_PATH

Interval Multigraph

1.

4.3

OVERLAP_OF ({sid}) = { sid }
Purpose : returns the spatial objects in the resolution of the base theme of the

region of overlap of several spatial objects (in difterent theme types). Its inverse
function is OVERLAP_IN.

. MINIMAL_COVER ({sid}) = { sid }

Purpose : returns the minimal cover of a set of spatial objects.

. Any valid boolean combination using AND, OR, NOT expressed in the conjunctive

normal form.

Query Processing Mechanism

In this section we shall deal with processing of queries in the three basic structures. We
will use a PASCAL like psuedo languagé to present our algorithmns. It is assumed that
some functions are already available. Such functions are marked with a *.

Hierarchical Graph
The following are some procedures which are used in query processing
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1. Procedure Name : GetPlaneDenoters
Purpose : returns all the plane-denoters specified in the plane-denoter and level-
denoter clauses in a global set B.
Global Variables Used : a set of plane denoters B
Algorithm ; "

Procedure Getplanedenoters( plane-denoter clause, level-denoter-clause )  BE-
GIN
{ The function ATOMIC_PDC tests if the plane-denoter clause evaluates to a
single plane-id. If yes it returns TRUE else it returns FALSE }
IF *ATOMIC_PDC ( plane-denoter clause ) = TRUE THEN
B := *SETUNION ( B, plane-denoter-clause )
{ The function SETUNION returns the union of its argument sets }
ELSE
BEGIN
{ divide the plane-denoter clause into two parts PRECEDENT and AN-
TECEDENT parts of plane-denoter clause and recursively apply the PRECE-
DENT function on the set collected by the ANTECEDENT }
f := *PRECEDENT ( plane-denoter-clause, level-denoter-clause);
g := *DESCENDANT ( plane-denoter-clause, level-denoter-clause);
GetPlaneDenoters(g);
B := {(B);
{ f can be of the following forms :
* ANCESTOR returns the ancestor(s) of objects at plane denoter
*DESCENDANT returns the descendant(s) of objects at plane denoter
*LCA returns the least common ancestor of objects at plane denoter
*JOIN returns the join of objects at plane denoter

}
END;

END; { Procedure Getplanedenoters }

2. Procedure Name : GetPlanelds
Purpose : returns all the plane-ids specified .
in the global set B satisfying predicates
in a global set A
Global Vbls Used : a set of plane ids A
Algorithm :
Procedure GetPlanelds { B, predicate-clause )
BEGIN
WHILE *CARDINALITY(B) >~ 0 DO
BEGIN
PD := *ENTRY(B);
{ The function ENTRY returns the first element in its argument sct }
WHILE *CARDINALITY(PD) > 0 DO
{ The function CARDINALITY returns the number of elements in its
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argument set }
BEGIN

POID := ENTRY(PD); { Plane Object Id }
IF PREDICATE({POID, predicate-clause) = TRUE THEN

A := *SETUNION (A, POID):;
{ The function PREDICATE returns TRUE if the object satisfies

all the predicates in its argument }

PD := *SETDIFFERENCE(PD, POID);

{ The function SETDIFFERENCE returns the difference set of
its arguments }

END;
B := *SETDIFFERENCE(B PD]
END:;
END; { Procedure GetPlanelds }

. Procedure Name : GetNeighborNodes

PURPOSE : returns all the neighbors specified in the
neighbor-clause and edge-label-clause of an

object satisfying the predicates in the

global set N. |

GLOBAL VBLS USED : a set of neighbors N
ALGORITHM

Procedure GetNeighborNodes ( neighbor-clause, edge-label-clause, Object)
BEGIN
[F *EXIST(UNION, neighbor-clause) = TRUE THEN
UNION_ON = TRUE ELSE
UNION_ON = FALSE;
{ The function EXIST returns TRUE if the word UNION occurs in the
neighbor clause }
IF *EXITS([K]|, neighbor-clause)} = FALSE THEN k=1;
IF *EXIST(IN, neighbor-clause) = TRUE THEN

BEGIN
IN.ON = TRUE;
Getplanedenoters(plane-denoter-clause of neighbor-clause,NULL);
GetPlanelds(B);

END

ELSE

IN_.ON = FALSE;

Node := Object;

Tempnode := Object;

1 = O;

REPEAT
IF UNION_ON = TRUE THEN
BEGIN

—_—



Tempnode := *NEIGHBOR ( Node, edge-lebel-clause);
{ The function NEIGHBOR returns the immediate neighbor of

Node in direction of edge-label } IF ( INNON = FALSE } OR (
*INSET(A, Tempnode) = TRUE ) THEN
BEGIN
N := *UNION ( N, Tempnode );
1 =1+ 1; |
END;
Node := Tempnode;
END;
UNTIL ijk;

IF UNION_ON = FALSE THEN
N := *SETUNION(N, Tempnode);

END; { Procedure GetNeighborNodes }
Set Statement Processing : |
Step 1: GetPlaneDenoters (plane-denoter-clause, level-denoter-clause)
Step 2: GetPlanelds { B, predicate-clause ) 1
Step 3: IF ( *SINGLETON(A) = FALSE ) return ERROR
ELSE return *ENTRY(A);
General Query Statement Processing :

BEGIN

{ check for single POID }

IF ATOMIC_POID(plane-denoter-clause) = TRUE AND

PREDICATE ( POID ) = TRUE THEN

A := SETUNION(A, POID);

ELSE

BEGIN -
GetPlaneDenoters(plane-denoter-clause, level-denoter-clause);
GetPlanelds(B); X

END;

*GetAttributes(A, attribute-list);
{ This function selects out the attributes of the plane-ids }

END. |

Navigational Query Statement Processing :

BEGIN ,
Getplanedenoters(plane-denoter-clause,N ULL);
GetPlanelds(B);

C:= A;
.= NULL;
WHILE *CARDINALITY(C) > 0 DO
BEGIN |
GetNeighborNodes(neighbor-nodes, predicate-clause, edge-label-clause,
*ENTRY(C) ); ' '
C := *SETDIFFERENCE(A, *ENTRY(A) );
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END;
GetAttributes(N, attribute-clause);
END.

Network :
The following are some of the procedures used in network query processing

1. Procedure Name : GetNObjects
Purpose : returns all the qualifying Objects and their
'segments in a global set N.A element of N is
of the form ( Object, {Segment Numbers} )
Global Vbls Used : the set N.
Algorithm :
Procedure GetNObjects( Network-node-clause )
BEGIN
IF *ATOMIC_NO{ Network-node-clause ) = TRUE THEN
N := *SETUNION ( N, Network-node-clause, All segments of Network-
node-clause );
ELSE
BEGIN |
*GetNObjects( *YANTECEDENT (Network-node-clause) );
N := *PRECEDENT ( N ); o
{ The PRECEDENT function can be one of the following
SEGMENT_FILTER(NObject,{Segment Numbers})
selects only the specified segments of the NObect
FORKING_FROM (NObject, {Segment Numbers} )
| returns the objects which fork from the specified Segment Num-
bers of the argument Network Object

JOINING .OF(NObject)

returns the objects to which the argument Network Object joins
| REACHABLE_FROM(NObject)
returns the objects to which are reachable from the argument Net-

work Object
COMMON_OF( NObjects }
returns the common subsequence of a set of Network Objects.
} END;
END; { Procedure GetNObjects }
Node Set Statement Processing :
Step 1: GetNObjects ( Network-node-clause ); |
Step 2: IF { *SINGLETON(N) = FALSE ) THEN return ERROR
ELSE return *ENTRY(N}; |
General Network Query Statement Processing :
BEGIN o
GetNObjects( Network-node-clause );
*GetAttributes (N, attribute-clause});
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END.

Interval Multigraph : |
The following procedures are used in the processing of interval multigraph queries.

1. Procedure Name : GetBaseObjects
Purpose : returns the base objects specified in the argument
clause in a global set B
Global Vbls Used: a global set of base objects B
Algorithm: |
Procedure GetBaseObjects( base-object-denoter-clause )
BEGIN -
[F *ATOMIC(base-object-denoter-clause) = TRUE THEN
B := *SETUNION(B, base-object-denoter-clause);
ELSE
BEGIN
{ Divide and recursively apply the PRECEDENT
and ANTECEDENT functions } |
*ANTECEDENT (base-object-denoter-clause);
B := *PRECEDENT(B);
END; |
END; {Procedure GetBaseObjects }

2. Procedure Name : GetRegionObjects

Purpose : returns the region specified in the a.rgument clause
in a global set R

Global Vbls Used: a global set of RObjects R
Algorithm:
Procedure GetRegionObjects(RObject-denoter-clause)
BEGIN .
IF *ATOMIC(RObject-denoter-clause) = TRUE THEN

R := *SETUNION(R, RObject-denoter-clause);
ELSE

BEGIN

{ Divide and recursively apply the PRECEDENT and
w ANTECEDENT functions }
*ANTECEDENT(RObject-denoter-clause);
R := *PRECEDENT(B);
END:
END; {Procedure GetRegionObjects }

*,

3. Procedure Name : GetRegiﬁnObject.slnBase
Purpose : returns the region specified in R which lies in the set of hase objects B
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in a global set R
Global Vbls Used: a global set of RObjects R
Algorithm:
Procedure GetRegionObjectsInBase(RObject-denoter-clause, R, B)
BEGIN
R’ := *OVERLAPPING(B);
{ The function OVERLAP_IN returns the region objects
which falls and/or overlaps in the region of B }
R := *SETINTERSECTION(R, R’);
END; {Procedure GetRegionObjectInBase}

4.4 Query Formulation in the basic theme structures

In this section, we show how a query can be written in the query language pertaining
to a theme structure.

Hierarchical Graph |

The queries can be confined to objects in the same plane ( Example 1 and 2) or can
involve objects across planes ( Example 3 ) User Query 1: |

Let us consider the simple query.

FIND OUT ALL THE STATES OF INDIA.

This can be written in the query language as : SELECT NAME FROM STATES OF
INDIA

A variation of this query can be

FIND OUT ALL THE ATTRIBUTES FROM ALL STATES OF INDIA.
This can be written as :

SELECT * FROM STATES OF INDIA
User Query 2:
This is a example of a query where attributes are desired from more than one object.

FIND OUT THE POPULATION OF DISTRICTS OF BIHAR AND WEST BENCAL
This can be written as :

SELECT POPULATION FROM DISTRICTS OF BIHAR, WESTBENGAL
User Query 3:
Now for a more complex query involving navigation between planes.

FIND OUT THE SITES IN THE DISTRICTS OF THE STATES ADJACENT TO
WEST BENGAL

This can be written as :

SET CURRENT HIERARCHY NODE = "WESTBENGAL”

SELECT NAME FROM SITES OF NEIGHBOR * |
Explanation : In order to navigate between planes one node in the graph has to be
made the current node. It is from this node any adjacency is calculated. Since we are
interested to get all neighbors of WESTBENGAL, we have specified NEIGHBOR *.
Since an adjacency relatidn“'preserves planes { i.e., the answers to the sub-clause gives
objects in the same plane ), the neighbors of WESTBENGAL also belongs to the same
level as WESTBENGAL. Since we are interested in sites of the states we have specified
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SITES OF NEIGHBOR.

Now consider that a further condition is imposed in the above query.

FIND OUT THE SITES IN THE DISTRICTS OF THE STATES ADJACENT TO
WEST BENGAL AND THE AREA OF THE DESTRUCTS IS MORE THAN 100
UNITS. | |

The query i1s modified as :

SET CURRENT HIERARCHY NODE = "WESTBENGAL”

SELECT NAME FROM SITES OF NEIGHBOR *

WHERE AREA(DISTRICTS]) 100
Note that the DISTRICTS will correspond to that of the current node pointer i.e.,

WESTBENGAL. H |
-If any other attribute of the resultant objects are wanted, say the artifact distribution

then the query becomes :

SET CURRENT HIERARCHY NODE = "WESTBENGAL”
SELECT NAME, ARTIFACT .DIST FROM SITES OF NEIGHBOR *
Network

User Query 1 |
REPORT ALL ATTRIBUTES FROM ALL SEGMENTS OF GANGA

This can be written as :

SELECT * FROM SEGNO * OF GANGA

A particular attribute can be chosen by |

SELECT WIDTH FROM SEGNO 2..5 OF GANGA

gives the width of the segments 2 through 5.

User Query 2

Consider the query

FIND ALL/SOME ATTRIBUTES OF THE SEGMENT NUMBER(S) FROM A RIVER

WHICH FORKS FROM SEGMENT NUMBER 3 OF A RIVER TO WHICH THE
RIVER JAMUNA JOINS.

This can be written as :

SELECT * FROM SEGNO 3..7 OF FORKING FROM SEGNO 3 OF JOINING OF
JAMUNA

In case more than one fork exists, all the network objects are chosen.

User Query 3
Consider the query :

FIND THE TOTAL LENGTH OF PATH FROM SEGMENT NUMBER 5 OF GANGA
TO SEGMENT NUMBER 2 OF DAMODAR

This can be written as : _ |
SELECT LENGTH OF PATH FROM SEGNO 5 OF GANGA TO SEGNO 2 OF
DAMODAR

In general any form of specification of a Network Object is possible. For example,
SELECT LENGTH OF PATH FROM SEGNO 5 OF FORKING FROM SEGNO 2 OF
GANGA TO SEGNO 2 OF DAMODAR |
finds the length of the path from segment number 5 of the river which forks from Seg-

30



ment Number 2 of GANGA to Segment Number 2 of DAMODAR. In case more than
one fork exists, all the path attributes are reported.

Interval Multigraph

User Query 1

FIND ALL RICE PRODUCING REGIONS IN THE BANKURA DISTRICT OF WEST-
BENGAL

This can be written as :

SELECT NAME FROM RICE-PRODUCING IN DESCENDANTS(1) OF WESTBEN-
GAL WHERE DESCENDANTS(1} = "BANKURA”

A variation of this query is : |

FIND ALL DISTRICTS IN WESTBENGAL WHICH BOTH PRODUCES RICE AND
WHEAT

This can be written as :

SELECT NAME FROM OVERLAP OF RICE-PRODUCING, WHEAT-PRODUCING
IN WESTBENGAL

User Query 2

Consider the query :

FIND ALL DISTRICTS WHICH PRODUCES RICE IN WESTBENGAL

This can be written as :

SELECT NAME FROM OVERLAP IN RICE-PRODUCING, WHEAT-PRODUCING
WHERE NAME IN DESCENDANTS(1) OF WESTBENGAL.

4.5 Query Evaluation

This section focuses on the actual query evaluation. Three representative queries are
selected, one from each theme structure. The queries chosen are fairly complex to
demonstrate the various aspects of query processing.

Hierarchical Graph

Consider this query :

FIND OUT THE SITES IN THE DISTRICTS OF THE STATES ADJACENT TO
WEST BENGAL

The steps of Query processing are : Step 1: GetNeighborNodes(“WESTBENGAL”);
returns : BIHAR, ORISSA, ASSAM (say)

Step 2: Descendants(2) returns sites of BIHAR, ASSAM and ORISSA.

Network

Consider this query :

FIND ALL/SOME ATTRIBUTES OF THE SEGMENT NUMBER(S) FROM A RIVER
WHICH FORKS FROM SEGMENT NUMBER 3 OF A RIVER TO WHICH THE
RIVER JAMUNA JOINS. | |
The steps of processing involves the following :
Step 1: GetNObjects(JOINING OF JAMUNA);
returns GANGA (say)

Step 2: GetNObjects(FORKING FROM SEGNO 3 OF GANGA)
returns BHAGIRATHI (say) |
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Step 3: GetAttrlbutes(SLGNO 3.7 OF BHAGIRATHI)
Interval graph ’
Consider this query

FIND ALL DISTRICTS IN WESTBENGAL WHICLI BO TH PRODUCES RICE AND
 WHEAT IN THE DISTRICTS |

* The steps involved in the processing are :

Step 1: For each name in OVERLAP OF(WHEAT-PRODUCING, WHEAT-PRODUCING)
do - X
- Step 2: if ANCESTOR(name, 1) = WESTBENGAL THEN report name

5 - Intertheme Query

5.1 Navigation as a basic means of intertheme query

Note that a significant feature of our model is to offer a mechanism for navigation,
not only between spatially related entities of the same theme, but between entities of
different themes. llence spatial adjacency and representation of inter- theme overlaps
are vital to our system. In order to achieve this objective, a concept of absolute space
has been proposed as a means of communication between 2 themes This absolute space
used in our system is a square grid tessellation.

5.2 Inte‘rtheme Operations

Hierarchicﬁ]LNe'twork .

1. NNODES_FI..OWING._THROUGH ( {sid}[,[Type]|) = isu:l})
- Purpose : returns the set of network objects, optionally of type Type flowing

through the set of objects(nodes) in the hierarchical graph. For example, NN-
ODES_FLOWING THROUGH(*WESTBENGAL” RIVERS) gives all the rivers

[lowing Lthrough WESTBENGAL. Its inverse function is NNODES_FLOWS THROUGIL.

- 2. PATH.FLOWS_THROUGH ( sid[,{segno}|[, true'ccnstraintS][ false mnstraints])

= ( {sid} )
Purpose : this is analohous to the function NNODES FLOWS_THROUGH

Network-lnterval
1. REGION.IN ( sid , {segno} ) = {sid} |
Purpose : returns the set of regions through which a set of segment numbers of

a network object passes. A * in the segment number set means all the segment
numbers. By default also, all the segment numbers are chosen.

I 2. NNODES_IN ( si‘d. ) = ("{sid, {Segnﬂ}} )

~ Purpose : returns the set of network nodes and the segments through which a
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network object passes.

5.3 Grid

The tessellation of the absolute space provides a means of navigating between themes.
The tessellation is user-configurable and can be rectangular or hexagonal. However in
the present implementation we have resorted to the rectangular grid. So, the universe
_has been divided into a rectangular grid much like our familiar cartesian co-ordinate
system. Some points in the grid (from now on referred to as ’grid-points’ ) are chosen
to serve as anchors by which navigation from one object to another, either in the same
or different theme is done. The choice of grid-points is done like :

1.

2.

The corners of all the polygonal regions are grid-points

The start and end points of all segments of polylines are grid-points

. All point type spatial sorts are grid-points

. The centroid of a polygonal region is a grid-point. This is called the representative grid-poirt

of the polygon. All references to this polygon in absolute space will be based from
this point. |

. The points of polygon-polygon intersection and polygon-polyline intersection are

grid-points.

Note that the prospective grid-points are determined during insertion and not during
computation. The efficiency in the two cases is an optimization issue and have not been

dealt with.

5.4

1.

Grid Operations
CONSTRUCT _SEGMENT _RECTANGLE(sid, segno, distance}

Purpose : constructs a rectangular region with the segno of a network object as
the halfway dividing line parallel to the segment.

. ENUMERATE_RECTANGLE(rectangular region)

Purpose : reports all the grid-points in the rectangular region

. ENUMERATE_CIRCLE(circular-region)

Purpose : reports all grid-points in a circular region

. ENUMERATE_CONICAL REGION(conic-region)

Purpose : reports all grid-points in a conical region
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5.5 Anchors

The processing of inter-theme queries involves dealing with spatial objects coming from
more than one theme i.e., such queries crosses theme boundaries. This necessitates a
means of navigation between themes. Such navigation is realized through constructs
known as anchors. In our system, we have conceived of the following anchors :

1. Base Theme Anchor ( BSA )
2. Geometric Anchors

¢ Minimum Bounding Rectangle Anchor ( MBRA )
¢ Maximally Enclosed Rectangle Anchor ( MERA )
¢ Grid Anchor ( GA ) \

The choice of an anchor will depend on the nature of the query and determined by the
Query Processor. The general guideline is that as far as possible queries are answered in
the semantic level and should navigation be necessary BSA is preferred if the resolution
is within tolerable limits. More precise answers are offered through Geometric anchors
but with the added overhead of computation. A query region reference is resolved in
the following manner : If the query region is resolvable by a BSA then we are done.
Otherwise we adopt the following strategy-

1. If the query region is outside the MBR of a polygon, then the polygon
is ignored ( as it do not fall in the query region )

2. If the query region is contained within the MER of a polygon, then
the polygon is selected as an area-of-interest.

3. If the query region falls outside the MER but within the MBR, then
the query region falls the rectangular ring between the MBR and MER.

So, by the above method we can substantially reduce our search area and ignore some
regions beyond our area-of-interest. This is significant when we consider the fact that
polygon manipulation in absolute space is costly.

5.6 " Intertheme Query formulation

The following examples demonstrate how to formulate intertheme queries The examples
have been grouped as involving the following theme combinations :

1. Hierarchical-Network
2. Hierarchical-Interval
3. Network-Interval

4. Hierarchical-Network-Interval
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Hierarchical-Network

User Query 1

FIND ALL RIVERS FLOWING THROUGH WEST BENGAL

This can be written as :

SELECT NAME FROM SEGNO * OF RIVER WHERE RIVER FLOWING THROUGH
WESTBENGAL

User Query 2 -

FIND ALL SITES WITHIN A DISTANCE OF 10 MILES FROM OF THE PORTION
OF GANGA THAT PASSES THROUGH UTTAR PRADESH

This can be written as : | |
SELECT NAME FROM DESCENDANTS(2) OF UTTARPRADESH WHERE NAME

WITHIN 10 OF SEGNO * OF GANGA FLOWING THROUGH UTTARPRADESH
Hierarchical-Interval

User Query 1

- FIND ALL SITES IN THE BHILLY REGION OF WEST BENGAL

This can be written as :

- SELECT NAME FROM DESCENDANTS(1) OF OVERLAP OF HILLY-REGION IN

WESTBENGAL
Interval-Network

FIND A PATH BETWEEN SEGMENT NUMBER 3 OF GANGA TO SEGMENT
NUMBER 2 OF MATLA AVOIDING ANY FOREST

This can be written as : |

FIND PATH FROM SEGNQO 3 OF GANGA TO SEGNO 2 OF MATLA WHERE PATH
NOT FLOWING THROUGH FOREST-REGION

Hierarchical-Network-Interval

User Query 1 |

FIND ALL SITES IN THOSE DISTRICTS IN WHICH THOSE FORESTS LIE THROUGH
WHICH THE RIVER BRAHMAPUTRA FLOWS

This can be written as :

SELECT NAME FROM DESCENDANTS(1) OF OVERLAP OF FOREST-REGION
WHERE BRAHMAPUTRA FLOWING THROUGH FOREST-REGION

5.7 Query Processing of Intertheme queries
5.7.1 Local message passing and intertheme objects

An intertheme object is a object generated out of intertheme operation(s) on one or more
theme objects. The process of such intertheme object generation can be abstracted to
be a local message passing” mechanism. Based on the query at hand, the operand
theme objects send out messages and listens for responses from other theme objects.
As far as possible, an intertheme query is broken into a number of sub-queries each of
which can be evaluated by intra-theme operations. Proper intertheme operations are
then applied to these partial results(the answer of the sub-queries). An example of
the "local message passing” process is finding out all theme objects within a particular




distance in a specific direction of an operand theme object. Such a query is answered
by constructing the region of interest with respect to the operand theme object, sending
messages from the operand theme object in the region of interest and selecting theme
objects which respond to this message:

5.7.2 Examples

Consider Query 1 from Hierarchical-Network.
Step 1: Get a River from the list of Rivers. If none left stop
Step 2: If WESTBENGAL in ANCESTOR((nnode_flows_through(River,* *,*),1}
then report River
Step 3: Goto Step 1
Consider Query number 2
FIND ALL SITES WITHIN A DISTANCE OF 10 MILES FROM OF THE PORTION
OF GANGA THAT PASSES THROUGH UTTAR PRADESH
This is an example of a query which cannot be answered in the sema.ntlc level and we
have to resort to the underlining absolute space. The steps involved in the processing
of this query are the following : |
Step 1: If UTTARPRADESH not in nnode_flows thru( GANGA” * * *)
then stop |
Step 2: For each segment of segment number Segno
reported by flows_thru do

a. ConstructSegmentRectangle ("GANGA” ,Segno,10)

b. For each grid-point in the Rectangle do

bl. if SITE in GridTag(grid-point) then report grid-name.

Let us consider the Hierarchical-Interval query.
FIND ALL SITES IN THE HILLY REGION OF WEST BENGAL
The steps for the processing of the query are the following :
Step 1: Find the districts from OVERLAP OF HILLY-REGION
Step 2: If a ANCESTOR(district, 1) = WESTBENGAL then
report DESCENDANTS(district, 1)
Let us now consider the Net.work-—lnterval query
FIND A PATH BETWEEN SEGMENT NUMBER 3 OF GANGA TO SEGMENT
NUMBER 2 OF MATLA AVOIDING ANY FOREST -
The steps involved in the processing are the following :

Step 1: Get a path between source and destination by
FIND_PATH( GANGA, 3, MATLA, 2). If no path exits stop

Step 2: If path_flows thru(path,*,*,FOREST*REGION) TRUE then
report path -
Step 3: Goto step 1

Finally we consider the Hierarchical-Network-Interval query

FIND ALL SITES IN THOSE DISTRICTS IN WHICH THOSE FORESTS LIE THROUGH

WHICH THE RIVER BRAHMAPUTRA FLOWS
This can be answered by the following steps :

Step 1: For each district reported in nnode_flows_thru("BRAHMAPUTRA” *,FOREST-
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" REGION,*)
report DESCENDANTS(district, 1) |

6 Conclusion

To sum up, we have achieved a semantic disassociation between user’s perception of
space and its internal representatidn. This is achieved by a semantically stronger data
modelling. A prototype system has been built based on the concepts discussed in the
dissertation. The prototype system is configured into four subsystems or themes. They
are as'follows : | | |

1. Political System with Topology Region

2. Physiographic System with Topology Region

3. Hydrographic System with Topology Network
4. Transportation System with Topology Network

The UNIVERSE is declared to be INDIA, the Base theme as POLITICAL with the
resolution as the districts of a state. As we have said before, this declaration enforces
a complete partition of INDIA into a set of districts. The file structure is organized as
a collection of B-trees. The B-trees used in the system are the following

1. Political Country Btree - indexes all the political countries

2. Political State Btree - indexes all the political state

3 Political District Btree - indexes all the political districts

4. Political Site/City Btree - indexes all the political sites and cities
5. Physiographic F;orest Btree - indexes all the forests

6. Physiographic Hilly Btree - indexes all the hilly regions

7. Physiographic Plain Btree - indexes all the plain regions

8. Physiographic Marshy Btree - indexes all the marshy regions

9. Physiographic Plateau Btree - indexes all the plateau regions
10. Physiographic Mountain Btree - indexes all the mountaineous regions
11. Hydrographic Lake Btree - indexes all the lakes
12. Hydrographic Sea Btree - indexes all the seas

. 13. Hydrographic River Btree - indexes all the rivers
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14. Transportation Road Btree - indexes ali the roads

" In addition there is a Header Btree which maintains a roster of all the objects defined
in a system. Every object has a 2 level entry into the file structure :

1. One in the Header Btree

2. One in the Btree of its proper type and theéme.

For example, the river GANGA has its entries into the Header Btree and Hydrographic
River Biree. All the defined objects of the system are kept in a dictionary called the
Btree Dictionary. For a particular object, the Header Btree node keeps the offset of
the object into this Dictionary. The dictionary file keeps for every object the following
informations in addition to others :

1. offset into the data file for detailed information about the object

2 root of the Btree of the children of this object if the object happens to be in a
theme having a hierarchical structure.

The access to any object is done in the following manner : The Header Btree is searched
to obtain a reference to the object. The Btree Dictionary file is searched to get infor-
mations about the object. Many aspects of the problem has not been dealt with. While
most of them concerns with query processing, others concern efficient data structure
designs and the third involves efficient algorithms design. Let us first consider the is-
sues in query optimization [10]. A particular query can be answered in a number of
ways, some in the semantic level and the others using the geometric data structure. It
~ depends on the nature of query to decide what mechanism to use. This Query Plan, a
typical part of the Query Optimizer has not been’ considered. The algorithm and data
structure design are far from optimized. This is particularly true in the realm of the
computational geometry part of the work. Further, issues in spatial reasoning has not
been adequately addressed. For a good account of topological and spatial reasoning,
the reader is referred to [6,7,8]. Nevertheless, we believe that this work has addressed
the major aspects of the functional specifications and operations of spatial structures.
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